1
|
Abstract
Proteins are intimately involved in executing and controlling virtually all cellular processes. To understand the molecular mechanisms that underlie plant phenotypes, it is essential to investigate protein expression, interactions, and modifications, to name a few. The proteome is highly dynamic in time and space, and a plethora of protein modifications, protein interactions, and network constellations are at play under specific conditions and developmental stages. Analysis of proteomes aims to characterize the entire protein complement of a particular cell type, tissue, or organism-a challenging task, given the dynamic nature of the proteome. Modern mass spectrometry-based proteomics technology can be used to address this complexity at a system-wide scale by the global identification and quantification of thousands of proteins. In this review, we present current methods and technologies employed in mass spectrometry-based proteomics and provide examples of dynamic changes in the plant proteome elucidated by proteomic approaches.
Collapse
Affiliation(s)
- Julia Mergner
- Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany;
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany;
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| |
Collapse
|
2
|
van Pijkeren A, Bischoff R, Kwiatkowski M. Mass spectrometric analysis of PTM dynamics using stable isotope labeled metabolic precursors in cell culture. Analyst 2019; 144:6812-6833. [PMID: 31650141 DOI: 10.1039/c9an01258c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biological organisms represent highly dynamic systems, which are continually exposed to environmental factors and always strive to restore steady-state homeostasis. Posttranslational modifications are key regulators with which biological systems respond to external stimuli. To understand how homeostasis is restored, it is important to study the kinetics of posttranslational modifications. In this review we discuss proteomic approaches using stable isotope labeled metabolic precursors to study dynamics of posttranslational modifications in cell culture.
Collapse
Affiliation(s)
- Alienke van Pijkeren
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | |
Collapse
|
3
|
Zecha J, Meng C, Zolg DP, Samaras P, Wilhelm M, Kuster B. Peptide Level Turnover Measurements Enable the Study of Proteoform Dynamics. Mol Cell Proteomics 2018; 17:974-992. [PMID: 29414762 PMCID: PMC5930408 DOI: 10.1074/mcp.ra118.000583] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 01/31/2018] [Indexed: 11/06/2022] Open
Abstract
The coordination of protein synthesis and degradation regulating protein abundance is a fundamental process in cellular homeostasis. Today, mass spectrometry-based technologies allow determination of endogenous protein turnover on a proteome-wide scale. However, standard dynamic SILAC (Stable Isotope Labeling in Cell Culture) approaches can suffer from missing data across pulse time-points limiting the accuracy of such analysis. This issue is of particular relevance when studying protein stability at the level of proteoforms because often only single peptides distinguish between different protein products of the same gene. To address this shortcoming, we evaluated the merits of combining dynamic SILAC and tandem mass tag (TMT)-labeling of ten pulse time-points in a single experiment. Although the comparison to the standard dynamic SILAC method showed a high concordance of protein turnover rates, the pulsed SILAC-TMT approach yielded more comprehensive data (6000 proteins on average) without missing values. Replicate analysis further established that the same reproducibility of turnover rate determination can be obtained for peptides and proteins facilitating proteoform resolved investigation of protein stability. We provide several examples of differentially turned over splice variants and show that post-translational modifications can affect cellular protein half-lives. For example, N-terminally processed peptides exhibited both faster and slower turnover behavior compared with other peptides of the same protein. In addition, the suspected proteolytic processing of the fusion protein FAU was substantiated by measuring vastly different stabilities of the cleavage products. Furthermore, differential peptide turnover suggested a previously unknown mechanism of activity regulation by post-translational destabilization of cathepsin D as well as the DNA helicase BLM. Finally, our comprehensive data set facilitated a detailed evaluation of the impact of protein properties and functions on protein stability in steady-state cells and uncovered that the high turnover of respiratory chain complex I proteins might be explained by oxidative stress.
Collapse
Affiliation(s)
- Jana Zecha
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
- §German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- ¶German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Chen Meng
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Daniel Paul Zolg
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Patroklos Samaras
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Mathias Wilhelm
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Bernhard Kuster
- From the ‡Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany;
- §German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- ¶German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- ‖Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), TUM, 85354 Freising, Germany
| |
Collapse
|
4
|
Fan KT, Rendahl AK, Chen WP, Freund DM, Gray WM, Cohen JD, Hegeman AD. Proteome Scale-Protein Turnover Analysis Using High Resolution Mass Spectrometric Data from Stable-Isotope Labeled Plants. J Proteome Res 2016; 15:851-67. [PMID: 26824330 DOI: 10.1021/acs.jproteome.5b00772] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein turnover is an important aspect of the regulation of cellular processes for organisms when responding to developmental or environmental cues. The measurement of protein turnover in plants, in contrast to that of rapidly growing unicellular organismal cultures, is made more complicated by the high degree of amino acid recycling, resulting in significant transient isotope incorporation distributions that must be dealt with computationally for high throughput analysis to be practical. An algorithm in R, ProteinTurnover, was developed to calculate protein turnover with transient stable isotope incorporation distributions in a high throughput automated manner using high resolution MS and MS/MS proteomic analysis of stable isotopically labeled plant material. ProteinTurnover extracts isotopic distribution information from raw MS data for peptides identified by MS/MS from data sets of either isotopic label dilution or incorporation experiments. Variable isotopic incorporation distributions were modeled using binomial and beta-binomial distributions to deconvolute the natural abundance, newly synthesized/partial-labeled, and fully labeled peptide distributions. Maximum likelihood estimation was performed to calculate the distribution abundance proportion of old and newly synthesized peptides. The half-life or turnover rate of each peptide was calculated from changes in the distribution abundance proportions using nonlinear regression. We applied ProteinTurnover to obtain half-lives of proteins from enriched soluble and membrane fractions from Arabidopsis roots.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Aaron K Rendahl
- School of Statistics, University of Minnesota , Twin Cities, Minnesota 55108, United States
| | - Wen-Ping Chen
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Dana M Freund
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - William M Gray
- Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Jerry D Cohen
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States
| | - Adrian D Hegeman
- Department of Horticultural Science, University of Minnesota , Twin Cities, Minnesota 55108, United States.,Microbial and Plant Genomics Institute, University of Minnesota , Twin Cities, Minnesota 55455, United States.,Department of Plant Biology, University of Minnesota , Twin Cities, Minnesota 55455, United States
| |
Collapse
|
5
|
Chetouhi C, Panek J, Bonhomme L, ElAlaoui H, Texier C, Langin T, de Bekker C, Urbach S, Demettre E, Missé D, Holzmuller P, Hughes DP, Zanzoni A, Brun C, Biron DG. Cross-talk in host–parasite associations: What do past and recent proteomics approaches tell us? INFECTION GENETICS AND EVOLUTION 2015; 33:84-94. [DOI: 10.1016/j.meegid.2015.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
|
6
|
Cao Z, Evans AR, Robinson RAS. MS(3)-based quantitative proteomics using pulsed-Q dissociation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1025-1030. [PMID: 26044269 DOI: 10.1002/rcm.7192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 01/31/2015] [Accepted: 03/08/2015] [Indexed: 06/04/2023]
Abstract
RATIONALE Isobaric tagging reagents, such as tandem mass tags (TMT) and isobaric tags for relative and absolute quantitation (iTRAQ), are high-throughput methods that allow the analysis of multiple samples simultaneously, which reduces instrument time and error. Accuracy and precision of isobaric tags are limited, however, in tandem mass spectrometry (MS/MS) acquisition due to co-isolation and co-fragmentation of neighboring peptide peaks in precursor scans. Here we present a MS(3) method using pulsed-Q dissociation (PQD) in ion trap and Orbitrap instrumentation as a means to improve ratio distortion and maintain high numbers of identified and quantified proteins. METHODS Mouse brain protein digests were labeled with TMT-128, 129, 130, 131 reagents, mixed in the following molar ratios 1:1:2:5, respectively, and analyzed using HCD-MS(3) and PQD-MS(3) methods. The most intense fragment ion (termed as HCD-MS(3)-top ion or PQD-MS(3)-top ion) or y1 ion (i.e., lysine-TMT tag ion; termed as HCD-MS(3)-y1 or PQD-MS(3)-y1) in collision-induced dissociation (CID) MS/MS was selected for MS(3). RESULTS Calculated protein ratios obtained in HCD-MS(3)-top ion and PQD-MS(3)-top ion, HCD-MS(3)-y1, and PQD-MS(3)-y1 are accurate and PQD-MS(3) methods resulted in higher numbers of identified and quantified peptide spectral counts and proteins. CONCLUSIONS PQD-MS(3) methods increase the amount of MS/MS spectra collected and number of quantified proteins and are accessible to those researchers with not only an orbitrap but also an ion trap mass spectrometer.
Collapse
Affiliation(s)
- Zhiyun Cao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Adam R Evans
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Renã A S Robinson
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
7
|
Oeffinger M, Montpetit B. Emerging properties of nuclear RNP biogenesis and export. Curr Opin Cell Biol 2015; 34:46-53. [PMID: 25938908 DOI: 10.1016/j.ceb.2015.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/23/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023]
Abstract
RNA biology has recently seen an explosion of data due to advances in RNA sequencing, proteomic, and RNA imaging technologies. In this review, we highlight progress that has been made using these approaches in the area of nuclear RNP biogenesis and export. Excitingly, the ability to collect quantitative data at the 'omics' scale combined with measurements of transcription, decay, and transport kinetics is providing the information needed to address RNP biogenesis at a systems level. We believe this to be a necessary and critical next step that will lead to a better understanding of how RNP quality, diversity, and fate emerge from a defined set of nuclear RNP assembly and maturation steps.
Collapse
Affiliation(s)
- Marlene Oeffinger
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, Québec, Canada H2W 1R7; Département de biochimie et médicine moléculaire, Université de Montréal, Montréal, Québec, Canada H3T 1J4; Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada H3A 1A3.
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, 5-14 Medical Sciences Building, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
8
|
Hattan SJ, Du J, Parker KC. Bifunctional Glass Membrane Designed to Interface SDS-PAGE Separations of Proteins with the Detection of Peptides by Mass Spectrometry. Anal Chem 2015; 87:3685-93. [DOI: 10.1021/ac503980x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Stephen J. Hattan
- SimulTOF Systems, 60 Union Avenue, Sudbury, Massachusetts 01776, United States
| | - Jie Du
- Toxikon Corporation, 15 Wiggins Avenue, Bedford, Massachusetts 01730, United States
| | - Kenneth C. Parker
- SimulTOF Systems, 60 Union Avenue, Sudbury, Massachusetts 01776, United States
| |
Collapse
|
9
|
Vercoutter-Edouart AS, El Yazidi-Belkoura I, Guinez C, Baldini S, Leturcq M, Mortuaire M, Mir AM, Steenackers A, Dehennaut V, Pierce A, Lefebvre T. Detection and identification ofO-GlcNAcylated proteins by proteomic approaches. Proteomics 2015; 15:1039-50. [DOI: 10.1002/pmic.201400326] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/03/2014] [Accepted: 11/24/2014] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Céline Guinez
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Steffi Baldini
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Maïté Leturcq
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Marlène Mortuaire
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Anne-Marie Mir
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Agata Steenackers
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Vanessa Dehennaut
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Annick Pierce
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| | - Tony Lefebvre
- Unit of Structural and Functional Glycobiology; University of Lille 1; Villeneuve d'Ascq France
| |
Collapse
|
10
|
Quantitative and Systems-Based Approaches for Deciphering Bacterial Membrane Interactome and Gene Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 883:135-54. [PMID: 26621466 DOI: 10.1007/978-3-319-23603-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
High-throughput genomic and proteomic methods provide a concise description of the molecular constituents of a cell, whereas systems biology strives to understand the way these components function as a whole. Recent developments, such as genome editing technologies and protein epitope-tagging coupled with high-sensitivity mass-spectrometry, allow systemic studies to be performed at an unprecedented scale. Available methods can be successfully applied to various goals, both expanding fundamental knowledge and solving applied problems. In this review, we discuss the present state and future of bacterial cell envelope interactomics, with a specific focus on host-pathogen interactions and drug target discovery. Both experimental and computational methods will be outlined together with examples of their practical implementation.
Collapse
|
11
|
van Wijk KJ. Protein maturation and proteolysis in plant plastids, mitochondria, and peroxisomes. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:75-111. [PMID: 25580835 DOI: 10.1146/annurev-arplant-043014-115547] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plastids, mitochondria, and peroxisomes are key organelles with dynamic proteomes in photosynthetic eukaryotes. Their biogenesis and activity must be coordinated and require intraorganellar protein maturation, degradation, and recycling. The three organelles together are predicted to contain ∼200 presequence peptidases, proteases, aminopeptidases, and specific protease chaperones/adaptors, but the substrates and substrate selection mechanisms are poorly understood. Similarly, lifetime determinants of organellar proteins, such as N-end degrons and tagging systems, have not been identified, but the substrate recognition mechanisms likely share similarities between organelles. Novel degradomics tools for systematic analysis of protein lifetime and proteolysis could define such protease-substrate relationships, degrons, and protein lifetime. Intraorganellar proteolysis is complemented by autophagy of whole organelles or selected organellar content, as well as by cytosolic protein ubiquitination and degradation by the proteasome. This review summarizes (putative) plant organellar protease functions and substrate-protease relationships. Examples illustrate key proteolytic events.
Collapse
Affiliation(s)
- Klaas J van Wijk
- Department of Plant Biology, Cornell University, Ithaca, New York 14853;
| |
Collapse
|
12
|
Panek J, El Alaoui H, Mone A, Urbach S, Demettre E, Texier C, Brun C, Zanzoni A, Peyretaillade E, Parisot N, Lerat E, Peyret P, Delbac F, Biron DG. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae. PLoS One 2014; 9:e100791. [PMID: 24967735 PMCID: PMC4072689 DOI: 10.1371/journal.pone.0100791] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/29/2014] [Indexed: 11/18/2022] Open
Abstract
Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture) quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF) and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi) and 8 days post-infection (dpi). A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN) host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras) and reduction of the translation activity (EIF3) confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.
Collapse
Affiliation(s)
- Johan Panek
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Hicham El Alaoui
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| | - Anne Mone
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Serge Urbach
- Functional Proteomics Platform. UMR CNRS 5203, Montpellier, France
| | - Edith Demettre
- Functional Proteomics Platform. UMS CNRS 3426, Montpellier, France
| | - Catherine Texier
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - Christine Brun
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
- CNRS, Marseille, France
| | - Andreas Zanzoni
- INSERM, UMR1090 TAGC, Marseille, Marseille, France
- Aix-Marseille Université, UMR1090 TAGC, Marseille, France
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Nicolas Parisot
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Emmanuelle Lerat
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, I.U.T., UFR Pharmacie, Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, EA 4678, Conception, Ingénierie et Développement de l'Aliment et du Médicament, Clermont-Ferrand, France
| | - Frederic Delbac
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
| | - David G. Biron
- Clermont Université, Université Blaise Pascal, Laboratoire Microorganismes: Génome et Environnement, Clermont-Ferrand, France
- CNRS, UMR 6023, LMGE, Aubière, France
- * E-mail: (HEA); (DGB)
| |
Collapse
|
13
|
Lahtvee PJ, Seiman A, Arike L, Adamberg K, Vilu R. Protein turnover forms one of the highest maintenance costs in Lactococcus lactis. MICROBIOLOGY-SGM 2014; 160:1501-1512. [PMID: 24739216 DOI: 10.1099/mic.0.078089-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Protein turnover plays an important role in cell metabolism by regulating metabolic fluxes. Furthermore, the energy costs for protein turnover have been estimated to account for up to a third of the total energy production during cell replication and hence may represent a major limiting factor in achieving either higher biomass or production yields. This work aimed to measure the specific growth rate (μ)-dependent abundance and turnover rate of individual proteins, estimate the ATP cost for protein production and turnover, and compare this with the total energy balance and other maintenance costs. The lactic acid bacteria model organism Lactococcus lactis was used to measure protein turnover rates at μ = 0.1 and 0.5 h(-1) in chemostat experiments. Individual turnover rates were measured for ~75% of the total proteome. On average, protein turnover increased by sevenfold with a fivefold increase in growth rate, whilst biomass yield increased by 35%. The median turnover rates found were higher than the specific growth rate of the bacterium, which suggests relatively high energy consumption for protein turnover. We found that protein turnover costs alone account for 38 and 47% of the total energy produced at μ = 0.1 and 0.5 h(-1), respectively, and gene ontology groups Energy metabolism and Translation dominated synthesis costs at both growth rates studied. These results reflect the complexity of metabolic changes that occur in response to changes in environmental conditions, and signify the trade-off between biomass yield and the need to produce ATP for maintenance processes.
Collapse
Affiliation(s)
- Petri-Jaan Lahtvee
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.,Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Andrus Seiman
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Liisa Arike
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.,Department of Food Processing, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Kaarel Adamberg
- Department of Food Processing, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia.,Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.,Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Raivo Vilu
- Competence Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.,Department of Chemistry, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
14
|
Allen DK, Evans BS, Libourel IGL. Analysis of isotopic labeling in peptide fragments by tandem mass spectrometry. PLoS One 2014; 9:e91537. [PMID: 24626471 PMCID: PMC3953442 DOI: 10.1371/journal.pone.0091537] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/13/2014] [Indexed: 01/18/2023] Open
Abstract
Phenotype in multicellular organisms is the consequence of dynamic metabolic events that occur in a spatially dependent fashion. This spatial and temporal complexity presents challenges for investigating metabolism; creating a need for improved methods that effectively probe biochemical events such as amino acid biosynthesis. Isotopic labeling can provide a temporal-spatial recording of metabolic events through, for example, the description of enriched amino acids in the protein pool. Proteins are therefore an important readout of metabolism and can be assessed with modern mass spectrometers. We compared the measurement of isotopic labeling in MS2 spectra obtained from tandem mass spectrometry under either higher energy collision dissociation (HCD) or collision induced dissociation (CID) at varied energy levels. Developing soybean embryos cultured with or without 13C-labeled substrates, and Escherichia coli MG1655 enriched by feeding 7% uniformly labeled glucose served as a source of biological material for protein evaluation. CID with low energies resulted in a disproportionate amount of heavier isotopologues remaining in the precursor isotopic distribution. HCD resulted in fewer quantifiable products; however deviation from predicted distributions were small relative to the CID-based comparisons. Fragment ions have the potential to provide information on the labeling of amino acids in peptides, but our results indicate that without further development the use of this readout in quantitative methods such as metabolic flux analysis is limited.
Collapse
Affiliation(s)
- Doug K. Allen
- United States Department of Agriculture, Agricultural Research Service, Plant Genetic Research Unit, St. Louis, Missouri, United States of America
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Bradley S. Evans
- Donald Danforth Plant Science Center, St. Louis, Missouri, United States of America
| | - Igor G. L. Libourel
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota, United States of America
| |
Collapse
|
15
|
Allen DK, Goldford J, Gierse JK, Mandy D, Diepenbrock C, Libourel IGL. Quantification of peptide m/z distributions from 13C-labeled cultures with high-resolution mass spectrometry. Anal Chem 2014; 86:1894-901. [PMID: 24387081 PMCID: PMC3964731 DOI: 10.1021/ac403985w] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/03/2014] [Indexed: 12/26/2022]
Abstract
Isotopic labeling studies of primary metabolism frequently utilize GC/MS to quantify (13)C in protein-hydrolyzed amino acids. During processing some amino acids are degraded, which reduces the size of the measurement set. The advent of high-resolution mass spectrometers provides a tool to assess molecular masses of peptides with great precision and accuracy and computationally infer information about labeling in amino acids. Amino acids that are isotopically labeled during metabolism result in labeled peptides that contain spatial and temporal information that is associated with the biosynthetic origin of the protein. The quantification of isotopic labeling in peptides can therefore provide an assessment of amino acid metabolism that is specific to subcellular, cellular, or temporal conditions. A high-resolution orbital trap was used to quantify isotope labeling in peptides that were obtained from unlabeled and isotopically labeled soybean embryos and Escherichia coli cultures. Standard deviations were determined by estimating the multinomial variance associated with each element of the m/z distribution. Using the estimated variance, quantification of the m/z distribution across multiple scans was achieved by a nonlinear fitting approach. Observed m/z distributions of uniformly labeled E. coli peptides indicated no significant differences between observed and simulated m/z distributions. Alternatively, amino acid m/z distributions obtained from GC/MS were convolved to simulate peptide m/z distributions but resulted in distinct profiles due to the production of protein prior to isotopic labeling. The results indicate that peptide mass isotopologue measurements faithfully represent mass distributions, are suitable for quantification of isotope-labeling-based studies, and provide additional information over existing methods.
Collapse
Affiliation(s)
- Doug K. Allen
- Plant
Genetic Research Unit, Agricultural Research
Service, U.S. Department of Agriculture (USDA-ARS), Donald Danforth
Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United
States
| | - Joshua Goldford
- Department
of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| | - James K. Gierse
- Plant
Genetic Research Unit, Agricultural Research
Service, U.S. Department of Agriculture (USDA-ARS), Donald Danforth
Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United
States
| | - Dominic Mandy
- Department
of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| | - Christine Diepenbrock
- Plant
Genetic Research Unit, Agricultural Research
Service, U.S. Department of Agriculture (USDA-ARS), Donald Danforth
Plant Science Center, 975 North Warson Road, St. Louis, Missouri 63132, United
States
| | - Igor G. L. Libourel
- Department
of Plant Biology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
16
|
Yuet KP, Tirrell DA. Chemical tools for temporally and spatially resolved mass spectrometry-based proteomics. Ann Biomed Eng 2013; 42:299-311. [PMID: 23943069 DOI: 10.1007/s10439-013-0878-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022]
Abstract
Accurate measurements of the abundances, synthesis rates and degradation rates of cellular proteins are critical for understanding how cells and organisms respond to changes in their environments. Over the past two decades, there has been increasing interest in the use of mass spectrometry for proteomic analysis. In many systems, however, protein diversity as well as cell and tissue heterogeneity limit the usefulness of mass spectrometry-based proteomics. As a result, researchers have had difficulty in systematically identifying proteins expressed within specified time intervals, or low abundance proteins expressed in specific tissues or in a few cells in complex microbial systems. In this review, we present recently-developed tools and strategies that probe these two subsets of the proteome: proteins synthesized during well-defined time intervals--temporally resolved proteomics--and proteins expressed in predetermined cell types, cells or cellular compartments--spatially resolved proteomics--with a focus on chemical and biological mass spectrometry-based methodologies.
Collapse
Affiliation(s)
- Kai P Yuet
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | |
Collapse
|
17
|
Cecioni S, Vocadlo DJ. Tools for probing and perturbing O-GlcNAc in cells and in vivo. Curr Opin Chem Biol 2013; 17:719-28. [PMID: 23906602 DOI: 10.1016/j.cbpa.2013.06.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 06/20/2013] [Accepted: 06/26/2013] [Indexed: 02/06/2023]
Abstract
Intracellular glycosylation of nuclear and cytoplasmic proteins involves the addition of N-acetylglucosamine (O-GlcNAc) to serine and threonine residues. This dynamic modification occurs on hundreds of proteins and is involved in various essential biological processes. Because O-GlcNAc is substoichiometric and labile, identifying proteins and sites of modification has been challenging and generally requires proteome enrichment. Here we review recent advances on the implementation of chemical tools to perturb, to detect, and to map O-GlcNAc in living systems. Metabolic and chemoenzymatic labels along with bioorthogonal reactions and quantitative proteomics are enabling investigation of the role of O-GlcNAc in various processes including transcriptional regulation, neurodegeneration, and cell signaling.
Collapse
Affiliation(s)
- Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | | |
Collapse
|