1
|
Fairman CW, Lever AML, Kenyon JC. Evaluating RNA Structural Flexibility: Viruses Lead the Way. Viruses 2021; 13:v13112130. [PMID: 34834937 PMCID: PMC8624864 DOI: 10.3390/v13112130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/11/2022] Open
Abstract
Our understanding of RNA structure has lagged behind that of proteins and most other biological polymers, largely because of its ability to adopt multiple, and often very different, functional conformations within a single molecule. Flexibility and multifunctionality appear to be its hallmarks. Conventional biochemical and biophysical techniques all have limitations in solving RNA structure and to address this in recent years we have seen the emergence of a wide diversity of techniques applied to RNA structural analysis and an accompanying appreciation of its ubiquity and versatility. Viral RNA is a particularly productive area to study in that this economy of function within a single molecule admirably suits the minimalist lifestyle of viruses. Here, we review the major techniques that are being used to elucidate RNA conformational flexibility and exemplify how the structure and function are, as in all biology, tightly linked.
Collapse
Affiliation(s)
| | - Andrew M. L. Lever
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| | - Julia C. Kenyon
- Homerton College, University of Cambridge, Cambridge CB2 8PH, UK;
- Department of Medicine, Cambridge University, Level 5, Addenbrookes’ Hospital (Box 157), Cambridge CB2 0QQ, UK
- Correspondence: (A.M.L.L.); (J.C.K.); Tel.: +44-(0)-1223-747308 (A.M.L.L. & J.C.K.)
| |
Collapse
|
2
|
Bood M, Del Nogal AW, Nilsson JR, Edfeldt F, Dahlén A, Lemurell M, Wilhelmsson LM, Grøtli M. Interbase-FRET binding assay for pre-microRNAs. Sci Rep 2021; 11:9396. [PMID: 33931703 PMCID: PMC8087795 DOI: 10.1038/s41598-021-88922-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
The aberrant expression of microRNAs (miRs) has been linked to several human diseases. A promising approach for targeting these anomalies is the use of small-molecule inhibitors of miR biogenesis. These inhibitors have the potential to (i) dissect miR mechanisms of action, (ii) discover new drug targets, and (iii) function as new therapeutic agents. Here, we designed Förster resonance energy transfer (FRET)-labeled oligoribonucleotides of the precursor of the oncogenic miR-21 (pre-miR-21) and used them together with a set of aminoglycosides to develop an interbase-FRET assay to detect ligand binding to pre-miRs. Our interbase-FRET assay accurately reports structural changes of the RNA oligonucleotide induced by ligand binding. We demonstrate its application in a rapid, qualitative drug candidate screen by assessing the relative binding affinity between 12 aminoglycoside antibiotics and pre-miR-21. Surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) were used to validate our new FRET method, and the accuracy of our FRET assay was shown to be similar to the established techniques. With its advantages over SPR and ITC owing to its high sensitivity, small sample size, straightforward technique and the possibility for high-throughput expansion, we envision that our solution-based method can be applied in pre-miRNA–target binding studies.
Collapse
Affiliation(s)
- Mattias Bood
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.,Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anna Wypijewska Del Nogal
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Fredrik Edfeldt
- Structure & Biophysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chemistry and Biochemistry, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.
| |
Collapse
|
3
|
Haniff HS, Knerr L, Chen JL, Disney MD, Lightfoot HL. Target-Directed Approaches for Screening Small Molecules against RNA Targets. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2020; 25:869-894. [PMID: 32419578 PMCID: PMC7442623 DOI: 10.1177/2472555220922802] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA molecules have a variety of cellular functions that can drive disease pathologies. They are without a doubt one of the most intriguing yet controversial small-molecule drug targets. The ability to widely target RNA with small molecules could be revolutionary, once the right tools, assays, and targets are selected, thereby defining which biomolecules are targetable and what constitutes drug-like small molecules. Indeed, approaches developed over the past 5-10 years have changed the face of small molecule-RNA targeting by addressing historic concerns regarding affinity, selectivity, and structural dynamics. Presently, selective RNA-protein complex stabilizing drugs such as branaplam and risdiplam are in clinical trials for the modulation of SMN2 splicing, compounds identified from phenotypic screens with serendipitous outcomes. Fully developing RNA as a druggable target will require a target engagement-driven approach, and evolving chemical collections will be important for the industrial development of this class of target. In this review we discuss target-directed approaches that can be used to identify RNA-binding compounds and the chemical knowledge we have today of small-molecule RNA binders.
Collapse
Affiliation(s)
- Hafeez S. Haniff
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Laurent Knerr
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
4
|
Posttranscriptional chemical labeling of RNA by using bioorthogonal chemistry. Methods 2017; 120:28-38. [DOI: 10.1016/j.ymeth.2017.02.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022] Open
|
5
|
Tanpure AA, Srivatsan SG. Synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue based on the Lucifer chromophore. Chembiochem 2014; 15:1309-16. [PMID: 24861713 DOI: 10.1002/cbic.201402052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 11/10/2022]
Abstract
The majority of fluorescent nucleoside analogues used in nucleic acid studies have excitation maxima in the UV region and show very low fluorescence within oligonucleotides (ONs); hence, they cannot be utilised with certain fluorescence methods and for cell-based analysis. Here, we describe the synthesis, photophysical properties and incorporation of a highly emissive and environment-sensitive uridine analogue, derived by attaching a Lucifer chromophore (1,8-naphthalimide core) at the 5-position of uracil. The emissive nucleoside displays excitation and emission maxima in the visible region and exhibits high quantum yield. Importantly, when incorporated into ON duplexes it retains appreciable fluorescence efficiency and is sensitive to the neighbouring base environment. Notably, the nucleoside signals the presence of purine repeats in ON duplexes with an enhancement in fluorescence intensity, a property rarely displayed by other nucleoside analogues.
Collapse
Affiliation(s)
- Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008 (India)
| | | |
Collapse
|
6
|
Tanpure AA, Pawar MG, Srivatsan SG. Fluorescent Nucleoside Analogs: Probes for Investigating Nucleic Acid Structure and Function. Isr J Chem 2013. [DOI: 10.1002/ijch.201300010] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
7
|
Emani PS, Olsen GL, Varani G, Drobny GP. Theory of nonrigid rotational motion applied to NMR relaxation in RNA. J Phys Chem A 2011; 115:12055-69. [PMID: 21870804 PMCID: PMC3626457 DOI: 10.1021/jp204499x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Solution NMR spectroscopy can elucidate many features of the structure and dynamics of macromolecules, yet relaxation measurements, the most common source of experimental information on dynamics, can sample only certain ranges of dynamic rates. A complete characterization of motion of a macromolecule thus requires the introduction of complementary experimental approaches. Solid-state NMR spectroscopy successfully probes the time scale of nanoseconds to microseconds, a dynamic window where solution NMR results have been deficient, and probes conditions where the averaging effects of rotational diffusion of the molecule are absent. Combining the results of the two distinct techniques within a single framework provides greater insight into dynamics, but this task requires the common interpretation of results recorded under very different experimental conditions. Herein, we provide a unified description of dynamics that is robust to the presence of large-scale conformational exchange, where the diffusion tensor of the molecule varies on a time scale comparable to rotational diffusion in solution. We apply this methodology to the HIV-1 TAR RNA molecule, where conformational rearrangements are both substantial and functionally important. The formalism described herein is of greater generality than earlier combined solid-state/solution NMR interpretations, if detailed molecular structures are available, and can offer a more complete description of RNA dynamics than either solution or solid-state NMR spectroscopy alone.
Collapse
Affiliation(s)
- Prashant S. Emani
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| | - Gregory L. Olsen
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Biochemistry, University of Washington, Box 357350, Seattle, USA 98195
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| |
Collapse
|
8
|
Nguyen P, Qin PZ. RNA dynamics: perspectives from spin labels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:62-72. [PMID: 21882345 DOI: 10.1002/wrna.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamics are important and indispensible physical attributes that play essential roles in RNA function. RNA dynamics are complex, spanning vast timescales, and encompassing a large number of physical modes. The technique of site-directed spin labeling (SDSL), which derives information on local structural and dynamic features of a macromolecule by monitoring a chemically stable nitroxide radical using electron paramagnetic resonance spectroscopy, has been applied to monitor intrinsic dynamics at defined structural states as well as to probe conformational transition dynamics of RNAs. The current state of SDSL studies of RNA dynamics is summarized here. Further development and application of SDSL promise to open up many more opportunities for probing RNA dynamics and connecting dynamics to structure and function.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
9
|
Multistep kinetics of the U1A-SL2 RNA complex dissociation. J Mol Biol 2011; 408:896-908. [PMID: 21419778 DOI: 10.1016/j.jmb.2011.02.054] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 02/20/2011] [Accepted: 02/22/2011] [Indexed: 11/23/2022]
Abstract
The U1A-SL2 RNA complex is a model system for studying interactions between RNA and the RNA recognition motif (RRM), which is one of the most common RNA binding domains. We report here kinetic studies of dissociation of the U1A-SL2 RNA complex, using laser temperature jump and stopped-flow fluorescence methods with U1A proteins labeled with the intrinsic chromophore tryptophan. An analysis of the kinetic data suggests three phases of dissociation with time scales of ∼100 μs, ∼50 ms, and ∼2 s. We propose that the first step of dissociation is a fast rearrangement of the complex to form a loosely bound complex. The intermediate step is assigned to be the dissociation of the U1A-SL2 RNA complex, and the final step is assigned to a reorganization of the U1A protein structure into the conformation of the free protein. These assignments are consistent with previous proposals based on thermodynamic, NMR, and surface plasmon resonance experiments and molecular dynamics simulations. Together, these results begin to build a comprehensive model of the complex dynamic processes involved in the formation and dissociation of an RRM-RNA complex.
Collapse
|
10
|
Emani PS, Olsen GL, Echodu DC, Varani G, Drobny GP. Slow exchange model of nonrigid rotational motion in RNA for combined solid-state and solution NMR studies. J Phys Chem B 2010; 114:15991-6002. [PMID: 21067190 PMCID: PMC3246393 DOI: 10.1021/jp107193z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Functional RNA molecules are conformationally dynamic and sample a multitude of dynamic modes over a wide range of frequencies. Thus, a comprehensive description of RNA dynamics requires the inclusion of a broad range of motions across multiple dynamic rates which must be derived from multiple spectroscopies. Here we describe a slow conformational exchange theoretical approach to combining the description of local motions in RNA that occur in the nanosecond to microsecond window and are detected by solid-state NMR with nonrigid rotational motion of the HIV-1 transactivation response element (TAR) RNA in solution as observed by solution NMR. This theoretical model unifies the experimental results generated by solution and solid-state NMR and provides a comprehensive view of the dynamics of HIV-1 TAR RNA, a well-known paradigm of an RNA where function requires extensive conformational rearrangements. This methodology provides a quantitative atomic level view of the amplitudes and rates of the local and collective displacements of the TAR RNA molecule and provides directly motional parameters for the conformational capture hypothesis of this classical RNA-ligand interaction.
Collapse
Affiliation(s)
- Prashant S. Emani
- Department of Physics, University of Washington, Box 351560, Seattle, USA 98195
| | - Gregory L. Olsen
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Dorothy C. Echodu
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| | - Gabriele Varani
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
- Department of Biochemistry, University of Washington, Box 357350, Seattle, USA 98195
| | - Gary P. Drobny
- Department of Chemistry, University of Washington, Box 351700, Seattle, USA 98195
| |
Collapse
|
11
|
Sonawane KD, Tewari R. Conformational preferences of hypermodified nucleoside lysidine (k2C) occurring at "wobble" position in anticodon loop of tRNA(Ile). NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 27:1158-74. [PMID: 18788046 DOI: 10.1080/15257770802341475] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Conformational preferences of hypermodified nucleoside, 4-amino-2-(N(6)-lysino)-1-(beta-D-ribofuranosyl) pyrimidinium (Lysidine or 2-lysyl cytidine), usually designated as k(2)C, have been investigated theoretically by the quantum chemical perturbative configuration interaction with localized orbitals (PCILO) method. The zwitterionic, non-zwitterionic, neutral, and tautomeric forms have been studied. Automated geometry optimization using molecular mechanics force field (MMFF), semi-empirical quantum chemical PM3, and ab initio molecular orbital Hartree-Fock SCF quantum mechanical calculations have also been made to compare the salient features. The predicted most stable conformations of zwitterionic, non-zwitterionic, neutral, and tautomeric form are such that in each of these molecules the orientation of lysidine moiety (R) is trans to the N(1) of cytidine. The preferred base orientation is anti (chi = 3 degrees ) and the lysine substituent folds back toward the ribose ring. This results in hydrogen bonding between the carboxyl oxygen O(12a) of lysine moiety and the 2'-hydroxyl group of ribose sugar. In all these four forms of lysidine O(12a)...H-C(9) and O(12b)...H-N(11) interactions provide stability to respective stable conformers. Watson-Crick base pairing of lysidine with A is feasible only with the tautomeric form of usual anti oriented lysidine. This can help in recognition of AUA codon besides in avoiding misrecognition of AUG.
Collapse
|
12
|
Pickard BS, Knight HM, Hamilton RS, Soares DC, Walker R, Boyd JKF, Machell J, Maclean A, McGhee KA, Condie A, Porteous DJ, St Clair D, Davis I, Blackwood DHR, Muir WJ. A common variant in the 3'UTR of the GRIK4 glutamate receptor gene affects transcript abundance and protects against bipolar disorder. Proc Natl Acad Sci U S A 2008; 105:14940-5. [PMID: 18824690 PMCID: PMC2567472 DOI: 10.1073/pnas.0800643105] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Indexed: 11/18/2022] Open
Abstract
Underactivity of the glutamatergic system is an attractive model for the pathophysiology of several major mental illnesses. We previously described a chromosome abnormality disrupting the kainate class ionotropic glutamate receptor gene, GRIK4/KA1, in an individual with schizophrenia and learning disability (mental retardation). We also demonstrated in a case-control study that two physically separated haplotypes within this gene were significantly associated with increased risk of schizophrenia and decreased risk of bipolar disorder, respectively. The latter protective haplotype was located at the 3' end of the gene. We now report the identification from carriers of the protective haplotype of a deletion variant within the 3' untranslated region of the gene. The deletion allele also was found to be negatively associated with bipolar disorder in both initial (P = 0.00000019) and replication (P = 0.0107) case-control studies. Expression studies indicated that deletion-carrying mRNA transcripts were relatively more abundant. We postulate that this may be a direct consequence of the differences in the RNA secondary structures predicted for the insertion and deletion alleles. These data suggest a mechanism whereby the genetic protective effect is mediated through increased kainate receptor expression.
Collapse
Affiliation(s)
- B S Pickard
- Medical Genetics, School of Clinical and Molecular Medicine, Molecular Medicine Centre, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|