1
|
Bagheri AM, Mirzahashemi M, Salarpour S, Dehghnnoudeh Y, Banat IM, Ohadi M, Dehghannoudeh G. Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. Crit Rev Biotechnol 2025; 45:766-787. [PMID: 39294002 DOI: 10.1080/07388551.2024.2393420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 07/14/2024] [Accepted: 07/30/2024] [Indexed: 09/20/2024]
Abstract
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
Collapse
Affiliation(s)
- Amir Mohammad Bagheri
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoud Mirzahashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Soodeh Salarpour
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yasmin Dehghnnoudeh
- Departeman of Biology, Faculty of Science, York University, Toronto, Ontario, Canada
| | - Ibrahim M Banat
- School of Biomedical Sciences, Faculty of Life & Health Sciences, Ulster University, Coleraine, N. Ireland, UK
| | - Mandana Ohadi
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Dehghannoudeh
- Department of Pharmaceutics, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
2
|
Xie H, Zhao W, Zhang X, Wang Z. Demulsification of Bacteria-Stabilized Pickering Emulsions Using Modified Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24102-24112. [PMID: 35603430 DOI: 10.1021/acsami.2c02526] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pickering emulsions stabilized by bacteria acting as particle emulsifiers are new platforms for microbial transformations of hydrophobic chemicals. However, their high stability often hampers demulsification during downstream processing. Since the existing methods (like addition of surfactants) to demulsify bacteria-stabilized Pickering emulsions have negative effects, new practical methods need to be developed. Here, using chemically modified fumed silica particles with different hydrophobicity, the demulsification of W/O Pickering emulsions stabilized by Mycobacterium neoaurum whole cells was first studied. The binary particle-stabilized emulsions exhibited phase inversion and dewatering induced by the coalescence of W/O emulsions or creaming of O/W emulsions. The silica particle hydrophobicity and concentration were the important parameters influencing the emulsion type, droplet morphology, and dewatering rate. The highest dewatering rate and largest droplet size were obtained at the inversion point from W/O to O/W. Confocal microscopy showed that no interaction between the bacteria and silica particles existed and the silica particle adsorption at the interface induced the detachment of bacteria from the interface, revealing that there was competitive adsorption between the binary particles at the interface. Based on these results, we suggested that the average hydrophobicity of the binary particles at the interface would determine the emulsion type and stability. Finally, this strategy was successfully applied to the demulsification of the Pickering emulsion formed during microbial transformation of sterols. Overall, this study provides a new strategy to demulsify Pickering emulsions by addition of another particle emulsifier. This is also the first example of separation of products as well as organic phases after microbial transformation in Pickering emulsions.
Collapse
Affiliation(s)
- Haisheng Xie
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Wenyu Zhao
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| | - Zhilong Wang
- State Key Laboratory of Microbial Metabolism, Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan, Shanghai 200240, China
| |
Collapse
|
3
|
Submerged Fermentation of Animal Fat By-Products by Oleaginous Filamentous Fungi for the Production of Unsaturated Single Cell Oil. FERMENTATION 2021. [DOI: 10.3390/fermentation7040300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal waste fats were explored as a fermentation substrate for the production of high-value unsaturated single cell oil (SCO) using oleaginous fungi, Mucor circinelloides and Mortierella alpina. Both strains showed good growth and lipid accumulation when using animal fat as a single carbon source. The biomass concentration of 16.7 ± 2.2 gDCW/L and lipid content of 54.1%wt (of dry cell weight) were obtained for Mucor circinelloides in shake flask experiments, surpassing the biomass yield achieved in batch and fed-batch fermentation. In contrast, Mortierella alpina gave the highest biomass concentration (8.3 ± 0.3 gDCW/L) and lipid content (55.8%wt) in fed-batch fermentation. Fat grown Mortierella alpina was able to produce arachidonic acid (ARA), and the highest ARA content of 23.8%wt (of total lipid weight) was in fed-batch fermentation. Gamma-linolenic acid (GLA) was produced by both fungal strains. At the end of fed-batch fermentation, the GLA yields obtained for Mucor circinelloides and Mortierella alpina were 4.51%wt and 2.77%wt (of total lipid weight), respectively. This study demonstrates the production of unsaturated SCO-rich fungal biomass from animal fat by fermentation.
Collapse
|
4
|
Cui Z, Wang Z, Zheng M, Chen T. Advances in biological production of acetoin: a comprehensive overview. Crit Rev Biotechnol 2021; 42:1135-1156. [PMID: 34806505 DOI: 10.1080/07388551.2021.1995319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Acetoin, a high-value-added bio-based platform chemical, is widely used in foods, cosmetics, agriculture, and the chemical industry. It is an important precursor for the synthesis of: 2,3-butanediol, liquid hydrocarbon fuels and heterocyclic compounds. Since the fossil resources are becoming increasingly scarce, biological production of acetoin has received increasing attention as an alternative to chemical synthesis. Although there are excellent reviews on the: application, catabolism and fermentative production of acetoin, little attention has been paid to acetoin production via: electrode-assisted fermentation, whole-cell biocatalysis, and in vitro/cell-free biocatalysis. In this review, acetoin biosynthesis pathways and relevant key enzymes are firstly reviewed. In addition, various strategies for biological acetoin production are summarized including: cell-free biocatalysis, whole-cell biocatalysis, microbial fermentation, and electrode-assisted fermentation. The advantages and disadvantages of the different approaches are discussed and weighed, illustrating the increasing progress toward economical, green and efficient production of acetoin. Additionally, recent advances in acetoin extraction and recovery in downstream processing are also briefly reviewed. Moreover, the current issues and future prospects of diverse strategies for biological acetoin production are discussed, with the hope of realizing the promises of industrial acetoin biomanufacturing in the near future.
Collapse
Affiliation(s)
- Zhenzhen Cui
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Meiyu Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
5
|
Combes J, Imatoukene N, Couvreur J, Godon B, Brunissen F, Fojcik C, Allais F, Lopez M. Intensification of p-coumaric acid heterologous production using extractive biphasic fermentation. BIORESOURCE TECHNOLOGY 2021; 337:125436. [PMID: 34182346 DOI: 10.1016/j.biortech.2021.125436] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
p-coumaric acid (p-CA) can be produced from D-glucose by an engineered S. cerevisiae strain. p-CA has antimicrobial properties and retro-inhibition activity. Moreover, p-CA is a hydrophobic compound, limiting its accumulation in fermentation broth. To overcome these issues all at once, a liquid-liquid extraction in-situ product recovery process using oleyl alcohol as extractant has been implemented in order to continuously extract p-CA from the broth. Media and pH impacts on strain metabolism were assessed, highlighting p-CA decarboxylase endogenous activity. Biphasic fermentations allowed an increase in p-CA respiratory production rates at both pH assessed (13.65 and 9.45 mg L-1.h-1 at pH 6 and 4.5, respectively) compared to control ones (10.5 and 7.5 mg L-1.h-1 at pH 6 and 4.5, respectively). Biphasic fermentation effects on p-CA decarboxylation were studied showing that continuous removal of p-CA decreased its decarboxylation into 4-vinylphenol at pH 4.5 (57 mg L-1 in biphasic fermentation vs 173 mg L-1 in control one).
Collapse
Affiliation(s)
- Jeanne Combes
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Nabila Imatoukene
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Julien Couvreur
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Blandine Godon
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Fanny Brunissen
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | | | - Florent Allais
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France
| | - Michel Lopez
- URD Agro-Biotechnologies Industrielles (ABI), CEBB, AgroParisTech, Pomacle 51110, France.
| |
Collapse
|
6
|
Santos TP, Michelon M, Carvalho MS, Cunha RL. Formation and stability of oil-in-water emulsions based on components of bioprocesses: A microfluidic analysis. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
8
|
Qiao Y, Zhou J, Lu X, Zong H, Zhuge B. Improving the productivity of Candida glycerinogenes in the fermentation of ethanol from non-detoxified sugarcane bagasse hydrolysate by a hexose transporter mutant. J Appl Microbiol 2021; 131:1787-1799. [PMID: 33694233 DOI: 10.1111/jam.15059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 11/27/2022]
Abstract
AIMS In this study, we attempted to increase the productivity of Candida glycerinogenes yeast for ethanol production from non-detoxified sugarcane bagasse hydrolysates (NDSBH) by identifying the hexose transporter in this yeast that makes a high contribution to glucose consumption, and by adding additional copies of this transporter and enhancing its membrane localisation stability (MLS). METHODS AND RESULTS Based on the knockout and overexpression of key hexose transporter genes and the characterisation of their promoter properties, we found that Cghxt4 and Cghxt6 play major roles in the early and late stages of fermentation, respectively, with Cghxt4 contributing most to glucose consumption. Next, subcellular localisation analysis revealed that a common mutation of two ubiquitination sites (K9 and K538) in Cghxt4 improved its MLS. Finally, we overexpressed this Cghxt4 mutant (Cghxt4.2A) using a strong promoter, PCgGAP , which resulted in a significant increase in the ethanol productivity of C. glycerinogenes in the NDSBH medium. Specifically, the recombinant strain showed 18 and 25% higher ethanol productivity than the control in two kinds of YP-NDSBH medium (YP-NDSBH1G160 and YP-NDSBH2G160 ), respectively. CONCLUSIONS The hexose transporter mutant Cghxt4.2A (Cghxt4K9A,K538A ) with multiple copies and high MLS was able to significantly increase the ethanol productivity of C. glycerinogenes in NDSBH. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide a promising strategy for constructing efficient strains for ethanol production.
Collapse
Affiliation(s)
- Y Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - J Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - X Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - H Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - B Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Nitta N, Tajima Y, Yamamoto Y, Moriya M, Matsudaira A, Hoshino Y, Nishio Y, Usuda Y. Fermentative production of enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis. Microb Cell Fact 2021; 20:54. [PMID: 33653319 PMCID: PMC7923825 DOI: 10.1186/s12934-021-01543-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023] Open
Abstract
Background Linalool, an acyclic monoterpene alcohol, is extensively used in the flavor and fragrance industries and exists as two enantiomers, (S)- and (R)-linalool, which have different odors and biological properties. Linalool extraction from natural plant tissues suffers from low product yield. Although linalool can also be chemically synthesized, its enantioselective production is difficult. Microbial production of terpenes has recently emerged as a novel, environmental-friendly alternative. Stereoselective production can also be achieved using this approach via enzymatic reactions. We previously succeeded in producing enantiopure (S)-linalool using a metabolically engineered Pantoea ananatis, a member of the Enterobacteriaceae family of bacteria, via the heterologous mevalonate pathway with the highest linalool titer ever reported from engineered microbes. Results Here, we genetically modified a previously developed P. ananatis strain expressing the (S)-linalool synthase (AaLINS) from Actinidia arguta to further improve (S)-linalool production. AaLINS was mostly expressed as an insoluble form in P. ananatis; its soluble expression level was increased by N-terminal fusion of a halophilic β-lactamase from Chromohalobacter sp. 560 with hexahistidine. Furthermore, in combination with elevation of the precursor supply via the mevalonate pathway, the (S)-linalool titer was increased approximately 1.4-fold (4.7 ± 0.3 g/L) in comparison with the original strain (3.4 ± 0.2 g/L) in test-tube cultivation with an aqueous-organic biphasic fermentation system using isopropyl myristate as the organic solvent for in situ extraction of cytotoxic and semi-volatile (S)-linalool. The most productive strain, IP04S/pBLAAaLINS-ispA*, produced 10.9 g/L of (S)-linalool in “dual-phase” fed-batch fermentation, which was divided into a growth-phase and a subsequent production-phase. Thus far, this is the highest reported titer in the production of not only linalool but also all monoterpenes using microbes. Conclusions This study demonstrates the potential of our metabolically engineered P. ananatis strain as a platform for economically feasible (S)-linalool production and provides insights into the stereoselective production of terpenes with high efficiency. This system is an environmentally friendly and economically valuable (S)-linalool production alternative. Mass production of enantiopure (S)-linalool can also lead to accurate assessment of its biological properties by providing an enantiopure substrate for study. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01543-0.
Collapse
Affiliation(s)
- Nobuhisa Nitta
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan.
| | - Yoshinori Tajima
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoko Yamamoto
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Mika Moriya
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Akiko Matsudaira
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yasushi Hoshino
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yousuke Nishio
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| | - Yoshihiro Usuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc., Kawasaki, Japan
| |
Collapse
|
10
|
Abstract
Glycerol is a readily available and inexpensive substance that is mostly generated during biofuel production processes. In order to ensure the viability of the biofuel industry, it is essential to develop complementing technologies for the resource utilization of glycerol. Ethylene glycol is a two-carbon organic chemical with multiple applications and a huge market. In this study, an artificial enzymatic cascade comprised alditol oxidase, catalase, glyoxylate/hydroxypyruvate reductase, pyruvate decarboxylase and lactaldehyde:propanediol oxidoreductase was developed for the production of ethylene glycol from glycerol. The reduced nicotinamide adenine dinucleotide (NADH) generated during the dehydrogenation of the glycerol oxidation product d-glycerate can be as the reductant to support the ethylene glycol production. Using this in vitro synthetic system with self-sufficient NADH recycling, 7.64 ± 0.15 mM ethylene glycol was produced from 10 mM glycerol in 10 h, with a high yield of 0.515 ± 0.1 g/g. The in vitro enzymatic cascade is not only a promising alternative for the generation of ethylene glycol but also a successful example of the value-added utilization of glycerol.
Collapse
|
11
|
Designing biotechnological processes to reduce emulsions formation and improve oil recovery: Study of antifoams application. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Impact of flocculant addition in oil recovery from multiphasic fermentations. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Jahan R, Bodratti AM, Tsianou M, Alexandridis P. Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Adv Colloid Interface Sci 2020; 275:102061. [PMID: 31767119 DOI: 10.1016/j.cis.2019.102061] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/29/2022]
Abstract
Biosurfactants comprise a wide array of amphiphilic molecules synthesized by plants, animals, and microbes. The synthesis route dictates their molecular characteristics, leading to broad structural diversity and ensuing functional properties. We focus here on low molecular weight (LMW) and high molecular weight (HMW) biosurfactants of microbial origin. These are environmentally safe and biodegradable, making them attractive candidates for applications spanning cosmetics to oil recovery. Biosurfactants spontaneously adsorb at various interfaces and self-assemble in aqueous solution, resulting in useful physicochemical properties such as decreased surface and interfacial tension, low critical micellization concentrations (CMCs), and ability to solubilize hydrophobic compounds. This review highlights the relationships between biosurfactant molecular composition, structure, and their interfacial behavior. It also describes how environmental factors such as temperature, pH, and ionic strength can impact physicochemical properties and self-assembly behavior of biosurfactant-containing solutions and dispersions. Comparison between biosurfactants and their synthetic counterparts are drawn to illustrate differences in their structure-property relationships and potential benefits. Knowledge of biosurfactant properties organized along these lines is useful for those seeking to formulate so-called green or natural products with novel and useful properties.
Collapse
|
14
|
Da Costa Basto RM, Casals MP, Mudde RF, van der Wielen LA, Cuellar MC. A mechanistic model for oil recovery in a region of high oil droplet concentration from multiphasic fermentations. CHEMICAL ENGINEERING SCIENCE: X 2019. [DOI: 10.1016/j.cesx.2019.100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
15
|
Lopes IS, Michelon M, Forster TC, Cunha RL, Picone CS. Effect of chitosan size on destabilization of oil/water emulsions stabilized by whey protein. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.072] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Tarazanova M, Huppertz T, Starrenburg M, Todt T, van Hijum S, Kok J, Bachmann H. Transcriptional response of Lactococcus lactis during bacterial emulsification. PLoS One 2019; 14:e0220048. [PMID: 31344087 PMCID: PMC6657864 DOI: 10.1371/journal.pone.0220048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022] Open
Abstract
Microbial surface properties are important for interactions with the environment in which cells reside. Surface properties of lactic acid bacteria significantly vary and some strains can form strong emulsions when mixed with a hydrocarbon. Lactococcus lactis NCDO712 forms oil-in-water emulsions upon mixing of a cell suspension with petroleum. In the emulsion the bacteria locate at the oil-water interphase which is consistent with Pickering stabilization. Cells of strain NCDO712 mixed with sunflower seed oil did not stabilize the oil droplets. This study shows that the addition of either ethanol or ammonium sulfate led to cell aggregation, which subsequently allowed stabilizing oil-in-water emulsions. From this, we conclude that bacterial cell aggregation is important for emulsion droplet stabilization. To determine how bacterial emulsification influences the microbial transcriptome RNAseq analysis was performed on lactococci taken from the oil-water interphase. In comparison to cells in suspension 72 genes were significantly differentially expressed with a more than 4-fold difference. The majority of these genes encode proteins involved in transport processes and the metabolism of amino acids, carbohydrates and ions. Especially the proportion of genes belonging to the CodY regulon was high. Our results also point out that in a complex environment such as food fermentations a heterogeneous response of microbes might be caused by microbe-matrix interactions. In addition, microdroplet technologies are increasingly used in research. The understanding of interactions between bacterial cells and oil-water interphases is of importance for conducting and interpreting such experiments.
Collapse
Affiliation(s)
- Mariya Tarazanova
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Thom Huppertz
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
| | - Marjo Starrenburg
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Tilman Todt
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
- HAN, University of Applied Sciences, PGL Nijmegen, The Netherlands
| | - Sacha van Hijum
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- Radboud University Medical Centre CMBI, Geert Grooteplein Nijmegen, The Netherlands
| | - Jan Kok
- TI Food and Nutrition, AN Wageningen, The Netherlands
- Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Herwig Bachmann
- TI Food and Nutrition, AN Wageningen, The Netherlands
- NIZO, Ede BA, The Netherlands
- * E-mail:
| |
Collapse
|
17
|
Li Y, Xu Y, Song R, Tian C, Liu L, Zheng T, Wang H. Flocculation characteristics of a bioflocculant produced by the actinomycete Streptomyces sp. hsn06 on microalgae biomass. BMC Biotechnol 2018; 18:58. [PMID: 30241472 PMCID: PMC6151018 DOI: 10.1186/s12896-018-0471-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 09/18/2018] [Indexed: 11/10/2022] Open
Abstract
Background Microbial flocculation is a good choice for harvest of microalgae biomass, which has gained extensive attention. There have been carried out massive studies in bacterial flocculation, many bacterial strains with flocculation activity were isolated and different types of bioflocculants were produced. However, harvest of algal biomass by bioflocculants which produced from actinomycete are deficiency. In this study, the bioflocculant from an actinomycete Streptomyces sp. hsn06 could be used to harvest Chlorella vulgaris biomass. Results Consecutive treatment with 20 mg·L− 1 bioflocculant and 5 mM CaCl2 for 5 min showed the highest flocculating activity. The bioflocculant was a nonprotein substance with thermal stability and pH stability, which can be used in comprehensive applications. Chemical analysis of the bioflocculant indicated that it is a small molecule substance of moderate polarity with containing triple bond and cumulated double bonds. Algal temperature, pH, and metal ions showed great effects on the flocculation efficiency of the bioflocculant. Conclusions The bioflocculant produced by Streptomyces sp. hsn06 possesses the potential to harvest algal biomass with high-efficiency. Electronic supplementary material The online version of this article (10.1186/s12896-018-0471-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yanting Xu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Ruixue Song
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Congqi Tian
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Lei Liu
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Tianling Zheng
- State Key Laboratory of Marine Environmental Science, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Hailei Wang
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, China. .,, Xinxiang, China.
| |
Collapse
|
18
|
Meirelles AAD, da Cunha RL, Gombert AK. The role of Saccharomyces cerevisiae in stabilizing emulsions of hexadecane in aqueous media. Appl Microbiol Biotechnol 2018; 102:3411-3424. [DOI: 10.1007/s00253-017-8725-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
|
19
|
Pedraza-de la Cuesta S, Keijzers L, van der Wielen LAM, Cuellar MC. Integration of Gas Enhanced Oil Recovery in Multiphase Fermentations for the Microbial Production of Fuels and Chemicals. Biotechnol J 2018; 13:e1700478. [DOI: 10.1002/biot.201700478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/21/2017] [Indexed: 11/07/2022]
Affiliation(s)
| | - Lore Keijzers
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
- Bernal Institute, University of Limerick; Castletroy Limerick Ireland
- BE-Basic Foundation; Mijnbouwstraat 120 2628 RX Delft The Netherlands
| | - Maria C. Cuellar
- Department of Biotechnology, Delft University of Technology; van der Maasweg 9 2629HZ Delft The Netherlands
| |
Collapse
|
20
|
Wu W, Maravelias CT. Synthesis and techno-economic assessment of microbial-based processes for terpenes production. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:294. [PMID: 30386431 PMCID: PMC6203976 DOI: 10.1186/s13068-018-1285-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/09/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND Recent advances in metabolic engineering enable the production of chemicals from sugars through microbial bio-conversion. Terpenes have attracted substantial attention due to their relatively high prices and wide applications in different industries. To this end, we synthesize and assess processes for microbial production of terpenes. RESULTS To explain a counterintuitive experimental phenomenon where terpenes such as limonene (normal boiling point 176 °C) are often found to be 100% present in the vapor phase after bio-conversion (operating at only ~ 30 °C), we first analyze the vapor-liquid equilibrium for systems containing terpenes. Then, we propose alternative production configurations, which are further studied, using limonene as an example, in several case studies. Next, we perform economic assessment of the alternative processes and identify the major cost components. Finally, we extend the assessment to account for different process parameters, terpene products, ways to address terpene toxicity (microbial engineering vs. solvent use), and cellulosic biomass as a feedstock. We identify the key cost drivers to be (1) feed glucose concentration (wt%), (2) product yield (% of maximum theoretical yield) and (3) VVM (Volume of air per Volume of broth liquid per Minute, i.e., aeration rate in min-1). The production of limonene, based on current experimental data, is found to be economically infeasible (production cost ~ 465 $/kg vs. market selling price ~ 7 $/kg), but higher glucose concentration and yield can lower the cost. Among 12 terpenes studied, limonene appears to be the most reasonable short-term target because of its large market size (~ 160 million $/year in the US) and the relatively easier to achieve break-even yield (~ 30%, assuming a 14 wt% feed glucose concentration and 0.1 min-1 VVM). CONCLUSIONS The methods proposed in this work are applicable to a range of terpenes as well as other extracellular insoluble chemicals with density lower than that of water, such as fatty acids. The results provide guidance for future research in metabolic engineering toward terpenes production in terms of setting targets for key design parameters.
Collapse
Affiliation(s)
- Wenzhao Wu
- Dept. of Chemical and Biological Engineering and DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 USA
| | - Christos T. Maravelias
- Dept. of Chemical and Biological Engineering and DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI 53706 USA
| |
Collapse
|
21
|
Development of a probiotic delivery system based on gelation of water-in-oil emulsions. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.07.045] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Bednarz A, Scherübel P, Spieß AC, Pfennig A. Optimization of Settling Behavior for an Efficient Solvent-Extraction Process for Biobased Components. Chem Eng Technol 2017. [DOI: 10.1002/ceat.201700020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andreas Bednarz
- RWTH Aachen University; AVT - Fluid Process Engineering; Wüllnerstraße 5 52062 Aachen Germany
| | - Peter Scherübel
- TU Graz; Institute of Chemical Engineering and Environmental Technology; Inffeldgasse 25/C/II 8010 Graz Austria
| | - Antje C. Spieß
- RWTH Aachen University; AVT - Enzyme Process Technology; Worringer Weg 1 52074 Aachen Germany
- Technische Universität Carolo Wilhelmina zu Braunschweig; Institute for Biochemical Engineering; Rebenring 56 38106 Braunschweig Germany
| | - Andreas Pfennig
- Université de Liège; Department of Chemical Engineering; Batiment B6a 4000 Liège Belgium
| |
Collapse
|
23
|
Straathof AJJ, Cuellar MC. Microbial Hydrocarbon Formation from Biomass. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 166:411-425. [PMID: 28707104 DOI: 10.1007/10_2016_62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fossil carbon sources mainly contain hydrocarbons, and these are used on a huge scale as fuel and chemicals. Producing hydrocarbons from biomass instead is receiving increased attention. Achievable yields are modest because oxygen atoms need to be removed from biomass, keeping only the lighter carbon and hydrogen atoms. Microorganisms can perform the required conversions, potentially with high selectivity, using metabolic pathways that often end with decarboxylation. Metabolic and protein engineering are used successfully to achieve hydrocarbon production levels that are relevant in a biorefinery context. This has led to pilot or demo processes for hydrocarbons such as isobutene, isoprene, and farnesene. In addition, some non-hydrocarbon fermentation products are being further converted into hydrocarbons using a final chemical step, for example, ethanol into ethene. The main advantage of direct microbial production of hydrocarbons, however, is their potentially easy recovery because they do not dissolve in fermentation broth.
Collapse
Affiliation(s)
- Adrie J J Straathof
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Maria C Cuellar
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| |
Collapse
|
24
|
Law SQ, Chen B, Scales PJ, Martin GJ. Centrifugal recovery of solvent after biphasic wet extraction of lipids from a concentrated slurry of Nannochloropsis sp. biomass. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Yu P, Chen X, Li P. Enhancing microbial production of biofuels by expanding microbial metabolic pathways. Biotechnol Appl Biochem 2017; 64:606-619. [PMID: 27507087 DOI: 10.1002/bab.1529] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/31/2016] [Indexed: 12/29/2022]
Abstract
Fatty acid, isoprenoid, and alcohol pathways have been successfully engineered to produce biofuels. By introducing three genes, atfA, adhE, and pdc, into Escherichia coli to expand fatty acid pathway, up to 1.28 g/L of fatty acid ethyl esters can be achieved. The isoprenoid pathway can be expanded to produce bisabolene with a high titer of 900 mg/L in Saccharomyces cerevisiae. Short- and long-chain alcohols can also be effectively biosynthesized by extending the carbon chain of ketoacids with an engineered "+1" alcohol pathway. Thus, it can be concluded that expanding microbial metabolic pathways has enormous potential for enhancing microbial production of biofuels for future industrial applications. However, some major challenges for microbial production of biofuels should be overcome to compete with traditional fossil fuels: lowering production costs, reducing the time required to construct genetic elements and to increase their predictability and reliability, and creating reusable parts with useful and predictable behavior. To address these challenges, several aspects should be further considered in future: mining and transformation of genetic elements related to metabolic pathways, assembling biofuel elements and coordinating their functions, enhancing the tolerance of host cells to biofuels, and creating modular subpathways that can be easily interconnected.
Collapse
Affiliation(s)
- Ping Yu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Xingge Chen
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| | - Peng Li
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
26
|
Hydrolase BioH knockout in E. coli enables efficient fatty acid methyl ester bioprocessing. ACTA ACUST UNITED AC 2017; 44:339-351. [DOI: 10.1007/s10295-016-1890-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 01/19/2023]
Abstract
Abstract
Fatty acid methyl esters (FAMEs) originating from plant oils are most interesting renewable feedstocks for biofuels and bio-based materials. FAMEs can also be produced and/or functionalized by engineered microbes to give access to, e.g., polymer building blocks. Yet, they are often subject to hydrolysis yielding free fatty acids, which typically are degraded by microbes. We identified BioH as the key enzyme responsible for the hydrolysis of medium-chain length FAME derivatives in different E. coli K-12 strains. E. coli ΔbioH strains showed up to 22-fold reduced FAME hydrolysis rates in comparison with respective wild-type strains. Knockout strains showed, beside the expected biotin auxotrophy, unchanged growth behavior and biocatalytic activity. Thus, high specific rates (~80 U gCDW −1) for terminal FAME oxyfunctionalization catalyzed by a recombinant alkane monooxygenase could be combined with reduced hydrolysis. Biotransformations in process-relevant two-liquid phase systems profited from reduced fatty acid accumulation and/or reduced substrate loss via free fatty acid metabolization. The BioH knockout strategy was beneficial in all tested strains, although its effect was found to differ according to specific strain properties, such as FAME hydrolysis and FFA degradation activities. BioH or functional analogs can be found in virtually all microorganisms, making bioH deletion a broadly applicable strategy for efficient microbial bioprocessing involving FAMEs.
Collapse
|
27
|
Opportunities and challenges in biological lignin valorization. Curr Opin Biotechnol 2016; 42:40-53. [DOI: 10.1016/j.copbio.2016.02.030] [Citation(s) in RCA: 420] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
|
28
|
Glonke S, Sadowski G, Brandenbusch C. Applied catastrophic phase inversion: a continuous non-centrifugal phase separation step in biphasic whole-cell biocatalysis. J Ind Microbiol Biotechnol 2016; 43:1527-1535. [PMID: 27650629 DOI: 10.1007/s10295-016-1837-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/11/2016] [Indexed: 11/25/2022]
Abstract
Biphasic whole-cell biotransformations are known to be efficient alternatives to common chemical synthesis routes, especially for the production of, e.g. apolar enantiopure organic compounds. They provide high stereoselectivity combined with high product concentrations owing to the presence of an organic phase serving as substrate reservoir and product sink. Industrial implementation suffers from the formation of stable Pickering emulsions caused by the presence of cells. State-of-the-art downstream processing includes inefficient strategies such as excessive centrifugation, use of de-emulsifiers or thermal stress. In contrast, using the catastrophic phase inversion (CPI) phenomenon (sudden switch of emulsion type caused by addition of dispersed phase), Pickering-type emulsions can be destabilized efficiently. Within this work a model system using bis(2-ethylhexyl) phthalate (BEHP) as organic phase in combination with E. coli, JM101 was successfully separated using a continuous mixer settler setup. Compared to the state-of-the-art centrifugal separations, this process allows complete phase separation with no detectable water content or cells in the organic phase with no utilities/additives required. Furthermore, the concentration of the product is not affected by the separation. It is therefore a simple applicable method that can be used for separation of stable Pickering-type emulsions based on the knowledge of the point of inversion.
Collapse
Affiliation(s)
- Sebastian Glonke
- Laboratory of Thermodynamics, TU Dortmund University, 44227, Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, TU Dortmund University, 44227, Dortmund, Germany
| | | |
Collapse
|
29
|
Moreira TCP, da Silva VM, Gombert AK, da Cunha RL. Stabilization mechanisms of oil-in-water emulsions by Saccharomyces cerevisiae. Colloids Surf B Biointerfaces 2016; 143:399-405. [DOI: 10.1016/j.colsurfb.2016.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/29/2015] [Accepted: 03/15/2016] [Indexed: 11/17/2022]
|
30
|
|
31
|
Firoozmand H, Rousseau D. Microbial cells as colloidal particles: Pickering oil-in-water emulsions stabilized by bacteria and yeast. Food Res Int 2016. [DOI: 10.1016/j.foodres.2015.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Heeres AS, Schroën K, Heijnen JJ, van der Wielen LAM, Cuellar MC. Fermentation broth components influence droplet coalescence and hinder advanced biofuel recovery during fermentation. Biotechnol J 2015; 10:1206-15. [DOI: 10.1002/biot.201400570] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/18/2015] [Accepted: 06/11/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Arjan S. Heeres
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Karin Schroën
- Food Process Engineering, Wageningen UR, Wageningen, The Netherlands
| | - Joseph J. Heijnen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Luuk A. M. van der Wielen
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
- BE‐Basic Foundation, Delft, The Netherlands
| | - Maria C. Cuellar
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
33
|
Tang X, Lee J, Chen WN. Engineering the fatty acid metabolic pathway in Saccharomyces cerevisiae for advanced biofuel production. Metab Eng Commun 2015; 2:58-66. [PMID: 34150509 PMCID: PMC8193251 DOI: 10.1016/j.meteno.2015.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 11/30/2022] Open
Abstract
Fatty acid-derived fuels and chemicals have attracted a great deal of attention in recent decades, due to their following properties of high compatibility to gasoline-based fuels and existing infrastructure for their direct utilization, storage and distribution. The yeast Saccharomyces cerevisiae is the ideal biofuel producing candidate, based on the wealth of available genetic information and versatile tools designed to manipulate its metabolic pathways. Engineering the fatty acid metabolic pathways in S. cerevisiae is an effective strategy to increase its fatty acid biosynthesis and provide more pathway precursors for production of targeted products. This review summarizes the recent progress in metabolic engineering of yeast cells for fatty acids and fatty acid derivatives production, including the regulation of acetyl-CoA biosynthesis, NADPH production, fatty acid elongation, and the accumulation of activated precursors of fatty acids for converting enzymes. By introducing specific enzymes in the engineered strains, a powerful platform with a scalable, controllable and economic route for advanced biofuel production has been established. Recent progress in metabolic engineering for enhanced fatty acid production. Regulation of acetyl-CoA, NADPH pathway for fatty acid synthesis. Regulation of elongation and catabolic pathway to strength fatty acid synthesis. Enhanced production of activated precursors for fatty acid derivatives production.
Collapse
Affiliation(s)
- Xiaoling Tang
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Jaslyn Lee
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Wei Ning Chen
- School of Chemical and Biomedical Engineering, College of Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| |
Collapse
|
34
|
Recent advances in the microbial production and recovery of apolar molecules. Curr Opin Biotechnol 2015; 33:39-45. [DOI: 10.1016/j.copbio.2014.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/03/2014] [Accepted: 11/03/2014] [Indexed: 01/08/2023]
|
35
|
Sarkar D, Shimizu K. An overview on biofuel and biochemical production by photosynthetic microorganisms with understanding of the metabolism and by metabolic engineering together with efficient cultivation and downstream processing. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0045-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
36
|
Furtado GF, Picone CS, Cuellar MC, Cunha RL. Breaking oil-in-water emulsions stabilized by yeast. Colloids Surf B Biointerfaces 2015; 128:568-576. [DOI: 10.1016/j.colsurfb.2015.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 10/23/2022]
|
37
|
Schewe H, Mirata MA, Schrader J. Bioprocess engineering for microbial synthesis and conversion of isoprenoids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 148:251-86. [PMID: 25893480 DOI: 10.1007/10_2015_321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Isoprenoids represent a natural product class essential to living organisms. Moreover, industrially relevant isoprenoid molecules cover a wide range of products such as pharmaceuticals, flavors and fragrances, or even biofuels. Their often complex structure makes chemical synthesis a difficult and expensive task and extraction from natural sources is typically low yielding. This has led to intense research for biotechnological production of isoprenoids by microbial de novo synthesis or biotransformation. Here, metabolic engineering, including synthetic biology approaches, is the key technology to develop efficient production strains in the first place. Bioprocess engineering, particularly in situ product removal (ISPR), is the second essential technology for the development of industrial-scale bioprocesses. A number of elaborate bioreactor and ISPR designs have been published to target the problems of isoprenoid synthesis and conversion, such as toxicity and product inhibition. However, despite the many exciting applications of isoprenoids, research on isoprenoid-specific bioprocesses has mostly been, and still is, limited to small-scale proof-of-concept approaches. This review presents and categorizes different ISPR solutions for biotechnological isoprenoid production and also addresses the main challenges en route towards industrial application.
Collapse
Affiliation(s)
- Hendrik Schewe
- DECHEMA Research Institute, Biochemical Engineering, Frankfurt, Germany
| | | | | |
Collapse
|
38
|
Jongedijk E, Cankar K, Ranzijn J, van der Krol S, Bouwmeester H, Beekwilder J. Capturing of the monoterpene olefin limonene produced in Saccharomyces cerevisiae. Yeast 2014; 32:159-71. [PMID: 25164098 DOI: 10.1002/yea.3038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 08/12/2014] [Accepted: 08/20/2014] [Indexed: 11/09/2022] Open
Abstract
Monoterpene olefins such as limonene are plant compounds with applications as flavouring and fragrance agents, as solvents and potentially also in polymer and fuel chemistry. We engineered baker's yeast Saccharomyces cerevisiae to express a (-)-limonene synthase from Perilla frutescens and a (+)-limonene synthase from Citrus limon. Both proteins were expressed either with their native plastid targeting signal or in a truncated form in which the plastidial sorting signal was removed. The yeast host strain for expression was AE9 K197G, which expresses a mutant Erg20 enzyme. This enzyme catalyses the formation of geranyl diphosphate, which is the precursor for monoterpenes. Several methods were tested to capture limonene produced by the yeast. Extraction from the culture medium by pentane, or by the addition of CaCl2 followed by solid-phase micro-extraction, did not lead to detectable limonene, indicating that limonene is rapidly lost from the culture medium. Volatile terpenes such as limonene may also be trapped in a dodecane phase added to the medium during fermentation. This method resulted in recovery of 0.028 mg/l (+)-limonene and 0.060 mg/l (-)-limonene in strains using the truncated Citrus and Perilla synthases, respectively. Trapping the headspace during culture of the limonene synthase-expressing strains resulted in higher titres, at 0.12 mg/l (+)-limonene and 0.49 mg/l (-)-limonene. These results show that the volatile properties of the olefins produced require specific methods for efficient recovery of these molecules from biotechnological production systems.
Collapse
Affiliation(s)
- Esmer Jongedijk
- Laboratory of Plant Physiology, Wageningen University, The Netherlands
| | | | | | | | | | | |
Collapse
|
39
|
Liu H, Wang Y, Tang Q, Kong W, Chung WJ, Lu T. MEP pathway-mediated isopentenol production in metabolically engineered Escherichia coli. Microb Cell Fact 2014; 13:135. [PMID: 25212876 PMCID: PMC4172795 DOI: 10.1186/s12934-014-0135-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/01/2014] [Indexed: 11/23/2022] Open
Abstract
Background Isopentenols, such as prenol and isoprenol, are promising advanced biofuels because of their higher energy densities and better combustion efficiencies compared with ethanol. Microbial production of isopentenols has been developed recently via metabolically engineered E. coli. However, current yields remain low and the underlying pathways require systematic optimization. Results In this study, we targeted the E. coli native 2-methyl-(D)-erythritol-4-phosphate (MEP) pathway and its upstream glycolysis pathway for the optimization of isopentenol production. Two codon optimized genes, nudF and yhfR from Bacillus subtilis, were synthesized and expressed in E. coli W3110 to confer the isopentenol production of the strain. Two key enzymes (IspG and Dxs) were then overexpressed to optimize the E. coli native MEP pathway, which led to a significant increase (3.3-fold) in isopentenol production. Subsequently, the glycolysis pathway was tuned to enhance the precursor and NADPH supplies for the MEP pathway by activating the pentose phosphate pathway (PPP) and Entner-Doudoroff pathway (ED), which resulted in additional 1.9 folds of increase in isopentenol production. A 5 L-scale batch cultivation experiment was finally implemented, showing a total of 61.9 mg L−1 isopentenol production from 20 g L−1 of glucose. Conclusion The isopentenol production was successfully increased through multi-step optimization of the MEP and its upstream glycolysis pathways. It demonstrated that the total fluxes and their balance of the precursors of the MEP pathway are of critical importance in isopentenol production. In the future, an elucidation of the contribution of PPP and ED to MEP is needed for further optimization of isopentenol production. Electronic supplementary material The online version of this article (doi:10.1186/s12934-014-0135-y) contains supplementary material, which is available to authorized users.
Collapse
|