1
|
Zhai PL, Chen MM, Wang Q, Zhao JJ, Tang XM, Lu CN, Liu J, Yang QX, Xiang ML, Tang QH, Gu B, Zhang SP, Tang SP, Fu D. Multi-omics analysis identifies a liquid-liquid phase separation-related subtypes in head and neck squamous cell carcinoma. Front Oncol 2025; 15:1509810. [PMID: 40078192 PMCID: PMC11897011 DOI: 10.3389/fonc.2025.1509810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Background Growing evidence indicates that abnormal liquid-liquid phase separation (LLPS) can disrupt biomolecular condensates, contributing to cancer development and progression. However, the influence of LLPS on the prognosis of head and neck squamous cell carcinoma (HNSCC) patients and its effects on the tumor immune microenvironment (TIME) are not yet fully understood. Therefore, we aimed to categorize patients with HNSCC based on LLPS-related genes and explored their multidimensional heterogeneity. Methods We integrated the transcriptomic data of 3,541 LLPS-related genes to assess the LLPS patterns in 501 patients with HNSCC within The Cancer Genome Atlas cohort. Subsequently, we explored the differences among the three LLPS subtypes using multi-omics analysis. We also developed an LLPS-related prognostic risk signature (LPRS) to facilitate personalized and integrative assessments and then screened and validated potential therapeutic small molecule compounds targeting HNSCC via experimental analyses. Result By analyzing the expression profiles of 85 scaffolds, 355 regulators, and 3,101 clients of LLPS in HNSCC, we identified three distinct LLPS subtypes: LS1, LS2, and LS3. We confirmed notable differences among these subtypes in terms of prognosis, functional enrichment, genomic alterations, TIME patterns, and responses to immunotherapy. Additionally, we developed the LPRS, a prognostic signature for personalized integrative assessments, which demonstrated strong predictive capability for HNSCC prognosis across multiple cohorts. The LPRS also showed significant correlations with the clinicopathological features and TIME patterns in HNSCC patients. Furthermore, the LPRS effectively predicted responses to immune checkpoint inhibitor therapy and facilitated the screening of potential small-molecule compounds for treating HNSCC patients. Conclusion This study presents a new classification system for HNSCC patients grounded in LLPS. The LPRS developed in this research offers improved personalized prognosis and could optimize immunotherapy strategies for HNSCC.
Collapse
Affiliation(s)
- Peng-Lei Zhai
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meng-Min Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Institute of Pancreatic Diseases, Shanghai Key Laboratory of Translational Research for Pancreatic Neoplasms, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Wang
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing-Jun Zhao
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Xiao-Mei Tang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui-Ni Lu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jia Liu
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qin-Xin Yang
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming-Liang Xiang
- Department of Otolaryngology & Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing-Hai Tang
- Hunan Key Laboratory for Conservation and Utilization of Biological Resources in the Nanyue Mountainous Region, College of Life Sciences, Hengyang Normal University, Hengyang, China
| | - Biao Gu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Shu-Ping Zhang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Si-Ping Tang
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
| | - Da Fu
- Key Laboratory of Functional Organometallic Materials of College of Hunan Province, College of Chemistry and Materials Science, Hengyang Normal University, Hengyang, China
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zheng J, Wu Z, Qiu Y, Wang X, Jiang X. An integrative multi-omics analysis based on liquid–liquid phase separation delineates distinct subtypes of lower-grade glioma and identifies a prognostic signature. J Transl Med 2022; 20:55. [PMID: 35093128 PMCID: PMC8800244 DOI: 10.1186/s12967-022-03266-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
Abstract
Background
Emerging evidences have indicated that the aberrant liquid–liquid phase separation (LLPS) leads to the dysfunction of biomolecular condensates, thereby contributing to the tumorigenesis and progression. Nevertheless, it remains unclear whether or how the LLPS of specific molecules affects the prognosis and tumor immune microenvironment (TIME) of patients with lower-grade glioma (LGG).
Methods
We integrated the transcriptome information of 3585 LLPS-related genes to comprehensively evaluate the LLPS patterns of 423 patients with LGG in The Cancer Genome Atlas (TCGA) cohort. Then, we systematically demonstrated the differences among four LLPS subtypes based on multi-omics analyses. In addition, we constructed the LLPS-related prognostic risk score (LPRS) for individualized integrative assessment.
Results
Based on the expression profiles of 85 scaffolds, 355 regulators, and 3145 clients in LGG, we identified four LLPS subtypes, namely LS1, LS2, LS3 and LS4.
We confirmed that there were significant differences in prognosis, clinicopathological features, cancer hallmarks, genomic alterations, TIME patterns and immunotherapeutic responses among four LLPS subtypes. In addition, a prognostic signature called LPRS was constructed for individualized integrative assessment. LPRS exhibited a robust predictive capacity for prognosis of LGG patients in multiple cohorts. Moreover, LPRS was found to be correlated with clinicopathological features, cancer hallmarks, genomic alterations and TIME patterns of LGG patients. The predictive power of LPRS in response to immune checkpoint inhibitor (ICI) therapy was also prominent.
Conclusions
This study provided a novel classification of LGG patients based on LLPS. The constructed LPRS might facilitate individualized prognosis prediction and better immunotherapy options for LGG patients.
Collapse
|
3
|
Cai D, Liu Z, Lippincott-Schwartz J. Biomolecular Condensates and Their Links to Cancer Progression. Trends Biochem Sci 2021; 46:535-549. [PMID: 33579564 DOI: 10.1016/j.tibs.2021.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/14/2023]
Abstract
Liquid-liquid phase separation (LLPS) has emerged in recent years as an important physicochemical process for organizing diverse processes within cells via the formation of membraneless organelles termed biomolecular condensates. Emerging evidence now suggests that the formation and regulation of biomolecular condensates are also intricately linked to cancer formation and progression. We review the most recent literature linking the existence and/or dissolution of biomolecular condensates to different hallmarks of cancer formation and progression. We then discuss the opportunities that this condensate perspective provides for cancer research and the development of novel therapeutic approaches, including the perturbation of condensates by small-molecule inhibitors.
Collapse
Affiliation(s)
- Danfeng Cai
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|