1
|
Xin G, Zhou Q, Wang T, Wan C, Yu X, Li K, Li F, Li S, Dong Y, Wang Y, Feng L, Zhang K, Wen A, Huang W. Metformin aggravates pancreatitis by regulating the release of oxidised mitochondrial DNA via the frataxin (FXN)/ninjurin 1 (NINJ1) signalling pathway. Br J Pharmacol 2025. [PMID: 40344214 DOI: 10.1111/bph.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/22/2025] [Accepted: 03/19/2025] [Indexed: 05/11/2025] Open
Abstract
BACKGROUND AND PURPOSE Patients with diabetes are at a higher risk of developing acute pancreatitis compared to those without diabetes. Therefore, it is essential to investigate the effects of metformin, a primary treatment for type 2 diabetes, on the progression of pancreatitis. EXPERIMENTAL APPROACH Network pharmacology was employed to investigate the potential effects of metformin on pancreatitis and to predict its underlying molecular mechanisms. Pharmacological and mechanistic studies of metformin were conducted utilising mtDNA depletion (ρ0) of 266-6 acinar cells, knockout mouse models and experimental models of both acute and chronic pancreatitis. The mitochondrial homeostasis and plasma membrane integrity were examined through phase-contrast microscopy and time-lapse video imaging. KEY RESULTS Network pharmacology analysis revealed that metformin possesses significant potential to modulate the pathogenesis of pancreatitis, likely through its regulation of mitochondrial function and cell membrane morphology. Further, the results revealed that metformin augmented the release of oxidised mitochondrial DNA (Ox-mtDNA) by enhancing NINJ1-mediated plasma membrane rupture, which subsequently ignited a cascade of acinar cell necrosis. Metformin exacerbated mitochondrial iron imbalance by suppressing Frataxin, thereby worsening mitochondrial homeostasis disruption and Ox-mtDNA generation. NINJ1 knockout eliminated the metformin-induced acinar cell necrosis and elevation of Ox-mtDNA levels, and mtDNA depletion reversed the effect of metformin on acinar cell death. CONCLUSION AND IMPLICATIONS Metformin exacerbates both acute and chronic pancreatitis, possibly because of increased release of Ox-mtDNA via modulation of mitochondrial iron homeostasis and NINJ1-mediated plasma membrane rupture, suggesting that extreme caution should be exercised when using metformin in diabetic patients with pancreatitis.
Collapse
Affiliation(s)
- Guang Xin
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qilong Zhou
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Wang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chengyu Wan
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiuxian Yu
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ke Li
- Department of Clinical Nutrition, West China Hospital, Sichuan University, Chengdu, China
| | - Fan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyi Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuman Dong
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yilan Wang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lijuan Feng
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kun Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ao Wen
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wen Huang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, Natural and Biomimetic Medicine Research Center, Tissue-Orientated Property of Chinese Medicine Key Laboratory of Sichuan Province, West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Liu N, Huang J, Liu X, Wu J, Huang M. Pesticide-induced metabolic disruptions in crops: A global perspective at the molecular level. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177665. [PMID: 39581450 DOI: 10.1016/j.scitotenv.2024.177665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/31/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
Pesticide pollution has emerged as a critical global environmental issue of pervasive concern. Although the application of pesticides has provided substantial benefits in controlling weeds, pests, and crop diseases, their indiscriminate use poses considerable challenges to soil health and food safety. Pesticides can be absorbed by crops through either foliar or root uptake, resulting in deleterious effects such as extensive tissue damage, growth inhibition, and reduced crop quality. Beside these visible effects, pesticides can alter gene expression and disrupt cellular signaling transduction, thereby interfering with essential metabolic processes even inducing toxic stress. Moreover, pesticides can interact intricately with biomolecules (e.g. proteins, nucleic acid) in crops, causing significant alterations in protein structure and physiological function. This review focuses on pesticide residues and their associated toxicity, emphasizing their pervasive influence on vital physiological and metabolic pathways, including carbohydrate metabolism, amino acid metabolism, and fatty acid metabolism. Particular attention is given to elucidating the molecular mechanisms underlying these disturbances, specifically regarding transcriptional regulation, cell signaling pathways, and biomolecular interactions. This review provides a comprehensive understanding of multifaceted effects of pesticides and to underscore the necessity for sustainable agricultural practices to safeguard crop yield and quality.
Collapse
Affiliation(s)
- Na Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jiawen Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Xinyue Liu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Jianjian Wu
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Ming Huang
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, College of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
3
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
4
|
Vu LP, Diehl CJ, Casement R, Bond AG, Steinebach C, Strašek N, Bricelj A, Perdih A, Schnakenburg G, Sosič I, Ciulli A, Gütschow M. Expanding the Structural Diversity at the Phenylene Core of Ligands for the von Hippel-Lindau E3 Ubiquitin Ligase: Development of Highly Potent Hypoxia-Inducible Factor-1α Stabilizers. J Med Chem 2023; 66:12776-12811. [PMID: 37708384 PMCID: PMC10544018 DOI: 10.1021/acs.jmedchem.3c00434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Indexed: 09/16/2023]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) constitutes the principal mediator of cellular adaptation to hypoxia in humans. The HIF-1α protein level and activity are tightly regulated by the ubiquitin E3 ligase von Hippel-Lindau (VHL). Here, we performed a structure-guided and bioactivity-driven design of new VHL inhibitors. Our iterative and combinatorial strategy focused on chemical variability at the phenylene unit and encompassed further points of diversity. The exploitation of tailored phenylene fragments and the stereoselective installation of the benzylic methyl group provided potent VHL ligands. Three high-resolution structures of VHL-ligand complexes were determined, and bioactive conformations of these ligands were explored. The most potent inhibitor (30) exhibited dissociation constants lower than 40 nM, independently determined by fluorescence polarization and surface plasmon resonance and an enhanced cellular potency, as evidenced by its superior ability to induce HIF-1α transcriptional activity. Our work is anticipated to inspire future efforts toward HIF-1α stabilizers and new ligands for proteolysis-targeting chimera (PROTAC) degraders.
Collapse
Affiliation(s)
- Lan Phuong Vu
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K.
| | - Claudia J. Diehl
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K.
| | - Ryan Casement
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K.
| | - Adam G. Bond
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K.
| | - Christian Steinebach
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | - Nika Strašek
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Aleša Bricelj
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Andrej Perdih
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
- National
Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Gregor Schnakenburg
- Institute
of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, D-53121 Bonn, Germany
| | - Izidor Sosič
- Faculty
of Pharmacy, University of Ljubljana, Aškerčeva 7, SI-1000 Ljubljana, Slovenia
| | - Alessio Ciulli
- Centre
for Targeted Protein Degradation, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, Scotland DD1 5JJ, U.K.
| | - Michael Gütschow
- Pharmaceutical
Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
5
|
Zacharioudakis E, Gavathiotis E. Mitochondrial dynamics proteins as emerging drug targets. Trends Pharmacol Sci 2023; 44:112-127. [PMID: 36496299 PMCID: PMC9868082 DOI: 10.1016/j.tips.2022.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022]
Abstract
The importance of mitochondrial dynamics, the physiological process of mitochondrial fusion and fission, in regulating diverse cellular functions and cellular fitness has been well established. Several pathologies are associated with aberrant mitochondrial fusion or fission that is often a consequence of deregulated mitochondrial dynamics proteins; however, pharmacological targeting of these proteins has been lacking and is challenged by complex molecular mechanisms. Recent studies have advanced our understanding in this area and have enabled rational drug design and chemical screening strategies. We provide an updated overview of the regulatory mechanisms of fusion and fission proteins, their structure-function relationships, and the discovery of pharmacological modulators demonstrating their therapeutic potential. These advances provide exciting opportunities for the development of prototype therapeutics for various diseases.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA; Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|