1
|
Yang Z, Chen W, Liu Y, Niu Y. Recent updates of centromere proteins in hepatocellular carcinoma: a review. Infect Agent Cancer 2025; 20:7. [PMID: 39915786 PMCID: PMC11800463 DOI: 10.1186/s13027-024-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 12/16/2024] [Indexed: 02/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death worldwide, with approximately 800,000 deaths worldwide each year. Owing to the atypical early symptoms and characteristics of HCC, over 80% of HCC patients cannot receive curative treatment. The treatment of HCC is facing a bottleneck, and new treatment methods are urgently needed. Since the pathogenesis of HCC is not yet clear, identifying the molecular mechanisms and therapeutic targets related to it is crucial. Centromeres are considered special deoxyribonucleic acid (DNA) sequences with highly repetitive sequences that are physically connected to the spindle during cell division, ensuring equal division of genetic material between daughter cells. The numerous proteins that aggregate on this sequence during cell division are called centromere proteins (CENPs). Currently, numerous studies have shown that CENPs are abnormally expressed in tumor cells and are associated with patient prognosis. The abnormal expression of CENPs is a key cause of chromosomal instability. Furthermore, chromosomal instability is a common characteristic of the majority of tumors. Chromosomal instability can lead to uncontrolled and sustained division and proliferation of malignant tumors. Therapeutic plans targeting CENPs play important roles in the treatment of HCC. For example, small ribonucleic acid (RNA) can silence CENP expression and prevent the occurrence and development of liver cancer. In recent years, studies of HCC-targeting CENPs have gradually increased but are still relatively novel, requiring further systematic elaboration. In this review, we provide a detailed introduction to the characteristics of CENPs and discuss their roles in HCC. In addition, we discuss their application prospects in future clinical practice.
Collapse
Affiliation(s)
- Zhongyuan Yang
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China.
| | - Wenjiao Chen
- Department of Dermatology, Wuhan Hankou Hospital, Wuhan, Hubei, China
| | - Yunhui Liu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yuxin Niu
- Department of Infectious Diseases, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, 1095, Jiefang Avenue, Wuhan, 430030, Hubei, China
| |
Collapse
|
2
|
Wong LH, Tremethick DJ. Multifunctional histone variants in genome function. Nat Rev Genet 2025; 26:82-104. [PMID: 39138293 DOI: 10.1038/s41576-024-00759-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2024] [Indexed: 08/15/2024]
Abstract
Histones are integral components of eukaryotic chromatin that have a pivotal role in the organization and function of the genome. The dynamic regulation of chromatin involves the incorporation of histone variants, which can dramatically alter its structural and functional properties. Contrary to an earlier view that limited individual histone variants to specific genomic functions, new insights have revealed that histone variants exert multifaceted roles involving all aspects of genome function, from governing patterns of gene expression at precise genomic loci to participating in genome replication, repair and maintenance. This conceptual change has led to a new understanding of the intricate interplay between chromatin and DNA-dependent processes and how this connection translates into normal and abnormal cellular functions.
Collapse
Affiliation(s)
- Lee H Wong
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David J Tremethick
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capial Territory, Australia.
| |
Collapse
|
3
|
Zhang N, He Z, Qin X, Han K, Zhu Z, Zhong F. Pan-cancer analysis and single-cell analysis identifies the CENPN as a biomarker for survival prognosis and immunotherapy. Discov Oncol 2025; 16:55. [PMID: 39832113 PMCID: PMC11747051 DOI: 10.1007/s12672-025-01801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Centromere protein N (CENPN), located on chromosome 16q23.2, encodes vital nucleosome-associated complexes that are essential for dynamic assembly processes. CENPN plays a pivotal role in regulating cell proliferation and cell cycle progression by influencing mitotic events. Despite its potential importance, the precise functional role and regulatory mechanisms of CENPN in diverse malignancies remain largely unexplored. This study aimed to elucidate the role of CENPN in human cancers and evaluate its prognostic significance. METHODS Investigate the role of CENPN in various malignancies, we leveraged data from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We employed a comprehensive suite of web platforms and software tools for data analysis, including R, Cytoscape, an integrated repository portal for tumor-immune system interactions (TISIDB), CBio Cancer Genomics Portal (cBioPortal), Search Tool for the Retrieval of Interaction Gene/Proteins (STRING), Gene Set Cancer Analysis (GSCALite), and a cancer single-cell state atlas (CancerSEA). RESULTS The findings demonstrated that CENPN expression was elevated in the majority of cancer types and differentially expressed across molecular and immune subtypes. Functional enrichment analysis in multiple tumors also identified possible pathways of CENPN involvement in tumorigenesis. Its expression positively correlated with Th2 and Tcm cells in most cancers. It is also correlated with genetic markers of immunomodulators in various cancers. CONCLUSIONS Overall, CENPN expression is closely related to cancers and has the potential to act as a cancer biomarker.
Collapse
Affiliation(s)
- Nie Zhang
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China
| | - Zhuoying He
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
- Graduate School of Anhui Medical University, Hefei, China
| | - Xuejin Qin
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Ke Han
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Zhengchun Zhu
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China
| | - Fei Zhong
- Department of Oncology, Fuyang Hospital of Anhui Medical University, Fuyang, 236000, China.
- Key Laboratory of Gametes and Abnormal Reproductive Tract of National Health Commission, Anhui Medical University, Hefei, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
4
|
Ali-Ahmad A, Mors M, Carrer M, Li X, Bilokapić S, Halić M, Cascella M, Sekulić N. Non-nucleosomal (CENP-A/H4) 2 - DNA complexes as a possible platform for centromere organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630874. [PMID: 39803555 PMCID: PMC11722257 DOI: 10.1101/2024.12.31.630874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
The centromere is a part of the chromosome that is essential for the even segregation of duplicated chromosomes during cell division. It is epigenetically defined by the presence of the histone H3 variant CENP-A. CENP-A associates specifically with a group of 16 proteins that form the centromere-associated network of proteins (CCAN). In mitosis, the kinetochore forms on the CCAN to connect the duplicated chromosomes to the microtubules protruding from the cell poles. Previous studies have shown that CENP-A replaces H3 in nucleosomes, and recently the structures of CENP-A-containing nucleosomes in complex with CCANs have been revealed, but they show only a limited interaction between CCANs and CENP-A. Here, we report the cryoEM structure of 2x(CENP-A/H4)2-di-tetramers assembled on DNA in the absence of H2A/H2B histone dimer and speculate how (CENP-A/H4)2-tetramers and -di-tetramers might serve as a platform for CCAN organization.
Collapse
Affiliation(s)
- Ahmad Ali-Ahmad
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
| | - Mira Mors
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Manuel Carrer
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Xinmeng Li
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
| | - Silvija Bilokapić
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Mario Halić
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michele Cascella
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
- Hylleraas Centre for Quantum Molecular Sciences, University of Oslo, P.O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Nikolina Sekulić
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, Faculty of Medicine, University of Oslo, Oslo 0318, Norway
- Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern 0315, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Barrero DJ, Wijeratne SS, Zhao X, Cunningham GF, Yan R, Nelson CR, Arimura Y, Funabiki H, Asbury CL, Yu Z, Subramanian R, Biggins S. Architecture of native kinetochores revealed by structural studies utilizing a thermophilic yeast. Curr Biol 2024; 34:3881-3893.e5. [PMID: 39127048 PMCID: PMC11387133 DOI: 10.1016/j.cub.2024.07.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/30/2024] [Accepted: 07/08/2024] [Indexed: 08/12/2024]
Abstract
Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.
Collapse
Affiliation(s)
- Daniel J Barrero
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA; Molecular and Cellular Biology Program, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Xiaowei Zhao
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Grace F Cunningham
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Rui Yan
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Christian R Nelson
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Yasuhiro Arimura
- The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | | | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA.
| |
Collapse
|
6
|
Lai PM, Gong X, Chan KM. Roles of Histone H2B, H3 and H4 Variants in Cancer Development and Prognosis. Int J Mol Sci 2024; 25:9699. [PMID: 39273649 PMCID: PMC11395991 DOI: 10.3390/ijms25179699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Histone variants are the paralogs of core histones (H2A, H2B, H3 and H4). They are stably expressed throughout the cell cycle in a replication-independent fashion and are capable of replacing canonical counterparts under different fundamental biological processes. Variants have been shown to take part in multiple processes, including DNA damage repair, transcriptional regulation and X chromosome inactivation, with some of them even specializing in lineage-specific roles like spermatogenesis. Several reports have recently identified some unprecedented variants from different histone families and exploited their prognostic value in distinct types of cancer. Among the four classes of canonical histones, the H2A family has the greatest number of variants known to date, followed by H2B, H3 and H4. In our prior review, we focused on summarizing all 19 mammalian histone H2A variants. Here in this review, we aim to complete the full summary of the roles of mammalian histone variants from the remaining histone H2B, H3, and H4 families, along with an overview of their roles in cancer biology and their prognostic value in a clinical context.
Collapse
Affiliation(s)
| | | | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China; (P.M.L.); (X.G.)
| |
Collapse
|
7
|
Salinas-Luypaert C, Fachinetti D. Canonical and noncanonical regulators of centromere assembly and maintenance. Curr Opin Cell Biol 2024; 89:102396. [PMID: 38981198 DOI: 10.1016/j.ceb.2024.102396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/11/2024]
Abstract
Centromeres are specialized chromosomal domains where the kinetochores assemble during cell division to ensure accurate transmission of the genetic information to the two daughter cells. The centromeric function is evolutionary conserved and, in most organisms, centromeres are epigenetically defined by a unique chromatin containing the histone H3 variant CENP-A. The canonical regulators of CENP-A assembly and maintenance are well-known, yet some of the molecular mechanisms regulating this complex process have only recently been unveiled. We review the most recent advances on the topic, including the emergence of new and unexpected factors that favor and regulate CENP-A assembly and/or maintenance.
Collapse
Affiliation(s)
- Catalina Salinas-Luypaert
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144 & UMR3664, 26 rue d'Ulm, 75005, Paris, France.
| |
Collapse
|
8
|
Tu Y, Zhang H, Xia J, Zhao Y, Yang R, Feng J, Ma X, Li J. SETDB2 interacts with BUBR1 to induce accurate chromosome segregation independently of its histone methyltransferase activity. FEBS Open Bio 2024; 14:444-454. [PMID: 38151757 PMCID: PMC10909981 DOI: 10.1002/2211-5463.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
SETDB2 is a H3K9 histone methyltransferase required for accurate chromosome segregation. Its H3K9 histone methyltransferase activity was reported to be associated with chromosomes during metaphase. Here, we confirm that SETDB2 is required for mitosis and accurate chromosome segregation. However, these functions are independent of its histone methyltransferase activity. Further analysis showed that SETDB2 can interact with BUBR1, and is required for CDC20 binding to BUBR1 and APC/C complex and CYCLIN B1 degradation. The ability of SETDB2 to regulate the binding of CDC20 to BUBR1 or APC/C complex, and stabilization of CYCLIN B1 are also independent of its histone methyltransferase activity. These results suggest that SETDB2 interacts with BUBR1 to promote binding of CDC20 to BUBR1 and APC3, then degrades CYCLIN B1 to ensure accurate chromosome segregation and mitosis, independently of its histone methyltransferase activity.
Collapse
Affiliation(s)
- Yanhong Tu
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- The Second Affiliated HospitalThe Chinese University of Hong KongShenzhenChina
| | - Haomiao Zhang
- The Third School of Clinical MedicineSouthern Medical UniversityGuangzhouChina
| | - Jialin Xia
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
| | - Yu Zhao
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Ruifang Yang
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Jing Feng
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- The Second Affiliated HospitalThe Chinese University of Hong KongShenzhenChina
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| | - Xueyun Ma
- Shanghai Key Laboratory of Regulatory BiologyInstitute of Biomedical Sciences and School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Jing Li
- School of Laboratory Medicine and BiotechnologySouthern Medical UniversityGuangzhouChina
- Anhui University of Science and Technology Affiliated Fengxian HospitalShanghaiChina
| |
Collapse
|
9
|
Barrero DJ, Wijeratne SS, Zhao X, Cunningham GF, Rui Y, Nelson CR, Yasuhiro A, Funabiki H, Asbury CL, Yu Z, Subramanian R, Biggins S. Architecture and flexibility of native kinetochores revealed by structural studies utilizing a thermophilic yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582571. [PMID: 38464254 PMCID: PMC10925344 DOI: 10.1101/2024.02.28.582571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and understanding how they are arranged is key to understanding how kinetochores perform their multiple functions. However, an integrated understanding of kinetochore architecture has not yet been established. To address this, we purified functional, native kinetochores from Kluyveromyces marxianus and examined them by electron microscopy, cryo-electron tomography and atomic force microscopy. The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies, and provides the foundation to study the global architecture and functions of kinetochores at a structural level.
Collapse
Affiliation(s)
- Daniel J. Barrero
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
- Molecular and Cellular Biology Program, University of Washington, 1705 NE Pacific Street, Seattle, WA 98195, USA
| | - Sithara S. Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaowei Zhao
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Grace F. Cunningham
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yan Rui
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Christian R. Nelson
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| | - Arimura Yasuhiro
- The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | | | - Charles L. Asbury
- Department of Physiology and Biophysics, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sue Biggins
- Howard Hughes Medical Institute, Division of Basic Sciences, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., Seattle, WA 98109, USA
| |
Collapse
|
10
|
Melters DP, Neuman KC, Bentahar RS, Rakshit T, Dalal Y. Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy. eLife 2023; 12:e86709. [PMID: 37728600 PMCID: PMC10511241 DOI: 10.7554/elife.86709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023] Open
Abstract
Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.
Collapse
Affiliation(s)
- Daniël P Melters
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Keir C Neuman
- National Heart, Lung, and Blood Institute, Laboratory of Single Molecule BiophysicsBethesdaUnited States
| | - Reda S Bentahar
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| | - Tatini Rakshit
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
- Department of Chemistry, Shiv Nadar UniversityDadriIndia
| | - Yamini Dalal
- National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene ExpressionBethesdaUnited States
| |
Collapse
|