1
|
Communicating 3D data-interactive 3D PDF documents for expert reports and scientific publications in the field of forensic medicine. Int J Legal Med 2019; 134:1175-1183. [PMID: 31602494 DOI: 10.1007/s00414-019-02156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/05/2019] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Modern forensic investigations increasingly revert to 3D imaging techniques, such as computed tomography, magnetic resonance imaging, and 3D surface imaging. Findings are therefore often based on 3D data sets; however, this information is commonly reported and communicated within 2D imagery. The use of interactive 3D PDFs is already established in the scientific community but has yet to be implemented in the field of forensic medicine. METHODS AND MATERIALS Three example cases were chosen to serve as exemplary data for the most commonly applied imaging techniques in postmortem imaging. 3D surface models were created from postmortem magnetic resonance imaging (PMMR), postmortem computed tomography (PMCT), and 3D surface imaging data sets. RESULTS PMMR revealed a space-occupying subdural hemorrhage that led to ipsilateral compression of the brain tissue of the right hemisphere. PMCT displayed a defect in the skull on the left side of the temporal bone. 3D surface imaging data displayed a patterned discoloration on the inside of the left forearm. DISCUSSION Interactive 3D PDFs offer the possibility to communicate 3D information to the reader while maintaining all the benefits of a regular 2D PDF. With Adobe Acrobat, the reader can interactively navigate through 3D data sets and create sufficient depth cues to generate a realistic 3D perception of the data. CONCLUSION The interactive 3D PDF is a useful extension of standard 2D PDFs and has the potential to communicate 3D data to the reader in a more complete, more comprehensible, and less subjective manner than 2D PDFs.
Collapse
|
2
|
Glaser M, Schwan S. Processing textual and visual certainty information about digital architectural models. COMPUTERS IN HUMAN BEHAVIOR 2019. [DOI: 10.1016/j.chb.2019.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
3
|
Newe A, Becker L. Three-Dimensional Portable Document Format (3D PDF) in Clinical Communication and Biomedical Sciences: Systematic Review of Applications, Tools, and Protocols. JMIR Med Inform 2018; 6:e10295. [PMID: 30087092 PMCID: PMC6103636 DOI: 10.2196/10295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/07/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background The Portable Document Format (PDF) is the standard file format for the communication of biomedical information via the internet and for electronic scholarly publishing. Although PDF allows for the embedding of three-dimensional (3D) objects and although this technology has great potential for the communication of such data, it is not broadly used by the scientific community or by clinicians. Objective The objective of this review was to provide an overview of existing publications that apply 3D PDF technology and the protocols and tools for the creation of model files and 3D PDFs for scholarly purposes to demonstrate the possibilities and the ways to use this technology. Methods A systematic literature review was performed using PubMed and Google Scholar. Articles searched for were in English, peer-reviewed with biomedical reference, published since 2005 in a journal or presented at a conference or scientific meeting. Ineligible articles were removed after screening. The found literature was categorized into articles that (1) applied 3D PDF for visualization, (2) showed ways to use 3D PDF, and (3) provided tools or protocols for the creation of 3D PDFs or necessary models. Finally, the latter category was analyzed in detail to provide an overview of the state of the art. Results The search retrieved a total of 902 items. Screening identified 200 in-scope publications, 13 covering the use of 3D PDF for medical purposes. Only one article described a clinical routine use case; all others were pure research articles. The disciplines that were covered beside medicine were many. In most cases, either animal or human anatomies were visualized. A method, protocol, software, library, or other tool for the creation of 3D PDFs or model files was described in 19 articles. Most of these tools required advanced programming skills and/or the installation of further software packages. Only one software application presented an all-in-one solution with a graphical user interface. Conclusions The use of 3D PDF for visualization purposes in clinical communication and in biomedical publications is still not in common use, although both the necessary technique and suitable tools are available, and there are many arguments in favor of this technique. The potential of 3D PDF usage should be disseminated in the clinical and biomedical community. Furthermore, easy-to-use, standalone, and free-of-charge software tools for the creation of 3D PDFs should be developed.
Collapse
Affiliation(s)
- Axel Newe
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,NewTec GmbH, Pfaffenhofen an der Roth, Germany
| | - Linda Becker
- Chair of Health Psychology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Wolle P, Müller MP, Rauh D. Augmented Reality in Scientific Publications-Taking the Visualization of 3D Structures to the Next Level. ACS Chem Biol 2018; 13:496-499. [PMID: 29544257 DOI: 10.1021/acschembio.8b00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The examination of three-dimensional structural models in scientific publications allows the reader to validate or invalidate conclusions drawn by the authors. However, either due to a (temporary) lack of access to proper visualization software or a lack of proficiency, this information is not necessarily available to every reader. As the digital revolution is quickly progressing, technologies have become widely available that overcome the limitations and offer to all the opportunity to appreciate models not only in 2D, but also in 3D. Additionally, mobile devices such as smartphones and tablets allow access to this information almost anywhere, at any time. Since access to such information has only recently become standard practice, we want to outline straightforward ways to incorporate 3D models in augmented reality into scientific publications, books, posters, and presentations and suggest that this should become general practice.
Collapse
Affiliation(s)
- Patrik Wolle
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Matthias P. Müller
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 4a, D-44227 Dortmund, Germany
| |
Collapse
|
5
|
Herzog H, Klein B, Ziegler A. Form and function of the teleost lateral line revealed using three-dimensional imaging and computational fluid dynamics. J R Soc Interface 2018; 14:rsif.2016.0898. [PMID: 28468922 DOI: 10.1098/rsif.2016.0898] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/11/2017] [Indexed: 11/12/2022] Open
Abstract
Fishes sense weak water motion using the lateral line. Among the thousands of described fish species, this organ may differ in size, shape and distribution of individual mechanoreceptors or lateral line canals. The reasons for this diversity remain unclear, but are very likely related to habitat preferences. To better understand the performance of the organ in natural hydrodynamic surroundings, various three-dimensional imaging datasets of the cephalic lateral line were gathered using Leuciscus idus as representative freshwater teleost. These data are employed to simulate hydrodynamic phenomena around the head and within lateral line canals. The results show that changes in canal dimensions alter the absolute stimulation amplitudes, but have little effect on the relation between bulk water flow and higher frequency signals. By contrast, depressions in the skin known as epidermal pits reduce bulk flow stimulation and increase the ratio between higher-frequency signals and the background flow stimulus.
Collapse
Affiliation(s)
- Hendrik Herzog
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - Birgit Klein
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - Alexander Ziegler
- Institut für Evolutionsbiologie und Ökologie, Rheinische Friedrich-Wilhelms-Universität Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
6
|
Kato A, Ziegler A, Utsumi M, Ohno K, Takeichi T. Three-dimensional imaging of internal tooth structures: Applications in dental education. J Oral Biosci 2016. [DOI: 10.1016/j.job.2016.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
7
|
Newe A. Towards an easier creation of three-dimensional data for embedding into scholarly 3D PDF (Portable Document Format) files. PeerJ 2015; 3:e794. [PMID: 25780759 PMCID: PMC4358654 DOI: 10.7717/peerj.794] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/04/2015] [Indexed: 11/20/2022] Open
Abstract
The Portable Document Format (PDF) allows for embedding three-dimensional (3D) models and is therefore particularly suitable to communicate respective data, especially as regards scholarly articles. The generation of the necessary model data, however, is still challenging, especially for inexperienced users. This prevents an unrestrained proliferation of 3D PDF usage in scholarly communication. This article introduces a new solution for the creation of three of types of 3D geometry (point clouds, polylines and triangle meshes), that is based on MeVisLab, a framework for biomedical image processing. This solution enables even novice users to generate the model data files without requiring programming skills and without the need for an intensive training by simply using it as a conversion tool. Advanced users can benefit from the full capability of MeVisLab to generate and export the model data as part of an overall processing chain. Although MeVisLab is primarily designed for handling biomedical image data, the new module is not restricted to this domain. It can be used for all scientific disciplines.
Collapse
Affiliation(s)
- Axel Newe
- Chair of Medical Informatics, Friedrich-Alexander University Erlangen-Nuremberg , Erlangen , Germany
| |
Collapse
|
8
|
Rediscovery of an internal organ in heart urchins (Echinoidea: Spatangoida): morphology and evolution of the intestinal caecum. ORG DIVERS EVOL 2014. [DOI: 10.1007/s13127-014-0178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Kato A, Ziegler A, Higuchi N, Nakata K, Nakamura H, Ohno N. Aetiology, incidence and morphology of the C-shaped root canal system and its impact on clinical endodontics. Int Endod J 2014; 47:1012-33. [PMID: 24483229 PMCID: PMC4258081 DOI: 10.1111/iej.12256] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 01/27/2014] [Indexed: 01/15/2023]
Abstract
The C-shaped root canal constitutes an unusual root morphology that can be found primarily in mandibular second permanent molars. Due to the complexity of their structure, C-shaped root canal systems may complicate endodontic interventions. A thorough understanding of root canal morphology is therefore imperative for proper diagnosis and successful treatment. This review aims to summarize current knowledge regarding C-shaped roots and root canals, from basic morphology to advanced endodontic procedures. To this end, a systematic search was conducted using the MEDLINE, BIOSIS, Cochrane Library, EMBASE, Google Scholar, Web of Science, PLoS and BioMed Central databases, and many rarely cited articles were included. Furthermore, four interactive 3D models of extracted teeth are introduced that will allow for a better understanding of the complex C-shaped root canal morphology. In addition, the present publication includes an embedded best-practice video showing an exemplary root canal procedure on a tooth with a pronounced C-shaped root canal. The survey of this unusual structure concludes with a number of suggestions concerning future research efforts.
Collapse
Affiliation(s)
- A Kato
- Department of Oral Anatomy, School of Dentistry, Aichi Gakuin University, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Newe A, Ganslandt T. Simplified generation of biomedical 3D surface model data for embedding into 3D portable document format (PDF) files for publication and education. PLoS One 2013; 8:e79004. [PMID: 24260144 PMCID: PMC3829830 DOI: 10.1371/journal.pone.0079004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
The usefulness of the 3D Portable Document Format (PDF) for clinical, educational, and research purposes has recently been shown. However, the lack of a simple tool for converting biomedical data into the model data in the necessary Universal 3D (U3D) file format is a drawback for the broad acceptance of this new technology. A new module for the image processing and rapid prototyping framework MeVisLab does not only provide a platform-independent possibility to create surface meshes out of biomedical/DICOM and other data and to export them into U3D – it also lets the user add meta data to these meshes to predefine colors and names that can be processed by a PDF authoring software while generating 3D PDF files. Furthermore, the source code of the respective module is available and well documented so that it can easily be modified for own purposes.
Collapse
Affiliation(s)
- Axel Newe
- Chair of Medical Informatics, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| | - Thomas Ganslandt
- Medical Centre for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Faulwetter S, Vasileiadou A, Kouratoras M, Thanos Dailianis, Arvanitidis C. Micro-computed tomography: Introducing new dimensions to taxonomy. Zookeys 2013:1-45. [PMID: 23653515 PMCID: PMC3591762 DOI: 10.3897/zookeys.263.4261] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Continuous improvements in the resolution of three-dimensional imaging have led to an increased application of these techniques in conventional taxonomic research in recent years. Coupled with an ever increasing research effort in cybertaxonomy, three-dimensional imaging could give a boost to the development of virtual specimen collections, allowing rapid and simultaneous access to accurate virtual representations of type material. This paper explores the potential of micro-computed tomography (X-ray micro-tomography), a non-destructive three-dimensional imaging technique based on mapping X-ray attenuation in the scanned object, for supporting research in systematics and taxonomy. The subsequent use of these data as virtual type material, so-called “cybertypes”, and the creation of virtual collections lie at the core of this potential. Sample preparation, image acquisition, data processing and presentation of results are demonstrated using polychaetes (bristle worms), a representative taxon of macro-invertebrates, as a study object. Effects of the technique on the morphological, anatomical and molecular identity of the specimens are investigated. The paper evaluates the results and discusses the potential and the limitations of the technique for creating cybertypes. It also discusses the challenges that the community might face to establish virtual collections. Potential future applications of three-dimensional information in taxonomic research are outlined, including an outlook to new ways of producing, disseminating and publishing taxonomic information.
Collapse
Affiliation(s)
- Sarah Faulwetter
- Department of Zoology-Marine Biology, Faculty of Biology, National and Kapodestrian University of Athens, Panepistimiopolis, 15784, Athens, Greece, ; Institute for Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, 71003 Heraklion, Crete, Greece
| | | | | | | | | |
Collapse
|
12
|
Enterotoxigenic Escherichia coli CS1 pilus: not one structure but several. J Bacteriol 2013; 195:1357-9. [PMID: 23354749 DOI: 10.1128/jb.00053-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Düring DN, Ziegler A, Thompson CK, Ziegler A, Faber C, Müller J, Scharff C, Elemans CPH. The songbird syrinx morphome: a three-dimensional, high-resolution, interactive morphological map of the zebra finch vocal organ. BMC Biol 2013; 11:1. [PMID: 23294804 PMCID: PMC3539882 DOI: 10.1186/1741-7007-11-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/08/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Like human infants, songbirds learn their species-specific vocalizations through imitation learning. The birdsong system has emerged as a widely used experimental animal model for understanding the underlying neural mechanisms responsible for vocal production learning. However, how neural impulses are translated into the precise motor behavior of the complex vocal organ (syrinx) to create song is poorly understood. First and foremost, we lack a detailed understanding of syringeal morphology. RESULTS To fill this gap we combined non-invasive (high-field magnetic resonance imaging and micro-computed tomography) and invasive techniques (histology and micro-dissection) to construct the annotated high-resolution three-dimensional dataset, or morphome, of the zebra finch (Taeniopygia guttata) syrinx. We identified and annotated syringeal cartilage, bone and musculature in situ in unprecedented detail. We provide interactive three-dimensional models that greatly improve the communication of complex morphological data and our understanding of syringeal function in general. CONCLUSIONS Our results show that the syringeal skeleton is optimized for low weight driven by physiological constraints on song production. The present refinement of muscle organization and identity elucidates how apposed muscles actuate different syringeal elements. Our dataset allows for more precise predictions about muscle co-activation and synergies and has important implications for muscle activity and stimulation experiments. We also demonstrate how the syrinx can be stabilized during song to reduce mechanical noise and, as such, enhance repetitive execution of stereotypic motor patterns. In addition, we identify a cartilaginous structure suited to play a crucial role in the uncoupling of sound frequency and amplitude control, which permits a novel explanation of the evolutionary success of songbirds.
Collapse
Affiliation(s)
- Daniel N Düring
- Verhaltensbiologie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Hee CS, Fabian H, Uchanska-Ziegler B, Ziegler A, Loll B. Comparative biophysical characterization of chicken β2-microglobulin. Biophys Chem 2012; 167:26-35. [PMID: 22695053 DOI: 10.1016/j.bpc.2012.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/24/2023]
Abstract
β(2)-microglobulin (β(2)m) is the smallest building block of molecules belonging to the immunoglobulin superfamily. By comparing thermodynamic and structural characteristics of chicken β(2)m with those of other species, we seek to elucidate whether it is possible to pinpoint features that set the avian protein apart from other β(2)m. The thermodynamic assays revealed that chicken β(2)m exhibits a lower melting temperature than human β(2)m, and the H/D exchange behavior observed by infrared spectroscopy indicates a more flexible structure of the former protein. To understand these differences at a molecular level, we determined the structure of free chicken β(2)m by X-ray crystallography to a resolution of 2.0 Å. Our comparisons indicate that certain biophysical characteristics of the chicken protein, particularly its conformational flexibility, diverge considerably from those of the other β(2)m analyzed, although basic structural features have been retained through evolution.
Collapse
Affiliation(s)
- Chee-Seng Hee
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
16
|
Brand J, Smith ESJ, Schwefel D, Lapatsina L, Poole K, Omerbašić D, Kozlenkov A, Behlke J, Lewin GR, Daumke O. A stomatin dimer modulates the activity of acid-sensing ion channels. EMBO J 2012; 31:3635-46. [PMID: 22850675 PMCID: PMC3433786 DOI: 10.1038/emboj.2012.203] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/06/2012] [Indexed: 12/14/2022] Open
Abstract
Stomatins govern membrane trafficking and ion channel activity. The banana-shaped stomatin-domain dimmers oligomerize into a cylindrical structure. A dynamic hydrophobic pocket at the concave side of the dimer mediates repression of acid-sensing ion channel 3 (ASIC3) activity. Stomatin proteins oligomerize at membranes and have been implicated in ion channel regulation and membrane trafficking. To obtain mechanistic insights into their function, we determined three crystal structures of the conserved stomatin domain of mouse stomatin that assembles into a banana-shaped dimer. We show that dimerization is crucial for the repression of acid-sensing ion channel 3 (ASIC3) activity. A hydrophobic pocket at the inside of the concave surface is open in the presence of an internal peptide ligand and closes in the absence of this ligand, and we demonstrate a function of this pocket in the inhibition of ASIC3 activity. In one crystal form, stomatin assembles via two conserved surfaces into a cylindrical oligomer, and these oligomerization surfaces are also essential for the inhibition of ASIC3-mediated currents. The assembly mode of stomatin uncovered in this study might serve as a model to understand oligomerization processes of related membrane-remodelling proteins, such as flotillin and prohibitin.
Collapse
Affiliation(s)
- Janko Brand
- Max-Delbrück Center for Molecular Medicine, Crystallography Department, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Uchanska-Ziegler B, Loll B, Fabian H, Hee CS, Saenger W, Ziegler A. HLA class I-associated diseases with a suspected autoimmune etiology: HLA-B27 subtypes as a model system. Eur J Cell Biol 2011; 91:274-86. [PMID: 21665321 DOI: 10.1016/j.ejcb.2011.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/15/2011] [Accepted: 03/15/2011] [Indexed: 01/05/2023] Open
Abstract
Although most autoimmune diseases are connected to major histocompatibility complex (MHC) class II alleles, a small number of these disorders exhibit a variable degree of association with selected MHC class I genes, like certain human HLA-A and HLA-B alleles. The basis for these associations, however, has so far remained elusive. An understanding might be obtained by comparing functional, biochemical, and biophysical properties of alleles that are minimally distinct from each other, but are nevertheless differentially associated to a given disease, like the HLA-B*27:05 and HLA-B*27:09 antigens, which differ only by a single amino acid residue (Asp116His) that is deeply buried within the binding groove. We have employed a number of approaches, including X-ray crystallography and isotope-edited infrared spectroscopy, to investigate biophysical characteristics of the two HLA-B27 subtypes complexed with up to ten different peptides. Our findings demonstrate that the binding of these peptides as well as the conformational flexibility of the subtypes is greatly influenced by interactions of the C-terminal peptide residue. In particular, a basic C-terminal peptide residue is favoured by the disease-associated subtype HLA-B*27:05, but not by HLA-B*27:09. This property appears also as the only common denominator of distinct HLA class I alleles, among them HLA-B*27:05, HLA-A*03:01 or HLA-A*11:01, that are associated with diseases suspected to have an autoimmune etiology. We postulate here that the products of these alleles, due to their unusual ability to bind with high affinity to a particular peptide set during positive T cell selection in the thymus, are involved in shaping an abnormal T cell repertoire which predisposes to the acquisition of autoimmune diseases.
Collapse
Affiliation(s)
- Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
18
|
Ziegler A, Mietchen D, Faber C, von Hausen W, Schöbel C, Sellerer M, Ziegler A. Effectively incorporating selected multimedia content into medical publications. BMC Med 2011; 9:17. [PMID: 21329532 PMCID: PMC3040697 DOI: 10.1186/1741-7015-9-17] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/17/2011] [Indexed: 11/10/2022] Open
Abstract
Until fairly recently, medical publications have been handicapped by being restricted to non-electronic formats, effectively preventing the dissemination of complex audiovisual and three-dimensional data. However, authors and readers could significantly profit from advances in electronic publishing that permit the inclusion of multimedia content directly into an article. For the first time, the de facto gold standard for scientific publishing, the portable document format (PDF), is used here as a platform to embed a video and an audio sequence of patient data into a publication. Fully interactive three-dimensional models of a face and a schematic representation of a human brain are also part of this publication. We discuss the potential of this approach and its impact on the communication of scientific medical data, particularly with regard to electronic and open access publications. Finally, we emphasise how medical teaching can benefit from this new tool and comment on the future of medical publishing.
Collapse
Affiliation(s)
- Alexander Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
19
|
Loll B, Rückert C, Hee CS, Saenger W, Uchanska-Ziegler B, Ziegler A. Loss of recognition by cross-reactive T cells and its relation to a C-terminus-induced conformational reorientation of an HLA-B*2705-bound peptide. Protein Sci 2011; 20:278-90. [PMID: 21280120 PMCID: PMC3048413 DOI: 10.1002/pro.559] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/10/2010] [Accepted: 11/10/2010] [Indexed: 01/07/2023]
Abstract
The human major histocompatibility complex class I antigen HLA-B*2705 binds several sequence-related peptides (pVIPR, RRKWRRWHL; pLPM2, RRRWRRLTV; pGR, RRRWHRWRL). Cross-reactivity of cytotoxic T cells (CTL) against these HLA-B*2705:peptide complexes seemed to depend on a particular peptide conformation that is facilitated by the engagement of a crucial residue within the binding groove (Asp116), associated with a noncanonical bulging-in of the middle portion of the bound peptide. We were interested whether a conformational reorientation of the ligand might contribute to the lack of cross-reactivity of these CTL with a peptide derived from voltage-dependent calcium channel α1 subunit (pCAC, SRRWRRWNR), in which the C-terminal peptide residue pArg9 could engage Asp116. Analyses of the HLA-B*2705:pCAC complex by X-ray crystallography at 1.94 Å resolution demonstrated that the peptide had indeed undergone a drastic reorientation, leading it to adopt a canonical binding mode accompanied by the loss of molecular mimicry between pCAC and sequence-related peptides such as pVIPR, pLMP2, and pGR. This was clearly a consequence of interactions of pArg9 with Asp116 and other F-pocket residues. Furthermore, we observed an unprecedented reorientation of several additional residues of the HLA-B*2705 heavy chain near the N-terminal region of the peptide, including also the presence of double conformations of two glutamate residues, Glu63 and Glu163, on opposing sides of the peptide binding groove. Together with the Arg-Ser exchange at peptide position 1, there are thus multiple structural reasons that may explain the observed failure of pVIPR-directed, HLA-B*2705-restricted CTL to cross-react with HLA-B*2705:pCAC complexes.
Collapse
Affiliation(s)
- Bernhard Loll
- Institut für Chemie und Biochemie, Abteilung Strukturbiochemie, Freie Universität BerlinTakustrasse 6, Berlin 14195, Germany,*Correspondence to: Bernhard Loll, Institut für Chemie und Biochemie, Abteilung Strukturbiochemie, Freie Universität Berlin, Takustrasse 6, Berlin 14195, Germany. E-mail:
| | - Christine Rückert
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Chee Seng Hee
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Wolfram Saenger
- Institut für Chemie und Biochemie, Abteilung Kristallographie, Freie Universität BerlinTakustrasse 6, Berlin 14195, Germany
| | - Barbara Uchanska-Ziegler
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| | - Andreas Ziegler
- Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität BerlinThielallee 73, Berlin 14195, Germany
| |
Collapse
|
20
|
Lintner NG, Frankel KA, Tsutakawa SE, Alsbury DL, Copié V, Young MJ, Tainer JA, Lawrence CM. The structure of the CRISPR-associated protein Csa3 provides insight into the regulation of the CRISPR/Cas system. J Mol Biol 2011; 405:939-55. [PMID: 21093452 PMCID: PMC4507800 DOI: 10.1016/j.jmb.2010.11.019] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/01/2010] [Accepted: 11/09/2010] [Indexed: 01/07/2023]
Abstract
Adaptive immune systems have recently been recognized in prokaryotic organisms where, in response to viral infection, they incorporate short fragments of invader-derived DNA into loci called clustered regularly interspaced short palindromic repeats (CRISPRs). In subsequent infections, the CRISPR loci are transcribed and processed into guide sequences for the neutralization of the invading RNA or DNA. The CRISPR-associated protein machinery (Cas) lies at the heart of this process, yet many of the molecular details of the CRISPR/Cas system remain to be elucidated. Here, we report the first structure of Csa3, a CRISPR-associated protein from Sulfolobus solfataricus (Sso1445), which reveals a dimeric two-domain protein. The N-terminal domain is a unique variation on the dinucleotide binding domain that orchestrates dimer formation. In addition, it utilizes two conserved sequence motifs [Thr-h-Gly-Phe-(Asn/Asp)-Glu-X(4)-Arg and Leu-X(2)-Gly-h-Arg] to construct a 2-fold symmetric pocket on the dimer axis. This pocket is likely to represent a regulatory ligand-binding site. The N-terminal domain is fused to a C-terminal MarR-like winged helix-turn-helix domain that is expected to be involved in DNA recognition. Overall, the unique domain architecture of Csa3 suggests a transcriptional regulator under allosteric control of the N-terminal domain. Alternatively, Csa3 may function in a larger complex, with the conserved cleft participating in protein-protein or protein-nucleic acid interactions. A similar N-terminal domain is also identified in Csx1, a second CRISPR-associated protein family of unknown function.
Collapse
Affiliation(s)
- Nathanael G. Lintner
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Kenneth A. Frankel
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Susan E. Tsutakawa
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA
| | - Donald L. Alsbury
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Valérie Copié
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA
| | - Mark J. Young
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA
| | - John A. Tainer
- Life Science Division, Lawrence Berkeley National Labs, Berkeley, CA 94720, USA,Department of Molecular Biology MB4 and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - C. Martin Lawrence
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA,Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA,Address correspondence to: Martin Lawrence, Department of Chemistry and Biochemistry, 103 CBB, Montana State University, Bozeman, MT 59717; ; Phone: 1-406-994-5382, Fax: 1-406-994-5407
| |
Collapse
|
21
|
Structure of a classical MHC class I molecule that binds "non-classical" ligands. PLoS Biol 2010; 8:e1000557. [PMID: 21151886 PMCID: PMC2998441 DOI: 10.1371/journal.pbio.1000557] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/27/2010] [Indexed: 11/19/2022] Open
Abstract
The chicken MHC YF1*7.1 X-ray structures reveal that this protein binds lipids and thus represents a "hybrid" class I complex with features of classical as well as non-classical MHC molecules. Chicken YF1 genes share a close sequence relationship with classical MHC class I loci but map outside of the core MHC region. To obtain insights into their function, we determined the structure of the YF1*7.1/β2-microgloblin complex by X-ray crystallography at 1.3 Å resolution. It exhibits the architecture typical of classical MHC class I molecules but possesses a hydrophobic binding groove that contains a non-peptidic ligand. This finding prompted us to reconstitute YF1*7.1 also with various self-lipids. Seven additional YF1*7.1 structures were solved, but only polyethyleneglycol molecules could be modeled into the electron density within the binding groove. However, an assessment of YF1*7.1 by native isoelectric focusing indicated that the molecules were also able to bind nonself-lipids. The ability of YF1*7.1 to interact with hydrophobic ligands is unprecedented among classical MHC class I proteins and might aid the chicken immune system to recognize a diverse ligand repertoire with a minimal number of MHC class I molecules. Proteins encoded by the major histocompatibility complex (MHC) play crucial roles in vertebrate immune systems, presenting pathogen-derived protein fragments to receptors on effector cells. In contrast, some non-classical MHC class I proteins such as CD1 molecules possess a hydrophobic groove that allows them to display lipids. Chicken MHC-Y is a genetic region outside the core MHC that harbors several immune-related genes, among them YF1*7.1, which encodes a protein whose structure we solved in this study. YF1*7.1 is an MHC class I molecule that exhibits the architecture typical of classical MHC class I antigens but possesses a hydrophobic binding groove that binds non-peptidic ligands. By using lipid-binding assays, we show that this molecule can indeed bind lipids. Therefore, YF1*7.1 bridges, at least in structural terms, the traditional gap between classical and non-classical MHC class I molecules. Lipid-binding YF1 proteins might serve the chicken to enlarge its otherwise very small repertoire of antigen-presenting MHC class I molecules. Furthermore, comparative analyses of the two protein subunits of classical MHC molecules revealed a structural feature in chickens that appears to be shared by non-mammalian but not by mammalian vertebrates. This unique feature is indicative of a structure-dependent co-evolution of two genetically unlinked genes in non-mammalian species.
Collapse
|
22
|
Ziegler A, Mooi R, Rolet G, De Ridder C. Origin and evolutionary plasticity of the gastric caecum in sea urchins (Echinodermata: Echinoidea). BMC Evol Biol 2010; 10:313. [PMID: 20955602 PMCID: PMC2967547 DOI: 10.1186/1471-2148-10-313] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Accepted: 10/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background The digestive tract of many metazoan invertebrates is characterized by the presence of caeca or diverticula that serve secretory and/or absorptive functions. With the development of various feeding habits, distinctive digestive organs may be present in certain taxa. This also holds true for sea urchins (Echinodermata: Echinoidea), in which a highly specialized gastric caecum can be found in members of a derived subgroup, the Irregularia (cake urchins, sea biscuits, sand dollars, heart urchins, and related forms). As such a specialized caecum has not been reported from "regular" sea urchin taxa, the aim of this study was to elucidate its evolutionary origin. Results Using morphological data derived from dissection, magnetic resonance imaging, and extensive literature studies, we compare the digestive tract of 168 echinoid species belonging to 51 extant families. Based on a number of characters such as topography, general morphology, mesenterial suspension, and integration into the haemal system, we homologize the gastric caecum with the more or less pronounced dilation of the anterior stomach that is observed in most "regular" sea urchin taxa. In the Irregularia, a gastric caecum can be found in all taxa except in the Laganina and Scutellina. It is also undeveloped in certain spatangoid species. Conclusions According to our findings, the sea urchin gastric caecum most likely constitutes a synapomorphy of the Euechinoidea. Its occurrence in "regular" euechinoids is linked to the presence of an additional festoon of the anterior stomach in ambulacrum III. Both structures, the additional festoon and the gastric caecum, are absent in the sister taxon to the Euechinoidea, the Cidaroida. Since the degree of specialization of the gastric caecum is most pronounced in the predominantly sediment-burrowing irregular taxa, we hypothesize that its evolution is closely linked to the development of more elaborate infaunal lifestyles. We provide a comprehensive study of the origin and evolutionary plasticity of a conspicuous digestive tract structure, the gastric caecum, in a major taxon of the extant invertebrate macrozoobenthos.
Collapse
Affiliation(s)
- Alexander Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Thielallee 73, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
23
|
Ziegler A, Ogurreck M, Steinke T, Beckmann F, Prohaska S, Ziegler A. Opportunities and challenges for digital morphology. Biol Direct 2010; 5:45. [PMID: 20604956 PMCID: PMC2908069 DOI: 10.1186/1745-6150-5-45] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Accepted: 07/06/2010] [Indexed: 12/21/2022] Open
Abstract
Advances in digital data acquisition, analysis, and storage have revolutionized the work in many biological disciplines such as genomics, molecular phylogenetics, and structural biology, but have not yet found satisfactory acceptance in morphology. Improvements in non-invasive imaging and three-dimensional visualization techniques, however, permit high-throughput analyses also of whole biological specimens, including museum material. These developments pave the way towards a digital era in morphology. Using sea urchins (Echinodermata: Echinoidea), we provide examples illustrating the power of these techniques. However, remote visualization, the creation of a specialized database, and the implementation of standardized, world-wide accepted data deposition practices prior to publication are essential to cope with the foreseeable exponential increase in digital morphological data.
Collapse
Affiliation(s)
- Alexander Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| | - Malte Ogurreck
- GKSS-Forschungszentrum Geesthacht, Institut für Werkstoffforschung, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | - Thomas Steinke
- Zuse Institute Berlin, Takustrasse 7, 14195 Berlin, Germany
| | - Felix Beckmann
- GKSS-Forschungszentrum Geesthacht, Institut für Werkstoffforschung, Max-Planck-Strasse 1, 21502 Geesthacht, Germany
| | | | - Andreas Ziegler
- Institut für Immungenetik, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Freie Universität Berlin, Thielallee 73, 14195 Berlin, Germany
| |
Collapse
|