1
|
Valatabar N, Oroojalian F, Kazemzadeh M, Mokhtarzadeh AA, Safaralizadeh R, Sahebkar A. Recent advances in gene delivery nanoplatforms based on spherical nucleic acids. J Nanobiotechnology 2024; 22:386. [PMID: 38951806 PMCID: PMC11218236 DOI: 10.1186/s12951-024-02648-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
Gene therapy is a therapeutic option for mitigating diseases that do not respond well to pharmacological therapy. This type of therapy allows for correcting altered and defective genes by transferring nucleic acids to target cells. Notably, achieving a desirable outcome is possible by successfully delivering genetic materials into the cell. In-vivo gene transfer strategies use two major classes of vectors, namely viral and nonviral. Both of these systems have distinct pros and cons, and the choice of a delivery system depends on therapeutic objectives and other considerations. Safe and efficient gene transfer is the main feature of any delivery system. Spherical nucleic acids (SNAs) are nanotechnology-based gene delivery systems (i.e., non-viral vectors). They are three-dimensional structures consisting of a hollow or solid spherical core nanoparticle that is functionalized with a dense and highly organized layer of oligonucleotides. The unique structural features of SNAs confer them a high potency in internalization into various types of tissue and cells, a high stability against nucleases, and efficay in penetrating through various biological barriers (such as the skin, blood-brain barrier, and blood-tumor barrier). SNAs also show negligible toxicity and trigger minimal immune response reactions. During the last two decades, all these favorable physicochemical and biological attributes have made them attractive vehicles for drug and nucleic acid delivery. This article discusses the unique structural properties, types of SNAs, and also optimization mechanisms of SNAs. We also focus on recent advances in the synthesis of gene delivery nanoplatforms based on the SNAs.
Collapse
Affiliation(s)
| | - Fatemeh Oroojalian
- Department of Medical Nanotechnology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mina Kazemzadeh
- Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Reza Safaralizadeh
- Department of Animal Biology Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Pal S, de la Fuente IF, Sawant SS, Cannata JN, He W, Rouge JL. Cellular Uptake Mechanism of Nucleic Acid Nanocapsules and Their DNA-Surfactant Building Blocks. Bioconjug Chem 2023; 34:1004-1013. [PMID: 37231780 PMCID: PMC10330902 DOI: 10.1021/acs.bioconjchem.3c00104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nucleic acid nanocapsules (NANs) are enzyme-responsive DNA-functionalized micelles built for the controlled release of DNA-surfactant conjugates (DSCs) that present sequences with demonstrated therapeutic potential. Here, we investigate the mechanisms by which DSCs gain access to intracellular space in vitro and determine the effects of serum on the overall uptake and internalization mechanism of NANs. Using pharmacological inhibitors to selectively block certain pathways, we show, through confocal visualization of cellular distribution and flow cytometry quantification of total cellular association, that scavenger receptor-mediated, caveolae-dependent endocytosis is the major cellular uptake pathway of NANs in the presence and absence of serum. Furthermore, as NANs can be triggered to release DSCs by external stimuli such as enzymes, we sought to examine the uptake profile of particles degraded by enzymes prior to cell-based assays. We found that while scavenger receptor-mediated, caveolae-dependent endocytosis is still at play, energy-independent pathways as well as clathrin-mediated endocytosis are also involved. Overall, this study has helped to elucidate early steps in the cytosolic delivery and therapeutic activity of DSCs packaged into a micellular NAN platform while shedding light on the way in which DNA functionalized nanomaterials in general can be trafficked into cells both as nanostructures and as molecular entities. Importantly, our study also shows that the NAN design in particular is able to stabilize nucleic acids when delivered in the presence of serum, a critical step for effective therapeutic nucleic acid delivery.
Collapse
Affiliation(s)
- Suman Pal
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Ina F de la Fuente
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jenna N Cannata
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Wu He
- Flow Cytometry Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
3
|
Halloy F, Biscans A, Bujold KE, Debacker A, Hill AC, Lacroix A, Luige O, Strömberg R, Sundstrom L, Vogel J, Ghidini A. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol 2022; 19:313-332. [PMID: 35188077 PMCID: PMC8865321 DOI: 10.1080/15476286.2022.2027150] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RNA-based therapeutics are emerging as a powerful platform for the treatment of multiple diseases. Currently, the two main categories of nucleic acid therapeutics, antisense oligonucleotides and small interfering RNAs (siRNAs), achieve their therapeutic effect through either gene silencing, splicing modulation or microRNA binding, giving rise to versatile options to target pathogenic gene expression patterns. Moreover, ongoing research seeks to expand the scope of RNA-based drugs to include more complex nucleic acid templates, such as messenger RNA, as exemplified by the first approved mRNA-based vaccine in 2020. The increasing number of approved sequences and ongoing clinical trials has attracted considerable interest in the chemical development of oligonucleotides and nucleic acids as drugs, especially since the FDA approval of the first siRNA drug in 2018. As a result, a variety of innovative approaches is emerging, highlighting the potential of RNA as one of the most prominent therapeutic tools in the drug design and development pipeline. This review seeks to provide a comprehensive summary of current efforts in academia and industry aimed at fully realizing the potential of RNA-based therapeutics. Towards this, we introduce established and emerging RNA-based technologies, with a focus on their potential as biosensors and therapeutics. We then describe their mechanisms of action and their application in different disease contexts, along with the strengths and limitations of each strategy. Since the nucleic acid toolbox is rapidly expanding, we also introduce RNA minimal architectures, RNA/protein cleavers and viral RNA as promising modalities for new therapeutics and discuss future directions for the field.
Collapse
Affiliation(s)
- François Halloy
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Annabelle Biscans
- Oligonucleotide Chemistry, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Katherine E. Bujold
- Department of Chemistry & Chemical Biology, McMaster University, (Ontario), Canada
| | | | - Alyssa C. Hill
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eth Zürich, Zürich, Switzerland
| | - Aurélie Lacroix
- Sixfold Bioscience, Translation & Innovation Hub, London, UK
| | - Olivia Luige
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Roger Strömberg
- Department of Biosciences and Nutrition, Karolinska Institutet, Sweden
| | - Linda Sundstrom
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (Hiri), Helmholtz Center for Infection Research (Hzi), Würzburg, Germany
- RNA Biology Group, Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Alice Ghidini
- Mechanistic and Structural Biology, Discovery Sciences, BioPharmaceuticals R&d, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|
4
|
Zhu X, Duan R, Chan SY, Han L, Liu H, Sun B. Structural and photoactive properties of self-assembled peptide-based nanostructures and their optical bioapplication in food analysis. J Adv Res 2022; 43:27-44. [PMID: 36585113 PMCID: PMC9811376 DOI: 10.1016/j.jare.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/23/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Food processing plays an important role in the modern industry because food quality and security directly affect human health, life safety, and social and economic development. Accurate, efficient, and sensitive detection technology is the basis for ensuring food quality and security. Optosensor-based technology with the advantage of fast and visual real-time detection can be used to detect pesticides, metal ions, antibiotics, and nutrients in food. As excellent optical centres, self-assembled peptide-based nanostructures possess attractive advantages, such as simple preparation methods, controllable morphology, tunable functionality, and inherent biocompatibility. AIM OF REVIEW Self-assembled peptide nanostructures with good fabrication yield, stability, dispersity in a complex sample matrix, biocompatibility, and environmental friendliness are ideal development goals in the future. Owing to its flexible and unique optical properties, some short peptide self-assemblies can possibly be used to achieve the purpose of rapid and sensitive detection of composition in food, agriculture, and the environment, expanding the understanding and application of peptide-based optics in analytical chemistry. KEY SCIENTIFIC CONCEPT OF REVIEW The self-assembly process of peptides is driven by noncovalent interactions, including hydrogen bonding, electrostatic interactions, hydrophobic interactions, and π-π stacking, which are the key factors for obtaining stable self-assembled peptide nanostructures with peptides serving as assembly units. Controllable morphology of self-assembled peptide nanostructures can be achieved through adjustment in the type, concentration, and pH of organic solvents and peptides. The highly ordered nanostructures formed by the self-assembly of peptides have been proven to be novel biological structures and can be used for the construction of optosensing platforms in biological or other systems. Optosensing platforms make use of signal changes, including optical signals and electrical signals caused by specific reactions between analytes and active substances, to determine the content or concentration of an analyte.
Collapse
Affiliation(s)
- Xuecheng Zhu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Ruixue Duan
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Siew Yin Chan
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 2 Fusionopolis Way, #08-03 Innovis, Singapore 138634, Singapore
| | - Luxuan Han
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| | - Huilin Liu
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China,Corresponding author.
| | - Baoguo Sun
- Beijing Technology and Business University, 11 Fucheng Road, Beijing 100048, China
| |
Collapse
|
5
|
Smart Nucleic Acids as Future Therapeutics. Trends Biotechnol 2021; 39:1289-1307. [PMID: 33980422 DOI: 10.1016/j.tibtech.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/23/2022]
Abstract
Nucleic acid therapeutics (NATs) hold promise in treating undruggable diseases and are recognized as the third major category of therapeutics in addition to small molecules and antibodies. Despite the milestones that NATs have made in clinical translation over the past decade, one important challenge pertains to increasing the specificity of this class of drugs. Activating NATs exclusively in disease-causing cells is highly desirable because it will safely broaden the application of NATs to a wider range of clinical indications. Smart NATs are triggered through a photo-uncaging reaction or a specific molecular input such as a transcript, protein, or small molecule, thus complementing the current strategy of targeting cells and tissues with receptor-specific ligands to enhance specificity. This review summarizes the programmable modalities that have been incorporated into NATs to build in responsive behaviors. We discuss the various inputs, transduction mechanisms, and output response functions that have been demonstrated to date.
Collapse
|
6
|
de la Fuente IF, Sawant SS, Tolentino MQ, Corrigan PM, Rouge JL. Viral Mimicry as a Design Template for Nucleic Acid Nanocarriers. Front Chem 2021; 9:613209. [PMID: 33777893 PMCID: PMC7987652 DOI: 10.3389/fchem.2021.613209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Therapeutic nucleic acids hold immense potential in combating undruggable, gene-based diseases owing to their high programmability and relative ease of synthesis. While the delivery of this class of therapeutics has successfully entered the clinical setting, extrahepatic targeting, endosomal escape efficiency, and subcellular localization. On the other hand, viruses serve as natural carriers of nucleic acids and have acquired a plethora of structures and mechanisms that confer remarkable transfection efficiency. Thus, understanding the structure and mechanism of viruses can guide the design of synthetic nucleic acid vectors. This review revisits relevant structural and mechanistic features of viruses as design considerations for efficient nucleic acid delivery systems. This article explores how viral ligand display and a metastable structure are central to the molecular mechanisms of attachment, entry, and viral genome release. For comparison, accounted for are details on the design and intracellular fate of existing nucleic acid carriers and nanostructures that share similar and essential features to viruses. The review, thus, highlights unifying themes of viruses and nucleic acid delivery systems such as genome protection, target specificity, and controlled release. Sophisticated viral mechanisms that are yet to be exploited in oligonucleotide delivery are also identified as they could further the development of next-generation nonviral nucleic acid vectors.
Collapse
Affiliation(s)
| | | | | | | | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
7
|
Fakih HH, Katolik A, Malek-Adamian E, Fakhoury JJ, Kaviani S, Damha MJ, Sleiman HF. Design and enhanced gene silencing activity of spherical 2'-fluoroarabinose nucleic acids (FANA-SNAs). Chem Sci 2021; 12:2993-3003. [PMID: 34164068 PMCID: PMC8179377 DOI: 10.1039/d0sc06645a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drug delivery vectors for nucleic acid therapeutics (NATs) face significant barriers for translation into the clinic. Spherical nucleic acids (SNAs) – nanoparticles with an exterior shell made up of DNA strands and a hydrophobic interior – have recently shown great potential as vehicles to improve the biodistribution and efficacy of NATs. To date, SNA design has not taken advantage of the powerful chemical modifications available to NATs. Here, we modify SNAs with 2′-deoxy-2′-fluoro-d-arabinonucleic acid (FANA-SNA), and show increased stability, enhanced gene silencing potency and unaided uptake (gymnosis) as compared to free FANA. By varying the spacer region between the nucleic acid strand and the attached hydrophobic polymer, we show that a cleavable DNA based spacer is essential for maximum activity. This design feature will be important when implementing functionalized nucleic acids into nanostructures for gene silencing. The modularity of the FANA-SNA was demonstrated by silencing two different targets. Transfection-free delivery was superior for the modified SNA compared to the free FANA oligonucleotide. Optimizing FANA modified spherical nucleic acids (FANA-SNAs) for highly efficient delivery of nucleic acid therapeutics.![]()
Collapse
Affiliation(s)
- Hassan H Fakih
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Adam Katolik
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | | | - Johans J Fakhoury
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Sepideh Kaviani
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Masad J Damha
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| | - Hanadi F Sleiman
- Department of Chemistry, McGill University Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
8
|
Arifuzzaman M, Hartmann AK, Rouge JL. Tracking nucleic acid nanocapsule assembly, cellular uptake and disassembly using a novel fluorescently labeled surfactant. RSC Adv 2020; 10:42349-42353. [PMID: 35516765 PMCID: PMC9057995 DOI: 10.1039/d0ra09472b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022] Open
Abstract
Intracellular trafficking and delivery of nucleic acids is an area of growing interest, particularly as it relates to therapeutic applications. Spectroscopic methods have been used to observe and quantitatively measure the delivery of oligonucleotides both in vitro and in vivo. Herein we demonstrate the use of a new fluorophore labeled surfactant presenting a solvatochromatic chromophore for tracking the assembly and degradation of a hybrid biomaterial we refer to as a nucleic acid nanocapsule (NAN). We show that the surfactant enables critical micelle concentration determination, monitoring of NAN disassembly in vitro, and the ability to track the cellular movement and activity of surfactant-oligonucleotide conjugates in cells when coupled with quantitative PCR analysis.
Collapse
Affiliation(s)
- Md Arifuzzaman
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| | - Alyssa K Hartmann
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut 55 North Eagleville Road Storrs CT 06269 USA
| |
Collapse
|
9
|
Tan X, Jia F, Wang P, Zhang K. Nucleic acid-based drug delivery strategies. J Control Release 2020; 323:240-252. [PMID: 32272123 PMCID: PMC8079167 DOI: 10.1016/j.jconrel.2020.03.040] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Nucleic acids have not been widely considered as an optimal material for drug delivery. Indeed, unmodified nucleic acids are enzymatically unstable, too hydrophilic for cell uptake and payload encapsulation, and may cause unintended biological responses such as immune system activation and prolongation of the blood coagulation pathway. Recently, however, three major areas of development surrounding nucleic acids have made it worthwhile to reconsider their role for drug delivery. These areas include DNA/RNA nanotechnology, multivalent nucleic acid nanostructures, and nucleic acid aptamers, which, respectively, provide the ability to engineer nanostructures with unparalleled levels of structural control, completely reverse certain biological properties of linear/cyclic nucleic acids, and enable antibody-level targeting using an all-nucleic acid construct. These advances, together with nucleic acids' ability to respond to various stimuli (engineered or natural), have led to a rapidly increasing number of drug delivery systems with potential for spatiotemporally controlled drug release. In this review, we discuss recent progress in nucleic acid-based drug delivery strategies, their potential, unique use cases, and risks that must be overcome or avoided.
Collapse
Affiliation(s)
- Xuyu Tan
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Fei Jia
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China
| | - Ke Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410007, China; Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Hartmann AK, Gudipati S, Pettenuzzo A, Ronconi L, Rouge JL. Chimeric siRNA-DNA Surfactants for the Enhanced Delivery and Sustained Cytotoxicity of a Gold(III) Metallodrug. Bioconjug Chem 2020; 31:1063-1069. [DOI: 10.1021/acs.bioconjchem.0c00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Alyssa K. Hartmann
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Saketh Gudipati
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| | - Andrea Pettenuzzo
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Ireland
| | - Luca Ronconi
- National University of Ireland Galway, School of Chemistry, University Road, H91 TK33 Galway, Ireland
| | - Jessica L. Rouge
- Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, Connecticut 06269, United States
| |
Collapse
|
11
|
Li H, Li Y, Xiao Y, Zhang B, Cheng Z, Shi J, Xiong J, Li Z, Zhang K. Well-Defined DNA-Polymer Miktoarm Stars for Enzyme-Resistant Nanoflares and Carrier-Free Gene Regulation. Bioconjug Chem 2020; 31:530-536. [PMID: 32041403 DOI: 10.1021/acs.bioconjchem.0c00017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Herein, we report a star-architectured poly(ethylene glycol) (PEG)-oligonucleotide nanoconjugate of a well-defined molecular structure. Based upon fullerene C60 cores, each star bears precisely 1 DNA strand and 11 polymer chains. The elevated PEG density provides the DNA with steric selectivity: the DNA is significantly more resistant to nuclease digestion while remaining able to hybridize with a complementary sequence. The degree of resistance increases as the centers of mass for the DNA and fullerene are closer together. Such steric selectivity reduces protein-related background signals of the nanoflares synthesized from these miktoarm star polymers. Importantly, the stars improve cellular uptake and regulate gene expression as a non-cytotoxic, single-entity antisense agent without the need for a transfection carrier.
Collapse
Affiliation(s)
- Hui Li
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yang Li
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yue Xiao
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.,Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Bohan Zhang
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zehong Cheng
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jianqiao Shi
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jing Xiong
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ke Zhang
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.,Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Lu C, Li Z, Chang L, Dong Z, Guo P, Shen G, Xia Q, Zhao P. Efficient Delivery of dsRNA and DNA in Cultured Silkworm Cells for Gene Function Analysis Using PAMAM Dendrimers System. INSECTS 2019; 11:insects11010012. [PMID: 31877645 PMCID: PMC7022533 DOI: 10.3390/insects11010012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 01/26/2023]
Abstract
: Polyamidoamine (PAMAM) dendrimers are emerging as intriguing nanovectors for nucleic acid delivery because of their unique well-defined architecture and high binding capacity, which have been broadly applied in DNA- and RNA-based therapeutics. The low-cost and high-efficiency of PAMAM dendrimers relative to traditional liposomal transfection reagents also promote their application in gene function analysis. In this study, we first investigated the potential use of a PAMAM system in the silkworm model insect. We determined the binding property of G5-PAMAM using dsRNA and DNA in vitro, and substantially achieved the delivery of dsRNA and DNA from culture medium to both silkworm BmN and BmE cells, thus leading to efficient knockdown and expression of target genes. Under treatments with different concentrations of G5-PAMAM, we evaluated its cellular cytotoxicity on silkworm cells, and the results show that G5-PAMAM had no obvious toxicity to cells. The presence of serum in the culture medium did not affect the delivery performance of DNA and dsRNA by G5-PAMAM, revealing its convenient use for various purposes. In conclusion, our data demonstrate that the PAMAM system provides a promising strategy for delivering dsRNA and DNA in cultured silkworm cells and promote its further application in individuals.
Collapse
Affiliation(s)
- Chenchen Lu
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhiqing Li
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Li Chang
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Zhaoming Dong
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Pengchao Guo
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Applications of Spherical Nucleic Acid Nanoparticles as Delivery Systems. Trends Mol Med 2019; 25:1066-1079. [DOI: 10.1016/j.molmed.2019.08.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
|
14
|
Dai Y, Furst A, Liu CC. Strand Displacement Strategies for Biosensor Applications. Trends Biotechnol 2019; 37:1367-1382. [DOI: 10.1016/j.tibtech.2019.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
|