1
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
2
|
Hancock LP, Palmer JS, Allwood EG, Smaczynska-de Rooij II, Hodder AJ, Rowe ML, Williamson MP, Ayscough KR. Competitive binding of actin and SH3 domains at proline-rich regions of Las17/WASP regulates actin polymerisation. Commun Biol 2025; 8:759. [PMID: 40374776 DOI: 10.1038/s42003-025-08188-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/07/2025] [Indexed: 05/18/2025] Open
Abstract
Eukaryotic actin filaments bind factors that regulate their assembly and disassembly creating a self-organising system, the actin cytoskeleton. Despite extensive knowledge of signals that modulate actin organisation, significant gaps remain in our understanding of spatiotemporal regulation of de novo filament initiation. Yeast Las17/WASP is essential for actin polymerisation initiation supporting membrane invagination in Saccharomyces cerevisiae endocytosis and therefore its tight regulation is critical. The adaptor protein Sla1 inhibits Las17 but mechanisms underpinning Las17 activation remain elusive. Here we show that Las17 binding of tandem Sla1 SH3 domains is >100-fold stronger than single domains. Furthermore, SH3 domains directly compete with G-actin for binding in the Las17 polyproline region, thus rationalising how SH3 interactions can affect actin polymerisation despite their distance from C-terminal actin-binding and Arp2/3-interacting VCA domains. Our data and proposed model also highlight the likely importance of multiple weak interactions that together ensure spatial and temporal regulation of endocytosis.
Collapse
Affiliation(s)
- Lewis P Hancock
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - John S Palmer
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ellen G Allwood
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Michelle L Rowe
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
3
|
Skruber K, Sept D, Mullins RD. Membrane-associated polymerases deliver most of the actin subunits to a lamellipodial network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645090. [PMID: 40196521 PMCID: PMC11974892 DOI: 10.1101/2025.03.24.645090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Actin filaments are two-stranded protein polymers that form the basic structural unit of the eukaryotic actin cytoskeleton. While filaments assembled from purified actin in vitro elongate when soluble monomers bind to free filament ends, in cells the mechanism of filament elongation is less clear. Most monomeric actin in the cytoplasm is bound to the accessory protein profilin, and many regulators of filament assembly recruit actin-profilin complexes to membrane surfaces where they locally accelerate filament elongation. Employing quantitative live-cell imaging of actin-profilin fusion proteins and biochemically defined mutants of the branched actin regulator, WAVE1, we find that only ~25% of the actin in leading-edge lamellipodial networks enters directly from solution, while the majority enters via membrane-associated polymerases.
Collapse
Affiliation(s)
- Kristen Skruber
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, UCSF School of Medicine, San Francisco, CA 94143
| | - David Sept
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI
| | - R. Dyche Mullins
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, UCSF School of Medicine, San Francisco, CA 94143
| |
Collapse
|
4
|
Towsif EM, Shekhar S. The actin filament pointed-end depolymerase Srv2/CAP depolymerizes barbed ends, displaces capping protein, and promotes formin processivity. Proc Natl Acad Sci U S A 2025; 122:e2411318122. [PMID: 39874286 PMCID: PMC11804681 DOI: 10.1073/pnas.2411318122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/19/2024] [Indexed: 01/30/2025] Open
Abstract
Cellular actin networks exhibit distinct assembly and disassembly dynamics, primarily driven by multicomponent reactions occurring at the two ends of actin filaments. While barbed ends are recognized as the hotspot for polymerization, depolymerization is predominantly associated with pointed ends. Consequently, mechanisms promoting barbed-end depolymerization have received relatively little attention. Here, using microfluidics-assisted three-color single-molecule imaging, we reveal that cyclase-associated protein (CAP), long known for its roles in nucleotide exchange and pointed-end depolymerization, also acts as a processive depolymerase at filament barbed ends. CAP molecules track barbed ends for several minutes, inducing depolymerization rates of up to 60 subunits per second. Importantly, CAP modulates barbed-end dynamics even under cytosol-mimicking assembly promoting conditions. We further show that CAP can colocalize with both formin and capping protein (CP) at barbed ends. CAP enhances formin processivity by 10-fold, allowing CAP-formin complexes to track fast-elongating barbed ends. In contrast, CAP destabilizes CP-bound barbed ends and accelerates dissociation of CP by fourfold. Our findings, combined with CAP's previously reported activities, firmly establish CAP as a key regulator of cellular actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| | - Shashank Shekhar
- Departments of Physics, Cell Biology and Biochemistry, Emory University, Atlanta, GA30322
| |
Collapse
|
5
|
Barrie KR, Rebowski G, Dominguez R. Mechanism of actin filament severing and capping by gelsolin. Nat Struct Mol Biol 2025; 32:237-242. [PMID: 39448849 PMCID: PMC11832341 DOI: 10.1038/s41594-024-01412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024]
Abstract
Gelsolin is the prototypical member of a family of Ca2+-activated F-actin severing and capping proteins. Here we report structures of Ca2+-bound human gelsolin at the barbed end of F-actin. One structure reveals gelsolin's six domains (G1G6) and interdomain linkers wrapping around F-actin, while another shows domains G1G3-a fragment observed during apoptosis-binding on both sides of F-actin. Conformational changes that trigger severing occur on one side of F-actin with G1G6 and on both sides with G1G3. Gelsolin remains bound after severing, blocking subunit exchange.
Collapse
Affiliation(s)
- Kyle R Barrie
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grzegorz Rebowski
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Little M, Risi CM, Larrinaga TM, Summers MD, Nguyen T, Smith GE, Atherton J, Gregorio CC, Kostyukova AS, Galkin VE. Interaction of cardiac leiomodin with the native cardiac thin filament. PLoS Biol 2025; 23:e3003027. [PMID: 39883708 PMCID: PMC11813103 DOI: 10.1371/journal.pbio.3003027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 02/11/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Every heartbeat depends on cyclical contraction-relaxation produced by the interactions between myosin-containing thick and actin-based thin filaments (TFs) arranged into a crystalline-like lattice in the cardiac sarcomere. Therefore, the maintenance of thin filament length is crucial for myocardium function. The thin filament is comprised of an actin backbone, the regulatory troponin complex and tropomyosin that controls interactions between thick and thin filaments. Thin filament length is controlled by the tropomodulin family of proteins; tropomodulin caps pointed ends of thin filaments, and leiomodin (Lmod) promotes elongation of thin filaments by a "leaky-cap" mechanism. The broader distribution of Lmod on the thin filament implied to the possibility of its interaction with the sides of thin filaments. Here, we use biochemical and structural approaches to show that cardiac Lmod (Lmod2) binds to a specific region on the native cardiac thin filament in a Ca2+-dependent manner. We demonstrate that Lmod2's unique C-terminal extension is required for binding to the thin filament actin backbone and suggest that interactions with the troponin complex assist Lmod2's localization on the surface of thin filaments. We propose that Lmod2 regulates the length of cardiac thin filaments in a working myocardium by protecting newly formed thin filament units during systole and promoting actin polymerization at thin filament pointed ends during diastole.
Collapse
Affiliation(s)
- Madison Little
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Cristina M. Risi
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Tania M. Larrinaga
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
| | - Mason D. Summers
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Tyler Nguyen
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Jennifer Atherton
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, University of Arizona, Tucson, Arizona, United States of America
- Department of Medicine and Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Vitold E. Galkin
- Department of Biomedical and Translational Sciences, Macon & Joan Brock Virginia Health Sciences at Old Dominion University, Norfolk, Virginia, United States of America
| |
Collapse
|
7
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
8
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
9
|
Barrie KR, Rebowski G, Dominguez R. Mechanism of Actin Filament Severing and Capping by Gelsolin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.10.612341. [PMID: 39345426 PMCID: PMC11430012 DOI: 10.1101/2024.09.10.612341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Gelsolin is the prototypical member of a family of Ca 2+ -dependent F-actin severing and capping proteins. A structure of Ca 2+ -bound full-length gelsolin at the barbed end shows domains G1G6 and the inter-domain linkers wrapping around F-actin. Another structure shows domains G1G3, a fragment produced during apoptosis, on both sides of F-actin. Conformational changes that trigger severing occur on one side of F-actin with G1G6 and on both sides with G1G3. Gelsolin remains bound after severing, blocking subunit exchange.
Collapse
|
10
|
Palmer NJ, Barrie KR, Dominguez R. Mechanisms of actin filament severing and elongation by formins. Nature 2024; 632:437-442. [PMID: 38843827 PMCID: PMC11375965 DOI: 10.1038/s41586-024-07637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.
Collapse
Affiliation(s)
- Nicholas J Palmer
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle R Barrie
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Kollmar M, Welz T, Ravi A, Kaufmann T, Alzahofi N, Hatje K, Alghamdi A, Kim J, Briggs DA, Samol-Wolf A, Pylypenko O, Hume AN, Burkhardt P, Faix J, Kerkhoff E. Actomyosin organelle functions of SPIRE actin nucleators precede animal evolution. Commun Biol 2024; 7:832. [PMID: 38977899 PMCID: PMC11231147 DOI: 10.1038/s42003-024-06458-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 06/14/2024] [Indexed: 07/10/2024] Open
Abstract
An important question in cell biology is how cytoskeletal proteins evolved and drove the development of novel structures and functions. Here we address the origin of SPIRE actin nucleators. Mammalian SPIREs work with RAB GTPases, formin (FMN)-subgroup actin assembly proteins and class-5 myosin (MYO5) motors to transport organelles along actin filaments towards the cell membrane. However, the origin and extent of functional conservation of SPIRE among species is unknown. Our sequence searches show that SPIRE exist throughout holozoans (animals and their closest single-celled relatives), but not other eukaryotes. SPIRE from unicellular holozoans (choanoflagellate), interacts with RAB, FMN and MYO5 proteins, nucleates actin filaments and complements mammalian SPIRE function in organelle transport. Meanwhile SPIRE and MYO5 proteins colocalise to organelles in Salpingoeca rosetta choanoflagellates. Based on these observations we propose that SPIRE originated in unicellular ancestors of animals providing an actin-myosin driven exocytic transport mechanism that may have contributed to the evolution of complex multicellular animals.
Collapse
Affiliation(s)
- Martin Kollmar
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.
| | - Tobias Welz
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Aishwarya Ravi
- Michael Sars Centre, University of Bergen, Bergen, Norway
| | - Thomas Kaufmann
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Noura Alzahofi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Biology Department, College of Science, Taibah University, Medina, Kingdom of Saudi Arabia
| | - Klas Hatje
- Group Systems Biology of Motor Proteins, Department of NMR-based Structural Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Asmahan Alghamdi
- School of Life Sciences, University of Nottingham, Nottingham, UK
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh, Kingdom of Saudi Arabia
| | - Jiyu Kim
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
- Department of Anatomy, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Annette Samol-Wolf
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany
| | - Olena Pylypenko
- Dynamics of Intra-Cellular Organization, Institute Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover, Germany
| | - Eugen Kerkhoff
- Molecular Cell Biology Laboratory, Department of Neurology, University Hospital Regensburg, Regensburg, Germany.
| |
Collapse
|
12
|
Wong JPH, Blazev R, Ng YK, Goodman CA, Montgomery MK, Watt KI, Carl CS, Watt MJ, Voldstedlund CT, Richter EA, Crouch PJ, Steyn FJ, Ngo ST, Parker BL. Characterization of the skeletal muscle arginine methylome in health and disease reveals remodeling in amyotrophic lateral sclerosis. FASEB J 2024; 38:e23647. [PMID: 38787599 DOI: 10.1096/fj.202400045r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/04/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
Arginine methylation is a protein posttranslational modification important for the development of skeletal muscle mass and function. Despite this, our understanding of the regulation of arginine methylation under settings of health and disease remains largely undefined. Here, we investigated the regulation of arginine methylation in skeletal muscles in response to exercise and hypertrophic growth, and in diseases involving metabolic dysfunction and atrophy. We report a limited regulation of arginine methylation under physiological settings that promote muscle health, such as during growth and acute exercise, nor in disease models of insulin resistance. In contrast, we saw a significant remodeling of asymmetric dimethylation in models of atrophy characterized by the loss of innervation, including in muscle biopsies from patients with myotrophic lateral sclerosis (ALS). Mass spectrometry-based quantification of the proteome and asymmetric arginine dimethylome of skeletal muscle from individuals with ALS revealed the largest compendium of protein changes with the identification of 793 regulated proteins, and novel site-specific changes in asymmetric dimethyl arginine (aDMA) of key sarcomeric and cytoskeletal proteins. Finally, we show that in vivo overexpression of PRMT1 and aDMA resulted in increased fatigue resistance and functional recovery in mice. Our study provides evidence for asymmetric dimethylation as a regulator of muscle pathophysiology and presents a valuable proteomics resource and rationale for numerous methylated and nonmethylated proteins, including PRMT1, to be pursued for therapeutic development in ALS.
Collapse
Affiliation(s)
- Julian P H Wong
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ronnie Blazev
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Yaan-Kit Ng
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Craig A Goodman
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Magdalene K Montgomery
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin I Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Murdoch Children's Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
- The Novo Nordisk Foundation Centre for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Christian S Carl
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Matthew J Watt
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, The University of Copenhagen, Copenhagen, Denmark
| | - Peter J Crouch
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| | - Frederik J Steyn
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Shyuan T Ngo
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Benjamin L Parker
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Muscle Research, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Ceron RH, Báez-Cruz FA, Palmer NJ, Carman PJ, Boczkowska M, Heuckeroth RO, Ostap EM, Dominguez R. Molecular mechanisms linking missense ACTG2 mutations to visceral myopathy. SCIENCE ADVANCES 2024; 10:eadn6615. [PMID: 38820162 PMCID: PMC11141634 DOI: 10.1126/sciadv.adn6615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Visceral myopathy is a life-threatening disease characterized by muscle weakness in the bowel, bladder, and uterus. Mutations in smooth muscle γ-actin (ACTG2) are the most common cause of the disease, but the mechanisms by which the mutations alter muscle function are unknown. Here, we examined four prevalent ACTG2 mutations (R40C, R148C, R178C, and R257C) that cause different disease severity and are spread throughout the actin fold. R178C displayed premature degradation, R148C disrupted interactions with actin-binding proteins, R40C inhibited polymerization, and R257C destabilized filaments. Because these mutations are heterozygous, we also analyzed 50/50 mixtures with wild-type (WT) ACTG2. The WT/R40C mixture impaired filament nucleation by leiomodin 1, and WT/R257C produced filaments that were easily fragmented by smooth muscle myosin. Smooth muscle tropomyosin isoform Tpm1.4 partially rescued the defects of R40C and R257C. Cryo-electron microscopy structures of filaments formed by R40C and R257C revealed disrupted intersubunit contacts. The biochemical and structural properties of the mutants correlate with their genotype-specific disease severity.
Collapse
Affiliation(s)
- Rachel H. Ceron
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Faviolla A. Báez-Cruz
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas J. Palmer
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J. Carman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert O. Heuckeroth
- The Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - E. Michael Ostap
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Roberto Dominguez
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Coscia SM, Moore AS, Thompson CP, Tirrito CF, Ostap EM, Holzbaur ELF. An interphase actin wave promotes mitochondrial content mixing and organelle homeostasis. Nat Commun 2024; 15:3793. [PMID: 38714822 PMCID: PMC11076292 DOI: 10.1038/s41467-024-48189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 04/22/2024] [Indexed: 05/10/2024] Open
Abstract
Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.
Collapse
Affiliation(s)
- Stephen M Coscia
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Andrew S Moore
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Cameron P Thompson
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christian F Tirrito
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - E Michael Ostap
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika L F Holzbaur
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
- Pennsylvania Muscle Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Vizcaíno-Castillo A, Kotila T, Kogan K, Yanase R, Como J, Antenucci L, Michelot A, Sunter JD, Lappalainen P. Leishmania profilin interacts with actin through an unusual structural mechanism to control cytoskeletal dynamics in parasites. J Biol Chem 2024; 300:105740. [PMID: 38340794 PMCID: PMC10907219 DOI: 10.1016/j.jbc.2024.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
Collapse
Affiliation(s)
| | - Tommi Kotila
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ryuji Yanase
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Juna Como
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alphee Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Jack D Sunter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK.
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Kitel R, Surmiak E, Borggräfe J, Kalinowska-Tluscik J, Golik P, Czub M, Uzar W, Musielak B, Madej M, Popowicz GM, Dubin G, Holak TA. Discovery of Inhibitory Fragments That Selectively Target Spire2-FMN2 Interaction. J Med Chem 2023; 66:15715-15727. [PMID: 38039505 PMCID: PMC10726347 DOI: 10.1021/acs.jmedchem.3c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 12/03/2023]
Abstract
Here, we report the fragment-based drug discovery of potent and selective fragments that disrupt the Spire2-FMN2 but not the Spire1-FMN2 interaction. Hit fragments were identified in a differential scanning fluorimetry-based screen of an in-house library of 755 compounds and subsequently validated in multiple orthogonal biophysical assays, including fluorescence polarization, microscale thermophoresis, and 1H-15N HSQC nuclear magnetic resonance. Extensive structure-activity relationships combined with molecular docking followed by chemical optimization led to the discovery of compound 13, which exhibits micromolar potency and high ligand efficiency (LE = 0.38). Therefore, this fragment represents a validated starting point for the future development of selective chemical probes targeting the Spire2-FMN2 interaction.
Collapse
Affiliation(s)
- Radoslaw Kitel
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| | - Ewa Surmiak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| | - Jan Borggräfe
- Institute
of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian
NMR Center, School of Natural Sciences, Technical University of Munich Garching, 85748 München, Germany
| | | | - Przemyslaw Golik
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| | - Miroslawa Czub
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| | - Wiktor Uzar
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
- Doctoral
School of Exact and Natural Sciences, Jagiellonian
University, Prof. S.
Lojasiewicza 11, 30-348 Krakow, Poland
| | - Bogdan Musielak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| | - Mariusz Madej
- Faculty
of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Grzegorz M. Popowicz
- Institute
of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764 München, Germany
- Bavarian
NMR Center, School of Natural Sciences, Technical University of Munich Garching, 85748 München, Germany
| | - Grzegorz Dubin
- Malopolska
Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Tad A. Holak
- Faculty
of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kracow, Poland
| |
Collapse
|
17
|
Towsif EM, Shekhar S. Cyclase-associated protein is a pro-formin anti-capping processive depolymerase of actin barbed and pointed ends. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569482. [PMID: 38076850 PMCID: PMC10705416 DOI: 10.1101/2023.11.30.569482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Cellular actin networks display distinct assembly and disassembly dynamics resulting from multicomponent reactions occurring primarily at the two ends and the sides of actin filaments [1-3]. While barbed ends are considered the hotspot of actin assembly [4], disassembly is thought to primarily occur via reactions on filament sides and pointed ends [3, 5-11]. Cyclase-associated protein (CAP) has emerged as the main protagonist of actin disassembly and remodeling - it collaborates with cofilin to increase pointed-end depolymerization by 300-fold [6, 7], promotes filament "coalescence" in presence of Abp1 [12], and accelerates nucleotide exchange to regenerate monomers for new rounds of assembly [13-15]. CAP has also been reported to enhance cofilin-mediated severing [16, 17], but these claims have since been challenged [7]. Using microfluidics-assisted three-color single-molecule imaging, we now reveal that CAP also has important functions at filament barbed ends. We reveal that CAP is a processive barbed-end depolymerase capable of tracking both ends of the filament. Each CAP binding event leads to removal of about 5,175 and 620 subunits from the barbed and pointed ends respectively. We find that the WH2 domain is essential, and the CARP domain is dispensable for barbed-end depolymerization. We show that CAP co-localizes with barbed-end bound formin and capping protein, in the process increasing residence time of formin by 10-fold and promoting dissociation of CP by 4-fold. Our barbed-end observations combined with previously reported activities of CAP at pointed ends and sides, firmly establish CAP as a key player in actin dynamics.
Collapse
Affiliation(s)
- Ekram M. Towsif
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Departments of Physics, Cell biology and Biochemistry, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
18
|
Alimov N, Hoeprich GJ, Padrick SB, Goode BL. Cyclase-associated protein interacts with actin filament barbed ends to promote depolymerization and formin displacement. J Biol Chem 2023; 299:105367. [PMID: 37863260 PMCID: PMC10692737 DOI: 10.1016/j.jbc.2023.105367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Cyclase-associated protein (CAP) has emerged as a central player in cellular actin turnover, but its molecular mechanisms of action are not yet fully understood. Recent studies revealed that the N terminus of CAP interacts with the pointed ends of actin filaments to accelerate depolymerization in conjunction with cofilin. Here, we use in vitro microfluidics-assisted TIRF microscopy to show that the C terminus of CAP promotes depolymerization at the opposite (barbed) ends of actin filaments. In the absence of actin monomers, full-length mouse CAP1 and C-terminal halves of CAP1 (C-CAP1) and CAP2 (C-CAP2) accelerate barbed end depolymerization. Using mutagenesis and structural modeling, we show that these activities are mediated by the WH2 and CARP domains of CAP. In addition, we observe that CAP collaborates with profilin to accelerate barbed end depolymerization and that these effects depend on their direct interaction, providing the first known example of CAP-profilin collaborative effects in regulating actin. In the presence of actin monomers, CAP1 attenuates barbed end growth and promotes formin dissociation. Overall, these findings demonstrate that CAP uses distinct domains and mechanisms to interact with opposite ends of actin filaments and drive turnover. Further, they contribute to the emerging view of actin barbed ends as sites of dynamic molecular regulation, where numerous proteins compete and cooperate with each other to tune polymer dynamics, similar to the rich complexity seen at microtubule ends.
Collapse
Affiliation(s)
- Nikita Alimov
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Gregory J Hoeprich
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Shae B Padrick
- Department of Biochemistry and Molecular Biology, Drexel University, Philadelphia, Pennsylvania, USA
| | - Bruce L Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA.
| |
Collapse
|
19
|
Raghavan R, Coppola U, Wu Y, Ihewulezi C, Negrón-Piñeiro LJ, Maguire JE, Hong J, Cunningham M, Kim HJ, Albert TJ, Ali AM, Saint-Jeannet JP, Ristoratore F, Dahia CL, Di Gregorio A. Gene expression in notochord and nuclei pulposi: a study of gene families across the chordate phylum. BMC Ecol Evol 2023; 23:63. [PMID: 37891482 PMCID: PMC10605842 DOI: 10.1186/s12862-023-02167-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 10/29/2023] Open
Abstract
The transition from notochord to vertebral column is a crucial milestone in chordate evolution and in prenatal development of all vertebrates. As ossification of the vertebral bodies proceeds, involutions of residual notochord cells into the intervertebral discs form the nuclei pulposi, shock-absorbing structures that confer flexibility to the spine. Numerous studies have outlined the developmental and evolutionary relationship between notochord and nuclei pulposi. However, the knowledge of the similarities and differences in the genetic repertoires of these two structures remains limited, also because comparative studies of notochord and nuclei pulposi across chordates are complicated by the gene/genome duplication events that led to extant vertebrates. Here we show the results of a pilot study aimed at bridging the information on these two structures. We have followed in different vertebrates the evolutionary trajectory of notochord genes identified in the invertebrate chordate Ciona, and we have evaluated the extent of conservation of their expression in notochord cells. Our results have uncovered evolutionarily conserved markers of both notochord development and aging/degeneration of the nuclei pulposi.
Collapse
Affiliation(s)
- Rahul Raghavan
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Ugo Coppola
- Stazione Zoologica 'A. Dohrn', Villa Comunale 1, 80121, Naples, Italy
- Present Address: Molecular Cardiovascular Biology Division and Heart Institute, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Yushi Wu
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Chibuike Ihewulezi
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Lenny J Negrón-Piñeiro
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Julie E Maguire
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Justin Hong
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA
| | - Matthew Cunningham
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Han Jo Kim
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Todd J Albert
- Hospital for Special Surgery, New York, NY, 10021, USA
- Weill Cornell Medical College, New York, NY, 10065, USA
| | - Abdullah M Ali
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA
| | | | - Chitra L Dahia
- Hospital for Special Surgery, Orthopedic Soft Tissue Research Program, New York, NY, 10021, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, Graduate School of Medical Science, New York, NY, 10065, USA.
| | - Anna Di Gregorio
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
20
|
Singh Y, Hocky GM, Nolen BJ. Molecular dynamics simulations support a multistep pathway for activation of branched actin filament nucleation by Arp2/3 complex. J Biol Chem 2023; 299:105169. [PMID: 37595874 PMCID: PMC10514467 DOI: 10.1016/j.jbc.2023.105169] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/20/2023] Open
Abstract
Actin-related protein 2/3 complex (Arp2/3 complex) catalyzes the nucleation of branched actin filaments that push against membranes in processes like cellular motility and endocytosis. During activation by WASP proteins, the complex must bind WASP and engage the side of a pre-existing (mother) filament before a branched filament is nucleated. Recent high-resolution structures of activated Arp2/3 complex revealed two major sets of activating conformational changes. How these activating conformational changes are triggered by interactions of Arp2/3 complex with actin filaments and WASP remains unclear. Here we use a recent high-resolution structure of Arp2/3 complex at a branch junction to design all-atom molecular dynamics simulations that elucidate the pathway between the active and inactive states. We ran a total of ∼4.6 microseconds of both unbiased and steered all-atom molecular dynamics simulations starting from three different binding states, including Arp2/3 complex within a branch junction, bound only to a mother filament, and alone in solution. These simulations indicate that the contacts with the mother filament are mostly insensitive to the massive rigid body motion that moves Arp2 and Arp3 into a short pitch helical (filament-like) arrangement, suggesting actin filaments alone do not stimulate the short pitch conformational change. In contrast, contacts with the mother filament stabilize subunit flattening in Arp3, an intrasubunit change that converts Arp3 from a conformation that mimics an actin monomer to one that mimics a filamentous actin subunit. Our results support a multistep activation pathway that has important implications for understanding how WASP-mediated activation allows Arp2/3 complex to assemble force-producing actin networks.
Collapse
Affiliation(s)
| | - Glen M Hocky
- Department of Chemistry, New York University; Simons Center for Computational Physical Chemistry, New York University.
| | - Brad J Nolen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon.
| |
Collapse
|
21
|
Fung TS, Chakrabarti R, Higgs HN. The multiple links between actin and mitochondria. Nat Rev Mol Cell Biol 2023; 24:651-667. [PMID: 37277471 PMCID: PMC10528321 DOI: 10.1038/s41580-023-00613-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Actin plays many well-known roles in cells, and understanding any specific role is often confounded by the overlap of multiple actin-based structures in space and time. Here, we review our rapidly expanding understanding of actin in mitochondrial biology, where actin plays multiple distinct roles, exemplifying the versatility of actin and its functions in cell biology. One well-studied role of actin in mitochondrial biology is its role in mitochondrial fission, where actin polymerization from the endoplasmic reticulum through the formin INF2 has been shown to stimulate two distinct steps. However, roles for actin during other types of mitochondrial fission, dependent on the Arp2/3 complex, have also been described. In addition, actin performs functions independent of mitochondrial fission. During mitochondrial dysfunction, two distinct phases of Arp2/3 complex-mediated actin polymerization can be triggered. First, within 5 min of dysfunction, rapid actin assembly around mitochondria serves to suppress mitochondrial shape changes and to stimulate glycolysis. At a later time point, at more than 1 h post-dysfunction, a second round of actin polymerization prepares mitochondria for mitophagy. Finally, actin can both stimulate and inhibit mitochondrial motility depending on the context. These motility effects can either be through the polymerization of actin itself or through myosin-based processes, with myosin 19 being an important mitochondrially attached myosin. Overall, distinct actin structures assemble in response to diverse stimuli to affect specific changes to mitochondria.
Collapse
Affiliation(s)
- Tak Shun Fung
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
22
|
Madarász T, Brunner B, Halász H, Telek E, Matkó J, Nyitrai M, Szabó-Meleg E. Molecular Relay Stations in Membrane Nanotubes: IRSp53 Involved in Actin-Based Force Generation. Int J Mol Sci 2023; 24:13112. [PMID: 37685917 PMCID: PMC10487789 DOI: 10.3390/ijms241713112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/12/2023] [Indexed: 09/10/2023] Open
Abstract
Membrane nanotubes are cell protrusions that grow to tens of micrometres and functionally connect cells. Actin filaments are semi-flexible polymers, and their polymerisation provides force for the formation and growth of membrane nanotubes. The molecular bases for the provision of appropriate force through such long distances are not yet clear. Actin filament bundles are likely involved in these processes; however, even actin bundles weaken when growing over long distances, and there must be a mechanism for their regeneration along the nanotubes. We investigated the possibility of the formation of periodic molecular relay stations along membrane nanotubes by describing the interactions of actin with full-length IRSp53 protein and its N-terminal I-BAR domain. We concluded that I-BAR is involved in the early phase of the formation of cell projections, while IRSp53 is also important for the elongation of protrusions. Considering that IRSp53 binds to the membrane along the nanotubes and nucleates actin polymerisation, we propose that, in membrane nanotubes, IRSp53 establishes molecular relay stations for actin polymerisation and, as a result, supports the generation of force required for the growth of nanotubes.
Collapse
Affiliation(s)
- Tamás Madarász
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Brigitta Brunner
- Institute of Biology, Faculty of Sciences, University of Pécs, H-7624 Pécs, Hungary
| | - Henriett Halász
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Elek Telek
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - János Matkó
- Department of Immunology, Faculty of Science, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Miklós Nyitrai
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
23
|
Lambert C, Schmidt K, Karger M, Stadler M, Stradal TEB, Rottner K. Cytochalasans and Their Impact on Actin Filament Remodeling. Biomolecules 2023; 13:1247. [PMID: 37627312 PMCID: PMC10452583 DOI: 10.3390/biom13081247] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The eukaryotic actin cytoskeleton comprises the protein itself in its monomeric and filamentous forms, G- and F-actin, as well as multiple interaction partners (actin-binding proteins, ABPs). This gives rise to a temporally and spatially controlled, dynamic network, eliciting a plethora of motility-associated processes. To interfere with the complex inter- and intracellular interactions the actin cytoskeleton confers, small molecular inhibitors have been used, foremost of all to study the relevance of actin filaments and their turnover for various cellular processes. The most prominent inhibitors act by, e.g., sequestering monomers or by interfering with the polymerization of new filaments and the elongation of existing filaments. Among these inhibitors used as tool compounds are the cytochalasans, fungal secondary metabolites known for decades and exploited for their F-actin polymerization inhibitory capabilities. In spite of their application as tool compounds for decades, comprehensive data are lacking that explain (i) how the structural deviances of the more than 400 cytochalasans described to date influence their bioactivity mechanistically and (ii) how the intricate network of ABPs reacts (or adapts) to cytochalasan binding. This review thus aims to summarize the information available concerning the structural features of cytochalasans and their influence on the described activities on cell morphology and actin cytoskeleton organization in eukaryotic cells.
Collapse
Affiliation(s)
- Christopher Lambert
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Katharina Schmidt
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Marius Karger
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany;
| | - Theresia E. B. Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Klemens Rottner
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| |
Collapse
|
24
|
van Eeuwen T, Boczkowska M, Rebowski G, Carman PJ, Fregoso FE, Dominguez R. Transition State of Arp2/3 Complex Activation by Actin-Bound Dimeric Nucleation-Promoting Factor. Proc Natl Acad Sci U S A 2023; 120:e2306165120. [PMID: 37549294 PMCID: PMC10434305 DOI: 10.1073/pnas.2306165120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/03/2023] [Indexed: 08/09/2023] Open
Abstract
Arp2/3 complex generates branched actin networks that drive fundamental processes such as cell motility and cytokinesis. The complex comprises seven proteins, including actin-related proteins (Arps) 2 and 3 and five scaffolding proteins (ArpC1-ArpC5) that mediate interactions with a pre-existing (mother) actin filament at the branch junction. Arp2/3 complex exists in two main conformations, inactive with the Arps interacting end-to-end and active with the Arps interacting side-by-side like subunits of the short-pitch helix of the actin filament. Several cofactors drive the transition toward the active state, including ATP binding to the Arps, WASP-family nucleation-promoting factors (NPFs), actin monomers, and binding of Arp2/3 complex to the mother filament. The precise contribution of each cofactor to activation is poorly understood. We report the 3.32-Å resolution cryo-electron microscopy structure of a transition state of Arp2/3 complex activation with bound constitutively dimeric NPF. Arp2/3 complex-binding region of the NPF N-WASP was fused C-terminally to the α and β subunits of the CapZ heterodimer. One arm of the NPF dimer binds Arp2 and the other binds actin and Arp3. The conformation of the complex is intermediate between those of inactive and active Arp2/3 complex. Arp2, Arp3, and actin also adopt intermediate conformations between monomeric (G-actin) and filamentous (F-actin) states, but only actin hydrolyzes ATP. In solution, the transition complex is kinetically shifted toward the short-pitch conformation and has higher affinity for F-actin than inactive Arp2/3 complex. The results reveal how all the activating cofactors contribute in a coordinated manner toward Arp2/3 complex activation.
Collapse
Affiliation(s)
- Trevor van Eeuwen
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Malgorzata Boczkowska
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Grzegorz Rebowski
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter J. Carman
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Fred E. Fregoso
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Roberto Dominguez
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
25
|
Zhang Q, Wan M, Kudryashova E, Kudryashov DS, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. PLoS Pathog 2023; 19:e1011512. [PMID: 37463171 PMCID: PMC10381072 DOI: 10.1371/journal.ppat.1011512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella-containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector localizes to endosomes and remodels host actin cytoskeleton in a phosphatidylinositol 3-phosphate (PI(3)P) dependent manner when ectopically expressed. We show that MavH recruits host actin capping protein (CP) and actin to the endosome via its CP-interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates actin assembly on PI(3)P-containing liposomes causing their tubulation. In addition, the recruitment of CP by MavH negatively regulates F-actin density at the membrane. We further show that, in L. pneumophila-infected cells, MavH appears around the LCV at the very early stage of infection and facilitates bacterium entry into the host. Together, our results reveal a novel mechanism of membrane tubulation induced by membrane-dependent actin polymerization catalyzed by MavH that contributes to the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, United States of America
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
26
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
27
|
Spona D, Hanisch PT, Hegemann JH, Mölleken K. A single chlamydial protein reshapes the plasma membrane and serves as recruiting platform for central endocytic effector proteins. Commun Biol 2023; 6:520. [PMID: 37179401 PMCID: PMC10182996 DOI: 10.1038/s42003-023-04913-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Uptake of obligate intracellular bacterial pathogens into mammalian epithelial cells is critically dependent on modulation of the host's endocytic machinery. It is an open question how the invading pathogens generate a membrane-bound vesicle appropriate to their size. This requires extensive deformation of the host plasma membrane itself by pathogen-derived membrane-binding proteins, accompanied by substantial F-actin-based forces to further expand and finally pinch off the vesicle. Here we show that upon adhesion to the host cell, the human pathogenic bacterium Chlamydia pneumoniae secretes the scaffolding effector protein CPn0677, which binds to the inner leaflet of the invaginating host's PM, induces inwardly directed, negative membrane curvature, and forms a recruiting platform for the membrane-deforming BAR-domain containing proteins Pacsin and SNX9. In addition, while bound to the membrane, CPn0677 recruits monomeric G-actin, and its C-terminal region binds and activates N-WASP, which initiates branching actin polymerization via the Arp2/3 complex. Together, these membrane-bound processes enable the developing endocytic vesicle to engulf the infectious elementary body, while the associated actin network generates the forces required to reshape and detach the nascent vesicle from the PM. Thus, Cpn0677 (now renamed SemD) acts as recruiting platform for central components of the endocytic machinery during uptake of chlamydia.
Collapse
Affiliation(s)
- Dominik Spona
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp T Hanisch
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Johannes H Hegemann
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany
| | - Katja Mölleken
- Institute for Functional Microbial Genomics, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
28
|
Campellone KG, Lebek NM, King VL. Branching out in different directions: Emerging cellular functions for the Arp2/3 complex and WASP-family actin nucleation factors. Eur J Cell Biol 2023; 102:151301. [PMID: 36907023 DOI: 10.1016/j.ejcb.2023.151301] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
The actin cytoskeleton impacts practically every function of a eukaryotic cell. Historically, the best-characterized cytoskeletal activities are in cell morphogenesis, motility, and division. The structural and dynamic properties of the actin cytoskeleton are also crucial for establishing, maintaining, and changing the organization of membrane-bound organelles and other intracellular structures. Such activities are important in nearly all animal cells and tissues, although distinct anatomical regions and physiological systems rely on different regulatory factors. Recent work indicates that the Arp2/3 complex, a broadly expressed actin nucleator, drives actin assembly during several intracellular stress response pathways. These newly described Arp2/3-mediated cytoskeletal rearrangements are coordinated by members of the Wiskott-Aldrich Syndrome Protein (WASP) family of actin nucleation-promoting factors. Thus, the Arp2/3 complex and WASP-family proteins are emerging as crucial players in cytoplasmic and nuclear activities including autophagy, apoptosis, chromatin dynamics, and DNA repair. Characterizations of the functions of the actin assembly machinery in such stress response mechanisms are advancing our understanding of both normal and pathogenic processes, and hold great promise for providing insights into organismal development and interventions for disease.
Collapse
Affiliation(s)
- Kenneth G Campellone
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA.
| | - Nadine M Lebek
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| | - Virginia L King
- Department of Molecular and Cell Biology, Institute for Systems Genomics; University of Connecticut; Storrs, CT, USA
| |
Collapse
|
29
|
Tsukita K, Kitamata M, Kashihara H, Yano T, Fujiwara I, Day TF, Katsuno T, Kim J, Takenaga F, Tanaka H, Park S, Miyata M, Watanabe H, Kondoh G, Takahashi R, Tamura A, Tsukita S. Phase separation of an actin nucleator by junctional microtubules regulates epithelial function. SCIENCE ADVANCES 2023; 9:eadf6358. [PMID: 36791197 PMCID: PMC9931218 DOI: 10.1126/sciadv.adf6358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Liquid-liquid phase separation (LLPS) is involved in various dynamic biological phenomena. In epithelial cells, dynamic regulation of junctional actin filaments tethered to the apical junctional complex (AJC) is critical for maintaining internal homeostasis against external perturbations; however, the role of LLPS in this process remains unknown. Here, after identifying a multifunctional actin nucleator, cordon bleu (Cobl), as an AJC-enriched microtubule-associated protein, we conducted comprehensive in vitro and in vivo analyses. We found that apical microtubules promoted LLPS of Cobl at the AJC, and Cobl actin assembly activity increased upon LLPS. Thus, microtubules spatiotemporally regulated junctional actin assembly for epithelial morphogenesis and paracellular barriers. Collectively, these findings established that LLPS of the actin nucleator Cobl mediated dynamic microtubule-actin cross-talk in junctions, which fine-tuned the epithelial barrier.
Collapse
Affiliation(s)
- Kazuto Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Manabu Kitamata
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroka Kashihara
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Organoid Medicine, Sakaguchi Laboratory, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ikuko Fujiwara
- Departments of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Timothy F. Day
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tatsuya Katsuno
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Center for Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Jaewon Kim
- Graduate School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Fumiko Takenaga
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroo Tanaka
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pharmacology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Sungsu Park
- Graduate School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Korea
| | - Makoto Miyata
- Graduate School of Science, Osaka Metropolitan University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Hitomi Watanabe
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Gen Kondoh
- Laboratory of Integrative Biological Science, Institute for Frontier Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Atsushi Tamura
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Pharmacology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Sachiko Tsukita
- Advanced Comprehensive Research Organization, Teikyo University, Itabashi-ku, Tokyo 173-0003, Japan
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
30
|
Morales EA, Gaeta I, Tyska MJ. Building the brush border, one microvillus at a time. Curr Opin Cell Biol 2023; 80:102153. [PMID: 36827850 PMCID: PMC10033394 DOI: 10.1016/j.ceb.2023.102153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 02/24/2023]
Abstract
Microvilli are actin bundle-supported surface protrusions assembled by diverse cell types to mediate biochemical and physical interactions with the external environment. Found on the surface of some of the earliest animal cells, primordial microvilli likely contributed to bacterial entrapment and feeding. Although millions of years of evolution have repurposed these protrusions to fulfill diverse roles such as detection of mechanical or visual stimuli in inner ear hair cells or retinal pigmented epithelial cells, respectively, solute uptake remains a key essential function linked to these structures. In this mini review, we offer a brief overview of the composition and structure of epithelial microvilli, highlight recent discoveries on the growth of these protrusions early in differentiation, and point to fundamental questions surrounding microvilli biogenesis that remain open for future studies.
Collapse
Affiliation(s)
- E Angelo Morales
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Isabella Gaeta
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
31
|
Zhang Q, Wan M, Mao Y. Membrane-dependent actin polymerization mediated by the Legionella pneumophila effector protein MavH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525393. [PMID: 36747622 PMCID: PMC9900769 DOI: 10.1101/2023.01.24.525393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
L. pneumophila propagates in eukaryotic cells within a specialized niche, the Legionella -containing vacuole (LCV). The infection process is controlled by over 330 effector proteins delivered through the type IV secretion system. In this study, we report that the Legionella MavH effector harbors a lipid-binding domain that specifically recognizes PI(3)P (phosphatidylinositol 3-phosphate) and localizes to endosomes when ectopically expressed. We show that MavH recruits host actin capping proteins (CP) and actin to the endosome via its CP interacting (CPI) motif and WH2-like actin-binding domain, respectively. In vitro assays revealed that MavH stimulates robust actin polymerization only in the presence of PI(3)P-containing liposomes and the recruitment of CP by MavH negatively regulates F-actin density at the membrane. Furthermore, in L. pneumophila -infected cells, MavH can be detected around the LCV at the very early stage of infection. Together, our results reveal a novel mechanism of membrane-dependent actin polymerization catalyzed by MavH that may play a role at the early stage of L. pneumophila infection by regulating host actin dynamics.
Collapse
Affiliation(s)
- Qing Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Min Wan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Yuxin Mao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Corresponding Author: , Telephone: 607-255-0783
| |
Collapse
|
32
|
Kudryashova E, Ankita, Ulrichs H, Shekhar S, Kudryashov DS. Pointed-end processive elongation of actin filaments by Vibrio effectors VopF and VopL. SCIENCE ADVANCES 2022; 8:eadc9239. [PMID: 36399577 PMCID: PMC9674292 DOI: 10.1126/sciadv.adc9239] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/03/2022] [Indexed: 07/20/2023]
Abstract
According to the cellular actin dynamics paradigm, filaments grow at their barbed ends and depolymerize predominantly from their pointed ends to form polar structures and do productive work. We show that actin can elongate at the pointed end when assisted by Vibrio VopF/L toxins, which act as processive polymerases. In cells, processively moving VopF/L speckles are inhibited by factors blocking the pointed but not barbed ends. Multispectral single-molecule imaging confirmed that VopF molecules associate with the pointed end, actively promoting its elongation even in the presence of profilin. Consequently, VopF/L can break the actin cytoskeleton's polarity by compromising actin-based cellular processes. Therefore, actin filament design allows processive growth at both ends, which suggests unforeseen possibilities for cellular actin organization, particularly in specialized cells and compartments.
Collapse
Affiliation(s)
- Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Ankita
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Heidi Ulrichs
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Shashank Shekhar
- Department of Physics, Emory University, Atlanta, GA 30322, USA
- Department of Cell Biology, Emory University, Atlanta, GA 30322, USA
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
33
|
Alqassim SS. Functional Mimicry of Eukaryotic Actin Assembly by Pathogen Effector Proteins. Int J Mol Sci 2022; 23:ijms231911606. [PMID: 36232907 PMCID: PMC9569871 DOI: 10.3390/ijms231911606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
The actin cytoskeleton lies at the heart of many essential cellular processes. There are hundreds of proteins that cells use to control the size and shape of actin cytoskeletal networks. As such, various pathogens utilize different strategies to hijack the infected eukaryotic host actin dynamics for their benefit. These include the control of upstream signaling pathways that lead to actin assembly, control of eukaryotic actin assembly factors, encoding toxins that distort regular actin dynamics, or by encoding effectors that directly interact with and assemble actin filaments. The latter class of effectors is unique in that, quite often, they assemble actin in a straightforward manner using novel sequences, folds, and molecular mechanisms. The study of these mechanisms promises to provide major insights into the fundamental determinants of actin assembly, as well as a deeper understanding of host-pathogen interactions in general, and contribute to therapeutic development efforts targeting their respective pathogens. This review discusses mechanisms and highlights shared and unique features of actin assembly by pathogen effectors that directly bind and assemble actin, focusing on eukaryotic actin nucleator functional mimics Rickettsia Sca2 (formin mimic), Burkholderia BimA (Ena/VASP mimic), and Vibrio VopL (tandem WH2-motif mimic).
Collapse
Affiliation(s)
- Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Building 14, Dubai Health Care City, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
34
|
Tolkatchev D, Gregorio CC, Kostyukova AS. The role of leiomodin in actin dynamics: a new road or a secret gate. FEBS J 2022; 289:6119-6131. [PMID: 34273242 PMCID: PMC8761783 DOI: 10.1111/febs.16128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/10/2021] [Accepted: 07/16/2021] [Indexed: 12/29/2022]
Abstract
Leiomodin is an important emerging regulator of thin filaments. As novel molecular, cellular, animal model, and human data accumulate, the mechanisms of its action become clearer. Structural studies played a significant part in understanding the functional significance of leiomodin's interacting partners and functional domains. In this review, we present the current state of knowledge on the structural and cellular properties of leiomodin which has led to two proposed mechanisms of its function. Although it is known that leiomodin is essential for life, numerous domains within leiomodin remain unstudied and as such, we outline future directions for investigations that we predict will provide evidence that leiomodin is a multifunctional protein.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ 85724, USA
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
35
|
Lam NT, McCluskey JB, Glover DJ. Harnessing the Structural and Functional Diversity of Protein Filaments as Biomaterial Scaffolds. ACS APPLIED BIO MATERIALS 2022; 5:4668-4686. [PMID: 35766918 DOI: 10.1021/acsabm.2c00275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The natural ability of many proteins to polymerize into highly structured filaments has been harnessed as scaffolds to align functional molecules in a diverse range of biomaterials. Protein-engineering methodologies also enable the structural and physical properties of filaments to be tailored for specific biomaterial applications through genetic engineering or filaments built from the ground up using advances in the computational prediction of protein folding and assembly. Using these approaches, protein filament-based biomaterials have been engineered to accelerate enzymatic catalysis, provide routes for the biomineralization of inorganic materials, facilitate energy production and transfer, and provide support for mammalian cells for tissue engineering. In this review, we describe how the unique structural and functional diversity in natural and computationally designed protein filaments can be harnessed in biomaterials. In addition, we detail applications of these protein assemblies as material scaffolds with a particular emphasis on applications that exploit unique properties of specific filaments. Through the diversity of protein filaments, the biomaterial engineer's toolbox contains many modular protein filaments that will likely be incorporated as the main structural component of future biomaterials.
Collapse
Affiliation(s)
- Nga T Lam
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Joshua B McCluskey
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dominic J Glover
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
36
|
Kramer DA, Piper HK, Chen B. WASP family proteins: Molecular mechanisms and implications in human disease. Eur J Cell Biol 2022; 101:151244. [PMID: 35667337 PMCID: PMC9357188 DOI: 10.1016/j.ejcb.2022.151244] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023] Open
Abstract
Proteins of the Wiskott-Aldrich syndrome protein (WASP) family play a central role in regulating actin cytoskeletal dynamics in a wide range of cellular processes. Genetic mutations or misregulation of these proteins are tightly associated with many diseases. The WASP-family proteins act by transmitting various upstream signals to their conserved WH2-Central-Acidic (WCA) peptide sequence at the C-terminus, which in turn binds to the Arp2/3 complex to stimulate the formation of branched actin networks at membranes. Despite this common feature, the regulatory mechanisms and cellular functions of distinct WASP-family proteins are very different. Here, we summarize and clarify our current understanding of WASP-family proteins and how disruption of their functions is related to human disease.
Collapse
Affiliation(s)
- Daniel A Kramer
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Hannah K Piper
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA
| | - Baoyu Chen
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, 2437 Pammel Drive, Ames, IA 50011, USA.
| |
Collapse
|
37
|
Szikora S, Görög P, Mihály J. The Mechanisms of Thin Filament Assembly and Length Regulation in Muscles. Int J Mol Sci 2022; 23:5306. [PMID: 35628117 PMCID: PMC9140763 DOI: 10.3390/ijms23105306] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
The actin containing tropomyosin and troponin decorated thin filaments form one of the crucial components of the contractile apparatus in muscles. The thin filaments are organized into densely packed lattices interdigitated with myosin-based thick filaments. The crossbridge interactions between these myofilaments drive muscle contraction, and the degree of myofilament overlap is a key factor of contractile force determination. As such, the optimal length of the thin filaments is critical for efficient activity, therefore, this parameter is precisely controlled according to the workload of a given muscle. Thin filament length is thought to be regulated by two major, but only partially understood mechanisms: it is set by (i) factors that mediate the assembly of filaments from monomers and catalyze their elongation, and (ii) by factors that specify their length and uniformity. Mutations affecting these factors can alter the length of thin filaments, and in human cases, many of them are linked to debilitating diseases such as nemaline myopathy and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
38
|
Hardin WR, Alas GCM, Taparia N, Thomas EB, Steele-Ogus MC, Hvorecny KL, Halpern AR, Tůmová P, Kollman JM, Vaughan JC, Sniadecki NJ, Paredez AR. The Giardia ventrolateral flange is a lamellar membrane protrusion that supports attachment. PLoS Pathog 2022; 18:e1010496. [PMID: 35482847 PMCID: PMC9089883 DOI: 10.1371/journal.ppat.1010496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/10/2022] [Accepted: 04/04/2022] [Indexed: 12/01/2022] Open
Abstract
Attachment to the intestinal epithelium is critical to the lifestyle of the ubiquitous parasite Giardia lamblia. The ventrolateral flange is a sheet-like membrane protrusion at the interface between parasites and attached surfaces. This structure has been implicated in attachment, but its role has been poorly defined. Here, we identified a novel actin associated protein with putative WH2-like actin binding domains we named Flangin. Flangin complexes with Giardia actin (GlActin) and is enriched in the ventrolateral flange making it a valuable marker for studying the flanges' role in Giardia biology. Live imaging revealed that the flange grows to around 1 μm in width after cytokinesis, then remains uniform in size during interphase, grows in mitosis, and is resorbed during cytokinesis. A flangin truncation mutant stabilizes the flange and blocks cytokinesis, indicating that flange disassembly is necessary for rapid myosin-independent cytokinesis in Giardia. Rho family GTPases are important regulators of membrane protrusions and GlRac, the sole Rho family GTPase in Giardia, was localized to the flange. Knockdown of Flangin, GlActin, and GlRac result in flange formation defects. This indicates a conserved role for GlRac and GlActin in forming membrane protrusions, despite the absence of canonical actin binding proteins that link Rho GTPase signaling to lamellipodia formation. Flangin-depleted parasites had reduced surface contact and when challenged with fluid shear force in flow chambers they had a reduced ability to remain attached, confirming a role for the flange in attachment. This secondary attachment mechanism complements the microtubule based adhesive ventral disc, a feature that may be particularly important during mitosis when the parental ventral disc disassembles in preparation for cytokinesis. This work supports the emerging view that Giardia's unconventional actin cytoskeleton has an important role in supporting parasite attachment.
Collapse
Affiliation(s)
- William R. Hardin
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Germain C. M. Alas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Nikita Taparia
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
| | - Elizabeth B. Thomas
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Melissa C. Steele-Ogus
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| | - Kelli L. Hvorecny
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Aaron R. Halpern
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
| | - Pavla Tůmová
- Institute of Immunology and Microbiology, 1 Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Justin M. Kollman
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, United States of America
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, United States of America
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, Washington, United States of America
- Bioengineering, University of Washington, Seattle, Washington, United States of America
- Lab Medicine & Pathology, University of Washington, Seattle, Washington, United States of America
- Center for Cardiovascular Biology, University of Washington, Seattle, Washington, United States of America
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, United States of America
| | - Alexander R. Paredez
- Department of Biology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
39
|
Hoyer M, Crevenna AH, Kitel R, Willems K, Czub M, Dubin G, Van Dorpe P, Holak TA, Lamb DC. Analysis tools for single-monomer measurements of self-assembly processes. Sci Rep 2022; 12:4682. [PMID: 35304498 PMCID: PMC8933434 DOI: 10.1038/s41598-022-08245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022] Open
Abstract
Protein assembly plays an important role throughout all phyla of life, both physiologically and pathologically. In particular, aggregation and polymerization of proteins are key-strategies that regulate cellular function. In recent years, methods to experimentally study the assembly process on a single-molecule level have been developed. This progress concomitantly has triggered the question of how to analyze this type of single-filament data adequately and what experimental conditions are necessary to allow a meaningful interpretation of the analysis. Here, we developed two analysis methods for single-filament data: the visitation analysis and the average-rate analysis. We benchmarked and compared both approaches with the classic dwell-time-analysis frequently used to study microscopic association and dissociation rates. In particular, we tested the limitations of each analysis method along the lines of the signal-to-noise ratio, the sampling rate, and the labeling efficiency and bleaching rate of the fluorescent dyes used in single-molecule fluorescence experiments. Finally, we applied our newly developed methods to study the monomer assembly of actin at the single-molecule-level in the presence of the class II nucleator Cappuccino and the WH2 repeats of Spire. For Cappuccino, our data indicated fast elongation circumventing a nucleation phase whereas, for Spire, we found that the four WH2 motifs are not sufficient to promote de novo nucleation of actin.
Collapse
Affiliation(s)
- Maria Hoyer
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany
| | - Alvaro H Crevenna
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany.,Epigenetics and Neurobiology Unit, EMBL Rome, Monterotondo, Italy
| | - Radoslaw Kitel
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland.,Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | | | - Miroslawa Czub
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Grzegorz Dubin
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387, Krakow, Poland
| | | | - Tad A Holak
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387, Krakow, Poland
| | - Don C Lamb
- Department of Chemistry, Center for NanoScience, Nanosystems Initiative Munich (NIM) and Center for Integrated Protein Science Munich (CiPSM), Ludwig-Maximilians University Munich, Munich, Germany.
| |
Collapse
|
40
|
Faix J, Rottner K. Ena/VASP proteins in cell edge protrusion, migration and adhesion. J Cell Sci 2022; 135:274697. [DOI: 10.1242/jcs.259226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
ABSTRACT
The tightly coordinated, spatiotemporal control of actin filament remodeling provides the basis of fundamental cellular processes, such as cell migration and adhesion. Specific protein assemblies, composed of various actin-binding proteins, are thought to operate in these processes to nucleate and elongate new filaments, arrange them into complex three-dimensional (3D) arrays and recycle them to replenish the actin monomer pool. Actin filament assembly is not only necessary to generate pushing forces against the leading edge membrane or to propel pathogens through the cytoplasm, but also coincides with the generation of stress fibers (SFs) and focal adhesions (FAs) that generate, transmit and sense mechanical tension. The only protein families known to date that directly enhance the elongation of actin filaments are formins and the family of Ena/VASP proteins. Their mechanisms of action, however, in enhancing processive filament elongation are distinct. The aim of this Review is to summarize our current knowledge on the molecular mechanisms of Ena/VASP-mediated actin filament assembly, and to discuss recent insights into the cell biological functions of Ena/VASP proteins in cell edge protrusion, migration and adhesion.
Collapse
Affiliation(s)
- Jan Faix
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
- Molecular Cell Biology Group, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| |
Collapse
|
41
|
Fregoso FE, van Eeuwen T, Simanov G, Rebowski G, Boczkowska M, Zimmet A, Gautreau AM, Dominguez R. Molecular mechanism of Arp2/3 complex inhibition by Arpin. Nat Commun 2022; 13:628. [PMID: 35110533 PMCID: PMC8810855 DOI: 10.1038/s41467-022-28112-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/09/2022] [Indexed: 11/09/2022] Open
Abstract
Positive feedback loops involving signaling and actin assembly factors mediate the formation and remodeling of branched actin networks in processes ranging from cell and organelle motility to mechanosensation. The Arp2/3 complex inhibitor Arpin controls the directional persistence of cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex, but Arpin’s mechanism of inhibition is unknown. Here, we describe the cryo-EM structure of Arpin bound to Arp2/3 complex at 3.24-Å resolution. Unexpectedly, Arpin binds Arp2/3 complex similarly to WASP-family nucleation-promoting factors (NPFs) that activate the complex. However, whereas NPFs bind to two sites on Arp2/3 complex, on Arp2-ArpC1 and Arp3, Arpin only binds to the site on Arp3. Like NPFs, Arpin has a C-helix that binds at the barbed end of Arp3. Mutagenesis studies in vitro and in cells reveal how sequence differences within the C-helix define the molecular basis for inhibition by Arpin vs. activation by NPFs. The Arp2/3 complex inhibitor Arpin controls cell migration by interrupting a feedback loop involving Rac-WAVE-Arp2/3 complex Here, the authors use structural, biochemical, and cellular studies to reveal Arpin’s mechanism of inhibition.
Collapse
Affiliation(s)
- Fred E Fregoso
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Trevor van Eeuwen
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, 10065, USA
| | - Gleb Simanov
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - Grzegorz Rebowski
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Malgorzata Boczkowska
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Austin Zimmet
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexis M Gautreau
- Laboratoire de Biologie Structurale de la Cellule, CNRS, Institut Polytechnique de Paris, 91128, Palaiseau, France.,Skolkovo Institute of Science and Technology, 121205, Moscow, Russia
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
42
|
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Záhonová K, Najle SR, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Eliáš M, Slamovits CH, Weirauch MT, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol 2021; 19:142. [PMID: 34294116 PMCID: PMC8296547 DOI: 10.1186/s12915-021-01078-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
Collapse
Affiliation(s)
- Emily K Herman
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Alex Greninger
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
- Department of Laboratory Medicine, University of Washington Medical Center, Montlake, USA
| | - Mark van der Giezen
- Centre for Organelle Research, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Michael L Ginger
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Inmaculada Ramirez-Macias
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca. Instituto Murciano de Investigación Biosanitaria. Centro de Investigación Biomedica en Red-Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
- CSIRO, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | - Katrina Velle
- Department of Biology, University of Massachusetts, Amherst, UK
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sebastian Rodrigo Najle
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Catalonia, Spain
| | - Georgina MacIntyre
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Norbert Muller
- Institute of Parasitology, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Mattias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Charles Chiu
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, The Natural History Museum, London, UK.
| |
Collapse
|
43
|
Sun H, Zhu X, Li C, Ma Z, Han X, Luo Y, Yang L, Yu J, Miao Y. Xanthomonas effector XopR hijacks host actin cytoskeleton via complex coacervation. Nat Commun 2021; 12:4064. [PMID: 34210966 PMCID: PMC8249405 DOI: 10.1038/s41467-021-24375-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 06/11/2021] [Indexed: 01/09/2023] Open
Abstract
The intrinsically disordered region (IDR) is a preserved signature of phytobacterial type III effectors (T3Es). The T3E IDR is thought to mediate unfolding during translocation into the host cell and to avoid host defense by sequence diversification. Here, we demonstrate a mechanism of host subversion via the T3E IDR. We report that the Xanthomonas campestris T3E XopR undergoes liquid-liquid phase separation (LLPS) via multivalent IDR-mediated interactions that hijack the Arabidopsis actin cytoskeleton. XopR is gradually translocated into host cells during infection and forms a macromolecular complex with actin-binding proteins at the cell cortex. By tuning the physical-chemical properties of XopR-complex coacervates, XopR progressively manipulates multiple steps of actin assembly, including formin-mediated nucleation, crosslinking of F-actin, and actin depolymerization, which occurs through competition for actin-depolymerizing factor and depends on constituent stoichiometry. Our findings unravel a sophisticated strategy in which bacterial T3E subverts the host actin cytoskeleton via protein complex coacervation.
Collapse
Affiliation(s)
- He Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xinlu Zhu
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Chuanxi Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Yuanyuan Luo
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Liang Yang
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
44
|
Tyler JJ, Smaczynska-de Rooij II, Abugharsa L, Palmer JS, Hancock LP, Allwood EG, Ayscough KR. Phosphorylation of the WH2 domain in yeast Las17/WASP regulates G-actin binding and protein function during endocytosis. Sci Rep 2021; 11:9718. [PMID: 33958621 PMCID: PMC8102491 DOI: 10.1038/s41598-021-88826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/12/2021] [Indexed: 11/29/2022] Open
Abstract
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. WH2 domains are short sequence motifs found in many different actin binding proteins including WASP family proteins which regulate the actin nucleating complex Arp2/3. In this study we reveal a phosphorylation site, Serine 554, within the WH2 domain of the yeast WASP homologue Las17. Both phosphorylation and a phospho-mimetic mutation reduce actin monomer binding affinity while an alanine mutation, generated to mimic the non-phosphorylated state, increases actin binding affinity. The effect of these mutations on the Las17-dependent process of endocytosis in vivo was analysed and leads us to propose that switching of Las17 phosphorylation states may allow progression through distinct phases of endocytosis from site assembly through to the final scission stage. While the study is focused on Las17, the sole WASP family protein in yeast, our results have broad implications for our understanding of how a key residue in this conserved motif can underpin the many different actin regulatory roles with which WH2 domains have been associated.
Collapse
Affiliation(s)
- J J Tyler
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - I I Smaczynska-de Rooij
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L Abugharsa
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - J S Palmer
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - L P Hancock
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - E G Allwood
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK
| | - K R Ayscough
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
45
|
Chakrabarti R, Lee M, Higgs HN. Multiple roles for actin in secretory and endocytic pathways. Curr Biol 2021; 31:R603-R618. [PMID: 34033793 DOI: 10.1016/j.cub.2021.03.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actin filaments play multiple roles in the secretory pathway and in endosome dynamics in mammals, including maintenance of Golgi structure, release of membrane cargo from the trans-Golgi network (TGN), endocytosis, and endosomal sorting dynamics. In addition, TGN carrier transport and endocytosis both occur by multiple mechanisms in mammals. Actin likely plays a role in at least four mammalian endocytic pathways, five pathways for membrane release from the TGN, and three processes involving endosomes. Also, the mammalian Golgi structure is highly dynamic, and actin is likely important for these dynamics. One challenge for many of these processes is the need to deal with other membrane-associated structures, such as the cortical actin network at the plasma membrane or the matrix that surrounds the Golgi. Arp2/3 complex is a major actin assembly factor in most of the processes mentioned, but roles for formins and tandem WH2-motif-containing assembly factors are being elucidated and are anticipated to grow with further study. The specific role for actin has not been defined for most of these processes, but is likely to involve the generation of force for membrane dynamics, either by actin polymerization itself or by myosin motor activity. Defining these processes mechanistically is necessary for understanding membrane dynamics in general, as well as pathways that utilize these processes, such as autophagy.
Collapse
Affiliation(s)
- Rajarshi Chakrabarti
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Miriam Lee
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.
| |
Collapse
|
46
|
Cancer type-specific alterations in actin genes: Worth a closer look? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 360:133-184. [PMID: 33962749 DOI: 10.1016/bs.ircmb.2021.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Actins form a strongly conserved family of proteins that are central to the functioning of the actin cytoskeleton partaking in natural processes such as cell division, adhesion, contraction and migration. These processes, however, also occur during the various phases of cancer progression. Yet, surprisingly, alterations in the six human actin genes in cancer studies have received little attention and the focus was mostly on deregulated expression levels of actins and even more so of actin-binding or regulatory proteins. Starting from the early mutation work in the 1980s, we propose based on reviewing literature and data from patient cancer genomes that alterations in actin genes are different in distinct cancer subtypes, suggesting some specificity. These actin gene alterations include (missense) mutations, gene fusions and copy number alterations (deletions and amplifications) and we illustrate their occurrence for a limited number of examples including actin mutations in lymphoid cancers and nonmelanoma skin cancer and actin gene copy number alterations for breast, prostate and liver cancers. A challenge in the future will be to further sort out the specificity per actin gene, alteration type and cancer subtype. Even more challenging is (experimentally) distinguishing between cause and consequence: which alterations are passengers and which are involved in tumor progression of particular cancer subtypes?
Collapse
|
47
|
Tur-Gracia S, Martinez-Quiles N. Emerging functions of cytoskeletal proteins in immune diseases. J Cell Sci 2021; 134:134/3/jcs253534. [PMID: 33558442 DOI: 10.1242/jcs.253534] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immune cells are especially dependent on the proper functioning of the actin cytoskeleton, and both innate and adaptive responses rely on it. Leukocytes need to adhere not only to substrates but also to cells in order to form synapses that pass on instructions or kill infected cells. Neutrophils literally squeeze their cell body during blood extravasation and efficiently migrate to the inflammatory focus. Moreover, the development of immune cells requires the remodeling of their cytoskeleton as it depends on, among other processes, adhesive contacts and migration. In recent years, the number of reports describing cytoskeletal defects that compromise the immune system has increased immensely. Furthermore, a new emerging paradigm points toward a role for the cellular actin content as an essential component of the so-called homeostasis-altering molecular processes that induce the activation of innate immune signaling pathways. Here, we review the role of critical actin-cytoskeleton-remodeling proteins, including the Arp2/3 complex, cofilin, coronin and WD40-repeat containing protein 1 (WDR1), in immune pathophysiology, with a special focus on autoimmune and autoinflammatory traits.
Collapse
Affiliation(s)
- Sara Tur-Gracia
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain
| | - Narcisa Martinez-Quiles
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, 28040 Madrid, Spain .,Gregorio Marañón Health Research Institute, 28007 Madrid, Spain
| |
Collapse
|
48
|
Smith H, Pinkerton N, Heisler DB, Kudryashova E, Hall AR, Karch KR, Norris A, Wysocki V, Sotomayor M, Reisler E, Vavylonis D, Kudryashov DS. Rounding Out the Understanding of ACD Toxicity with the Discovery of Cyclic Forms of Actin Oligomers. Int J Mol Sci 2021; 22:E718. [PMID: 33450834 PMCID: PMC7828245 DOI: 10.3390/ijms22020718] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 11/17/2022] Open
Abstract
Actin is an essential element of both innate and adaptive immune systems and can aid in motility and translocation of bacterial pathogens, making it an attractive target for bacterial toxins. Pathogenic Vibrio and Aeromonas genera deliver actin cross-linking domain (ACD) toxin into the cytoplasm of the host cell to poison actin regulation and promptly induce cell rounding. At early stages of toxicity, ACD covalently cross-links actin monomers into oligomers (AOs) that bind through multivalent interactions and potently inhibit several families of actin assembly proteins. At advanced toxicity stages, we found that the terminal protomers of linear AOs can get linked together by ACD to produce cyclic AOs. When tested against formins and Ena/VASP, linear and cyclic AOs exhibit similar inhibitory potential, which for the cyclic AOs is reduced in the presence of profilin. In coarse-grained molecular dynamics simulations, profilin and WH2-motif binding sites on actin subunits remain exposed in modeled AOs of both geometries. We speculate, therefore, that the reduced toxicity of cyclic AOs is due to their reduced configurational entropy. A characteristic feature of cyclic AOs is that, in contrast to the linear forms, they cannot be straightened to form filaments (e.g., through stabilization by cofilin), which makes them less susceptible to neutralization by the host cell.
Collapse
Affiliation(s)
- Harper Smith
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Nick Pinkerton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - David B. Heisler
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Aaron R. Hall
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (A.R.H.); (D.V.)
| | - Kelly R. Karch
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Andrew Norris
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Vicki Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Emil Reisler
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA;
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, Bethlehem, PA 18015, USA; (A.R.H.); (D.V.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (H.S.); (N.P.); (D.B.H.); (E.K.); (K.R.K.); (A.N.); (V.W.); (M.S.)
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
49
|
Gerdes JA, Mannix KM, Hudson AM, Cooley L. HtsRC-Mediated Accumulation of F-Actin Regulates Ring Canal Size During Drosophila melanogaster Oogenesis. Genetics 2020; 216:717-734. [PMID: 32883702 PMCID: PMC7648574 DOI: 10.1534/genetics.120.303629] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022] Open
Abstract
Ring canals in the female germline of Drosophila melanogaster are supported by a robust filamentous actin (F-actin) cytoskeleton, setting them apart from ring canals in other species and tissues. Previous work has identified components required for the expansion of the ring canal actin cytoskeleton, but has not identified the proteins responsible for F-actin recruitment or accumulation. Using a combination of CRISPR-Cas9 mediated mutagenesis and UAS-Gal4 overexpression, we show that HtsRC-a component specific to female germline ring canals-is both necessary and sufficient to drive F-actin accumulation. Absence of HtsRC in the germline resulted in ring canals lacking inner rim F-actin, while overexpression of HtsRC led to larger ring canals. HtsRC functions in combination with Filamin to recruit F-actin to ectopic actin structures in somatic follicle cells. Finally, we present findings that indicate that HtsRC expression and robust female germline ring canal expansion are important for high fecundity in fruit flies but dispensable for their fertility-a result that is consistent with our understanding of HtsRC as a newly evolved gene specific to female germline ring canals.
Collapse
Affiliation(s)
- Julianne A Gerdes
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Katelynn M Mannix
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Andrew M Hudson
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
| | - Lynn Cooley
- Department of Genetics, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06520 Connecticut
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06511 Connecticut
| |
Collapse
|
50
|
Carriles AA, Mills A, Muñoz-Alonso MJ, Gutiérrez D, Domínguez JM, Hermoso JA, Gago F. Structural Cues for Understanding eEF1A2 Moonlighting. Chembiochem 2020; 22:374-391. [PMID: 32875694 DOI: 10.1002/cbic.202000516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Indexed: 12/16/2022]
Abstract
Spontaneous mutations in the EEF1A2 gene cause epilepsy and severe neurological disabilities in children. The crystal structure of eEF1A2 protein purified from rabbit skeletal muscle reveals a post-translationally modified dimer that provides information about the sites of interaction with numerous binding partners, including itself, and maps these mutations onto the dimer and tetramer interfaces. The spatial locations of the side chain carboxylates of Glu301 and Glu374, to which phosphatidylethanolamine is uniquely attached via an amide bond, define the anchoring points of eEF1A2 to cellular membranes and interorganellar membrane contact sites. Additional bioinformatic and molecular modeling results provide novel structural insight into the demonstrated binding of eEF1A2 to SH3 domains, the common MAPK docking groove, filamentous actin, and phosphatidylinositol-4 kinase IIIβ. In this new light, the role of eEF1A2 as an ancient, multifaceted, and articulated G protein at the crossroads of autophagy, oncogenesis and viral replication appears very distant from the "canonical" one of delivering aminoacyl-tRNAs to the ribosome that has dominated the scene and much of the thinking for many decades.
Collapse
Affiliation(s)
- Alejandra A Carriles
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain.,Biocrystallography Unit, Division of Immunology, Transplantation, and Infectious Diseases, IRCCS Scientific Institute San Raffaele, 20132, Milan, Italy
| | - Alberto Mills
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - María-José Muñoz-Alonso
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Dolores Gutiérrez
- Proteomics Unit, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Juan M Domínguez
- Department of Cell Biology and Pharmacogenomics, PharmaMar S.A.U., 28770, Colmenar Viejo, Madrid, Spain
| | - Juan A Hermoso
- Department of Crystallography and Structural Biology, Institute of Physical-Chemistry "Rocasolano" CSIC, 28006, Madrid, Spain
| | - Federico Gago
- Department of Biomedical Sciences and "Unidad Asociada IQM-CSIC", School of Medicine and Health Sciences, University of Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|