1
|
Joshi S, Paul P, Hartman JM, Perry SE. AGL15 Promotion of Somatic Embryogenesis: Role and Molecular Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:861556. [PMID: 35419012 PMCID: PMC8996056 DOI: 10.3389/fpls.2022.861556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that "converts" into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development.
Collapse
Affiliation(s)
- Sanjay Joshi
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Priyanka Paul
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, United States
| | - Jeanne M. Hartman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Sharyn E. Perry
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
2
|
Xiaoqin Z, Jia L, Mengjie D, Jialu G, Yang B, Yuting W, Huajian H, Bo L, Xiaojun Z, Zhongyue L, Jie C, Tingyu L, Xue Z. Dedifferentiated human umbilical cord mesenchymal stem cell reprogramming of endogenous hSDF-1α expression participates in neural restoration in hypoxic-ischemic brain damage rats. Genes Dis 2021; 8:331-343. [PMID: 33997180 PMCID: PMC8093640 DOI: 10.1016/j.gendis.2020.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/18/2020] [Indexed: 11/16/2022] Open
Abstract
The transplantation of human umbilical cord mesenchymal stem cells (hUC-MSCs) can promote hypoxic-ischemic brain damage (HIBD) nerve repair, but finding suitable seed cells to optimize transplantation and improve treatment efficiency is an urgent problem to be solved. In this study, we induced hUC-MSCs into dedifferentiated hUC-MSCs (De-hUC-MSCs), and the morphology, stem cell surface markers, proliferation and tri-directional differentiation ability of the De-hUC-MSCs and hUC-MSCs were detected. A whole-gene chip was utilized for genome cluster, gene ontology and KEGG pathway analyses of differentially expressed genes. De-hUC-MSCs were transplanted into HIBD rats, and behavioral experiments and immunofluorescence assays were used to assess the therapeutic effect. A lentivirus vector for human stromal cell-derived factor-1 (hSDF-1α) was constructed, and the role of hSDF-1α in the neuroprotective effect and mechanism of De-hUC-MSCs was verified. De-hUC-MSCs displayed similar cell morphology, stem cell surface marker expression, cell proliferation and even three-dimensional differentiation ability as hUC-MSCs but exhibited greater treatment potential in vivo. The reprogramming mechanism of hSDF-1α participated in the dedifferentiation process. By successfully constructing a stable hSDF-1α cell line, we found that De-hUC-MSCs might participate in nerve repair through the hSDF-1α/CXCR4/PI3K/Akt pathway. De-hUC-MSCs reprogramming of endogenous hSDF-1α expression may mediate the hSDF-1α/CXCR4/PI3K/Akt pathway involved in nerve repair in HIBD rats.
Collapse
Affiliation(s)
- Zhou Xiaoqin
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Liu Jia
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Dai Mengjie
- Department of Neonatology, Chongqing Health Center for Women and Children, 400021, PR China
| | - Gu Jialu
- Child Health Centre of Northwest Women and Children's Hospital, USA
| | - Bi Yang
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Wang Yuting
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Hu Huajian
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Liu Bo
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Zhang Xiaojun
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Li Zhongyue
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Chen Jie
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Li Tingyu
- Department of Pediatric Research Institute, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| | - Zhan Xue
- Department of Gastroenterology, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), 401122, PR China
- International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 401122, PR China
| |
Collapse
|
3
|
Piccoli M, Ghiroldi A, Monasky MM, Cirillo F, Ciconte G, Pappone C, Anastasia L. Reversine: A Synthetic Purine with a Dual Activity as a Cell Dedifferentiating Agent and a Selective Anticancer Drug. Curr Med Chem 2020; 27:3448-3462. [PMID: 30605049 DOI: 10.2174/0929867326666190103120725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/27/2022]
Abstract
The development of new therapeutic applications for adult and embryonic stem cells has dominated regenerative medicine and tissue engineering for several decades. However, since 2006, induced Pluripotent Stem Cells (iPSCs) have taken center stage in the field, as they promised to overcome several limitations of the other stem cell types. Nonetheless, other promising approaches for adult cell reprogramming have been attempted over the years, even before the generation of iPSCs. In particular, two years before the discovery of iPSCs, the possibility of synthesizing libraries of large organic compounds, as well as the development of high-throughput screenings to quickly test their biological activity, enabled the identification of a 2,6-disubstituted purine, named reversine, which was shown to be able to reprogram adult cells to a progenitor-like state. Since its discovery, the effect of reversine has been confirmed on different cell types, and several studies on its mechanism of action have revealed its central role in inhibitory activity on several kinases implicated in cell cycle regulation and cytokinesis. These key features, together with its chemical nature, suggested a possible use of the molecule as an anti-cancer drug. Remarkably, reversine exhibited potent cytotoxic activity against several tumor cell lines in vitro and a significant effect in decreasing tumor progression and metastatization in vivo. Thus, 15 years since its discovery, this review aims at critically summarizing the current knowledge to clarify the dual role of reversine as a dedifferentiating agent and anti-cancer drug.
Collapse
Affiliation(s)
- Marco Piccoli
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Andrea Ghiroldi
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Michelle M Monasky
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Federica Cirillo
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Giuseppe Ciconte
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Carlo Pappone
- Arrhythmology Department, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy
| | - Luigi Anastasia
- Stem Cells for Tissue Engineering Lab, IRCCS Policlinico San Donato, piazza Malan 2, San Donato Milanese, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, via Luigi Mangiagalli 31, 20133 Milan, Italy
| |
Collapse
|
4
|
A novel indirubin derivative that increases somatic cell plasticity and inhibits tumorigenicity. Bioorg Med Chem 2019; 27:2923-2934. [DOI: 10.1016/j.bmc.2019.05.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/25/2019] [Accepted: 05/16/2019] [Indexed: 01/26/2023]
|
5
|
Joo MS, Shin SB, Kim EJ, Koo JH, Yim H, Kim SG. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21 cip1. FASEB J 2019; 33:7953-7969. [PMID: 30897343 DOI: 10.1096/fj.201802744r] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Long noncoding RNA (lncRNA) capable of controlling antioxidative capacity remains to be investigated. Nuclear factor erythroid-2-related factor 2 (Nrf2) is a central molecule for cellular defense that increases antioxidative capacity. We identified a novel lncRNA named Nrf2-activating lncRNA (Nrf2-lncRNA) transcribed from an upstream region of the microRNA 122 gene (MIR122). Nrf2-lncRNA existed in the cytoplasm, suggestive of its function as a competing endogenous RNA [ceRNA, microRNA (miRNA) sponge]. Nrf2-lncRNA served as a ceRNA for polo-like kinase (Plk) 2 and cyclin-dependent kinase inhibitor 1 (p21cip1) through binding of miRNA 128 and miRNA 224, inducing Plk2/Nrf2/p21cip1 complexation for Nrf2 activation in the cells under p53-activating conditions (i.e., DNA damage and serum deprivation). Nrf2-lncRNA expression was suppressed with the initiation of apoptosis, being a rheostat for cell fate determination. Nrf2-lncRNA levels correlated with the recurrence-free postsurgery survival rate of patients with hepatocellular carcinoma. Collectively, Nrf2-lncRNA promotes Plk2 and p21cip1 translation by competing for specific miRNAs and activating Nrf2 under surviving conditions from oxidative stress, implying that Nrf2-lncRNA serves as a fine-tuning rheostat for cell fate decision.-Joo, M. S., Shin, S.-B., Kim, E. J., Koo, J. H., Yim, H., Kim, S. G. Nrf2-lncRNA controls cell fate by modulating p53-dependent Nrf2 activation as an miRNA sponge for Plk2 and p21cip1.
Collapse
Affiliation(s)
- Min Sung Joo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Sol-Bi Shin
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Eun Jung Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ja Hyun Koo
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Hyungshin Yim
- College of Pharmacy, Hanyang University, Ansan, South Korea; and.,Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, South Korea
| | - Sang Geon Kim
- College of Pharmacy, Seoul National University, Seoul, South Korea.,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
6
|
MicroRNA Expression Analysis of In Vitro Dedifferentiated Human Pancreatic Islet Cells Reveals the Activation of the Pluripotency-Related MicroRNA Cluster miR-302s. Int J Mol Sci 2018; 19:ijms19041170. [PMID: 29649109 PMCID: PMC5979342 DOI: 10.3390/ijms19041170] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
β-cell dedifferentiation has been recently suggested as an additional mechanism contributing to type-1 and to type-2 diabetes pathogenesis. Moreover, several studies demonstrated that in vitro culture of native human pancreatic islets derived from non-diabetic donors resulted in the generation of an undifferentiated cell population. Additional evidence from in vitro human β-cell lineage tracing experiments, demonstrated that dedifferentiated cells derive from β-cells, thus representing a potential in vitro model of β-cell dedifferentiation. Here, we report the microRNA expression profiles analysis of in vitro dedifferentiated islet cells in comparison to mature human native pancreatic islets. We identified 13 microRNAs upregulated and 110 downregulated in islet cells upon in vitro dedifferentiation. Interestingly, among upregulated microRNAs, we observed the activation of microRNA miR-302s cluster, previously defined as pluripotency-associated. Bioinformatic analysis indicated that miR-302s are predicted to target several genes involved in the control of β-cell/epithelial phenotype maintenance; accordingly, such genes were downregulated upon human islet in vitro dedifferentiation. Moreover, we uncovered that cell–cell contacts are needed to maintain low/null expression levels of miR-302. In conclusion, we showed that miR-302 microRNA cluster genes are involved in in vitro dedifferentiation of human pancreatic islet cells and inhibits the expression of multiple genes involved in the maintenance of β-cell mature phenotype.
Collapse
|
7
|
Yang X, Chen B, Liu T, Chen X. Reversal of myofibroblast differentiation: a review. Eur J Pharmacol 2014; 734:83-90. [PMID: 24742377 DOI: 10.1016/j.ejphar.2014.04.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 12/16/2022]
Abstract
It has long been considered that fibrosis and fibroblast-to-myofibroblast differentiation are irreversible processes. However, recent data obtained indicates that tissue fibrosis and fibroblast-to-myofibroblast differentiation can indeed be reversed, which offers the possibility of a new therapeutic approach for fibrotic disorders. Here, we discuss the origin of the myofibroblasts and different aspects of their differentiation, especially the key mediators and TGFβ-induced signaling pathways. We also report here a few factors involved in myofiroblast dedifferentiation and several compounds which can reverse the established dedifferentiated myofibroblast, as examples that provide the reader a glimpse of the current trends of approach for discovering useful anti-fibrotic drugs.
Collapse
Affiliation(s)
- XiaoHong Yang
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - Tao Liu
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China
| | - XiaoHong Chen
- Department of Pharmacology, College of Pharmacy, Third Military Medical University, Gaotanyan Street 30, Shapingba District, Chongqing 400038, China.
| |
Collapse
|
8
|
Abstract
Epigenetic interventions are required to induce reprogramming from one cell type to another. At present, various cellular reprogramming methods such as somatic cell nuclear transfer, cell fusion, and direct reprogramming using transcription factors have been reported. In particular, direct reprogramming from somatic cells to induced pluripotent stem cells (iPSCs) has been achieved using defined factors that play important epigenetic roles. Although the mechanisms underlying cellular reprogramming and vertebrate regeneration, including appendage regeneration, remain unknown, dedifferentiation occurs at an early phase in both the events, and both events are contrasting with regard to cell death. We compared the current status of changes in cell fate of iPSCs with that of vertebrate regeneration and suggested that substantial insights into vertebrate regeneration should be helpful for safe applications of iPSCs to medicine.
Collapse
Affiliation(s)
- Daisuke Kami
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine; Kyoto Prefectural University of Medicine; Kyoto, Japan
| |
Collapse
|
9
|
Delporte F, Jacquemin JM, Masson P, Watillon B. Insights into the regenerative property of plant cells and their receptivity to transgenesis: wheat as a research case study. PLANT SIGNALING & BEHAVIOR 2012; 7:1608-20. [PMID: 23072995 PMCID: PMC3578902 DOI: 10.4161/psb.22424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
From a holistic perspective, the discovery of cellular plasticity, a very interesting property of totipotency, underlies many topical issues in biology with important medical applications, while transgenesis is a core research tool in biology. Partially known, some basic mechanisms involved in the regenerative property of cells and in their receptivity to transgenesis are common to plant and animal cells and highlight the principle of the unity of life. Transgenesis provides an important investigative instrument in plant physiology and is regarded as a valuable tool for crop improvement. The economic, social, cultural and scientific importance of cereals has led to a rich stream of research into their genetics, biology and evolution. Sustained efforts to achieve the results obtained in the fields of genetic engineering and applied biotechnology reflect this deep interest. Difficulties encountered in creating genetically modified cereals, especially wheat, highlighted the central notions of tissue culture regeneration and transformation competencies. From the perspective of combining or encountering these competencies in the same cell lineage, this reputedly recalcitrant species provides a stimulating biological system in which to explore the physiological and genetic complexity of both competencies. The former involves two phases, dedifferentiation and redifferentiation. Cells undergo development switches regulated by extrinsic and intrinsic factors. The re-entry into the cell division cycle progressively culminates in the development of organized structures. This is achieved by global chromatin reorganization associated with the reprogramming of the gene expression pattern. The latter is linked with surveillance mechanisms and DNA repair, aimed at maintaining genome integrity before cells move into mitosis, and with those mechanisms aimed at genome expression control and regulation. In order to clarify the biological basis of these two physiological properties and their interconnectedness, we look at both competencies at the core of defense/adaptive mechanisms and survival, between undifferentiated cell proliferation and organization, constituting a transition phase between two different dynamic regimes, a typical feature of critical dynamic systems. Opting for a candidate-gene strategy, several gene families could be proposed as relevant targets for investigating this hypothesis at the molecular level.
Collapse
Affiliation(s)
- Fabienne Delporte
- Walloon Agricultural Research Centre (CRAw), Department of Life Sciences, Bioengineering Unit, Gembloux, Belgium.
| | | | | | | |
Collapse
|
10
|
Walasek MA, Bystrykh LV, Olthof S, de Haan G, van Os R. Sca-1 is an early-response target of histone deacetylase inhibitors and marks hematopoietic cells with enhanced function. Exp Hematol 2012; 41:113-23.e2. [PMID: 22989761 DOI: 10.1016/j.exphem.2012.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 09/08/2012] [Indexed: 11/16/2022]
Abstract
Histone deacetylase inhibitors (HDIs) have been shown to enhance hematopoietic stem and progenitor cell activity and improve stem cell outcomes after ex vivo culture. Identification of gene targets of HDIs is required to understand the full potential of these compounds and can allow for improved stem cell culturing protocols. The molecular process that underlies the biological effects of valproic acid (VPA), a widely used HDI, on hematopoietic stem/progenitor cells was investigated by studying the early-response genes of VPA. These genes were linked to VPA-induced enhancement of cell function as measured by in vitro assays. Genome-wide gene expression studies revealed over-representation of genes involved in glutathione metabolism, receptor and signal transducer activity, and changes in the hematopoietic stem/progenitor cells surface profile after short, 24-hour VPA treatment. Sca-1, a well-known and widely used stem cell surface marker, was identified as a prominent VPA target. We showed that multiple HDIs induce Sca-1 expression on hematopoietic cells. VPA strongly preserved Sca-1 expression on Lin(-)Sca1(+)ckit(+) cells, but also reactivated Sca-1 on committed progenitor cells that were Sca-1(neg), thereby reverting them to the Lin(-)Sca1(+)ckit(+) phenotype. We demonstrated that reacquired Sca-1 expression coincided with induced self-renewal capacity as measured by in vitro replating assays, while Sca-1 itself was not required for the biological effects of VPA as demonstrated using Sca-1-deficient progenitor cells. In conclusion, our results show that VPA modulates several genes involved in multiple signal transduction pathways, of which Sca-1 was shown to mark cells with increased self-renewal capacity in response to HDIs.
Collapse
Affiliation(s)
- Marta A Walasek
- Department of Biology of Aging, Section Stem Cell Biology, European Research Institute for the Biology of Aging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
11
|
Cell Reprogramming, IPS Limitations, and Overcoming Strategies in Dental Bioengineering. Stem Cells Int 2012; 2012:365932. [PMID: 22690226 PMCID: PMC3368489 DOI: 10.1155/2012/365932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/29/2012] [Indexed: 01/09/2023] Open
Abstract
The procurement of induced pluripotent stem cells, or IPS cells, from adult differentiated animal cells has the potential to revolutionize future medicine, where reprogrammed IPS cells may be used to repair disease-affected tissues on demand. The potential of IPS cell technology is tremendous, but it will be essential to improve the methodologies for IPS cell generation and to precisely evaluate each clone and subclone of IPS cells for their safety and efficacy. Additionally, the current state of knowledge on IPS cells advises that research on their regenerative properties is carried out in appropriate tissue and organ systems that permit a safe assessment of the long-term behavior of these reprogrammed cells. In the present paper, we discuss the mechanisms of cell reprogramming, current technical limitations of IPS cells for their use in human tissue engineering, and possibilities to overcome them in the particular case of dental regeneration.
Collapse
|
12
|
Kim WH, Jung DW, Kim J, Im SH, Hwang SY, Williams DR. Small molecules that recapitulate the early steps of urodele amphibian limb regeneration and confer multipotency. ACS Chem Biol 2012; 7:732-43. [PMID: 22270490 DOI: 10.1021/cb200532v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In urodele amphibians, an early step in limb regeneration is skeletal muscle fiber dedifferentiation into a cellulate that proliferates to contribute new limb tissue. However, mammalian muscle cannot dedifferentiate after injury. We have developed a novel, small-molecule-based method to induce dedifferentiation in mammalian skeletal muscle. Muscle cellularization was induced by the small molecule myoseverin. Candidate small molecules were tested for the induction of proliferation in the cellulate. We observed that treatment with the small molecules BIO (glycogen synthase-3 kinase inhibitor), lysophosphatidic acid (pleiotropic activator of G-protein-coupled receptors), SB203580 (p38 MAP kinase inhibitor), or SQ22536 (adenylyl cyclase inhibitor) induced proliferation. Moreover, these proliferating cells were multipotent, as confirmed by the chemical induction of mesodermal-derived cell lineages. Microarray analysis showed that the multipotent, BIO-treated cellulate possessed a markedly different gene expression pattern than lineage-restricted C2C12 myoblasts, especially for genes related to signal transduction and differentiation. Sequential small molecule treatment of the muscle cellulate with BIO, SB203580, or SQ22536 and the aurora B kinase inhibitor, reversine, induced the formation of cells with neurogenic potential (ectodermal lineage), indicating the acquirement of pluripotency. This is the first demonstration of a small molecule method that induces mammalian muscle to undergo dedifferentiation and rededifferentiation into alternate cell lineages. This method induces dedifferentiation in a simple, stepwise approach and has therapeutic potential to enhance tissue regeneration in mammals.
Collapse
Affiliation(s)
| | | | | | | | - Seung Yong Hwang
- Department of Biochemistry, Hanyang University and GenoCheck Co., Ltd., Sa-Dong, Sangrok-Gu, Ansan, Gyeonggi-Do, 426-791,
Republic of Korea
| | | |
Collapse
|
13
|
Grafi G, Florentin A, Ransbotyn V, Morgenstern Y. The stem cell state in plant development and in response to stress. FRONTIERS IN PLANT SCIENCE 2011; 2:53. [PMID: 22645540 PMCID: PMC3355748 DOI: 10.3389/fpls.2011.00053] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/03/2011] [Indexed: 05/18/2023]
Abstract
Stem cells are commonly defined by their developmental capabilities, namely, self-renewal and multitype differentiation, yet the biology of stem cells and their inherent features both in plants and animals are only beginning to be elucidated. In this review article we highlight the stem cell state in plants with reference to animals and the plastic nature of plant somatic cells often referred to as totipotency as well as the essence of cellular dedifferentiation. Based on recent published data, we illustrate the picture of stem cells with emphasis on their open chromatin conformation. We discuss the process of dedifferentiation and highlight its transient nature, its distinction from re-entry into the cell cycle and its activation following exposure to stress. We also discuss the potential hazard that can be brought about by stress-induced dedifferentiation and its major impact on the genome, which can undergo stochastic, abnormal reorganization leading to genetic variation by means of DNA transposition and/or DNA recombination.
Collapse
Affiliation(s)
- Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel
| | | | | | | |
Collapse
|
14
|
Jung DW, Williams DR. Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem Biol 2011; 6:553-62. [PMID: 21322636 DOI: 10.1021/cb2000154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In urodele amphibians, a critical step in limb regeneration is the cellularization and dedifferentiation of skeletal muscle. In contrast, mammalian skeletal muscle does not undergo this response to injury. We have developed a novel simple, stepwise chemical method to induce dedifferentiation and multipotency in mammalian skeletal muscle. Optimal muscle fiber cellularization was induced by the trisubstituted purine small molecule, myoseverin, compared to colchicine, nocodazole, or myoseverin B. The induction of a proliferative response in the cellulate was found to be a crucial step in the dedifferentiation process. This was achieved by down-regulation of the cyclin-dependent kinase inhibitor, p21 (CDKN 1A, CIP1). p21 was found to be a key regulator of this process, because down-regulation of the cyclin-dependent kinase inhibitors p27 (CDKN1B/KIP1) or p57 (CDKN1C/KIP2) or the tumor suppressor p53 (TP53/LFS1) failed to induce proliferation and subsequent dedifferentiation. Treatment with the small molecule reversine (2-(4-morpholinoanilino)-6-cyclohexylaminopurine) during this proliferative "window" induced the muscle cellulate to differentiate into non-muscle cell types. This lineage switching was assessed using a relatively stringent approach, based on comparative functional and phenotypic assays of cell-type specific properties. This showed that our chemical method allowed the derivation of adipogenic and osteogenic cells that possessed a degree of functionality. This is the first demonstration that mammalian muscle culture can be induced to undergo cellularization, proliferation, and dedifferentiation, which is grossly similar to the key early steps in urodele limb regeneration. These results, based solely on the use of simple chemical approaches, have implications for both regenerative medicine and stem cell biology.
Collapse
Affiliation(s)
- Da-Woon Jung
- Small Molecule Regulators and Biosystems Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| | - Darren R. Williams
- Small Molecule Regulators and Biosystems Laboratory, School of Life Sciences, Gwangju Institute of Science and Technology, 1 Oryong-Dong, Buk-Gu, Gwangju 500-712, Republic of Korea
| |
Collapse
|
15
|
Ondrej V, Navrátilová B, Protivánková I, Piterková J, Sedlárová M, Luhová L, Lebeda A. Recondensation level of repetitive sequences in the plant protoplast nucleus is limited by oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2395-401. [PMID: 20363868 PMCID: PMC2877892 DOI: 10.1093/jxb/erq067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/04/2010] [Accepted: 03/04/2010] [Indexed: 05/18/2023]
Abstract
Protoplast cultures are remarkable examples of plant cell dedifferentiation. The state of dedifferentiation is evidenced by changes in cell morphology, genome organization, as well as by the capability of protoplasts to differentiate into multiple types of cells (depending on the type of the stimulus applied). The first change in the genome structure is connected with large-scale chromatin decondensation, affecting chromocentres involving various types of these repetitive sequences. This paper describes not only the de- and recondensation of satellite DNA type I and 5S rDNA repetitive sequences, but it also compares the recondensation level of chromatin with the levels of oxidative stress which were decreased by using an antioxidant, as well as the capabilities of the antioxidative systems within protoplasts, during the first 72 h of their culture. It is demonstrated that the treatment of protoplasts with ascorbic acid not only decreased the level of oxidative stress but also positively stimulated the expression of the ascorbate peroxidase and catalase. It also led to a greater recondensation of the chromatin (when compared to the untreated protoplasts); in addition, it supported cell proliferation. It is concluded that large-scale genome relaxation is more directly connected with oxidative stress than with large changes in the expression of genes; and further, that its recondensation is related to the start of (as well as the level of) protection by the antioxidative systems.
Collapse
Affiliation(s)
- Vladan Ondrej
- Department of Botany, Faculty of Science, Palacký University, Slechtitelů 11, Olomouc 783 71, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Yu Y, Feng Z, Wang G, Li F, Du X, Zhu J. Initiation of dedifferentiation and structural changes in in vitro cultured petiole of Arabidopsis thaliana. PROTOPLASMA 2010; 241:75-81. [PMID: 20127124 DOI: 10.1007/s00709-010-0108-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/11/2010] [Indexed: 05/14/2023]
Abstract
Although the method of tissue culturing has been used widely in practice for a long time, and there are numerous hypotheses to explain the dedifferentiation phenomenon in the tissue culturing, many details of mechanism of dedifferentiation remain unclear. In the study, dedifferentiation process is initiated in the residual procambium, followed by the procambium-derived cells and finally xylem parenchyma cells under the culturing of Arabidopsis thaliana petiole explants. The procambium may induce its derivative cells to undergo dedifferentiation, which in turn induce the xylem parenchyma cells to dedifferentiate. This phenomenon is very similar to the activity of interfascicular cambium induced by intrafascicular cambium in secondary growth of plant stems. In the present study, only the paired procambium-derived cells and xylem parenchyma truly underwent dedifferentiation, whereas the initial changes in the procambium simply recovered the inherent meristematic capacity of those cells. In transverse section of petiole of A. thaliana, parenchyma cells outside the vascular bundle did not participate in dedifferentiation and gradually disintegrated under the culture conditions. Obviously, the time for initiation and difficulty underlain for undergoing dedifferentiation are dependent on the differential degree and location of parenchyma cells in the petiole.
Collapse
Affiliation(s)
- Yang Yu
- School of Life Science and Technology, Tongji University, 200092 Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
Damri M, Granot G, Ben-Meir H, Avivi Y, Plaschkes I, Chalifa-Caspi V, Wolfson M, Fraifeld V, Grafi G. Senescing Cells Share Common Features with Dedifferentiating Cells. Rejuvenation Res 2009; 12:435-43. [DOI: 10.1089/rej.2009.0887] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Meytal Damri
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gila Granot
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Hagit Ben-Meir
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Yigal Avivi
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Inbar Plaschkes
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vered Chalifa-Caspi
- The National Institute for Biotechnology, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Marina Wolfson
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Vadim Fraifeld
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences, Center for Multidisciplinary Research on Aging, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| | - Gideon Grafi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel and Midreshet Ben-Gurion, Israel
| |
Collapse
|