1
|
Su J, Yang X, Shi H, Yao S, Zhou M. Heteropolyacid promoted lignin-MOF derived spherical catalyst for catalytic hydrogen transfer of 5-hydroxymethylfurfural. J Colloid Interface Sci 2024; 669:336-348. [PMID: 38718587 DOI: 10.1016/j.jcis.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/27/2024]
Abstract
Catalytic conversion of biomass-derived value-added chemicals was of great significance for the utilization of renewable biomass resources to instead of fossil chemicals. Biomass-derived lignin was regarded as an important support and 5-hydroxymethylfurfural (HMF) was a vital platform chemical derived from cellulose. Herein, a series of lignin-MOF hybrid catalysts were prepared and modified with different heteropolyacids (HPAs), which were then successfully introduced into the selective conversion of HMF to 5-hydroxymethylfurfuryl alcohol (MFA). The effect of different HPA, calcination temperature, etc. were all studied, and all catalysts were well characterized. It was confirmed that silicotungstic acid modified catalyst (Ni3Co-MOF-LS@HSiW) exhibited the best catalytic performance, while the highest conversion of HMF was up to 100%, with the best MFA yield of 86.5%. The finding in this study could provide novel insights for the utilization of lignin and preparation of value-added biomass-derived chemicals.
Collapse
Affiliation(s)
- Jiantao Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaohui Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Hui Shi
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Minghao Zhou
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
2
|
Heo JB, Lee YS, Chung CH. Marine plant-based biorefinery for sustainable 2,5-furandicarboxylic acid production: A review. BIORESOURCE TECHNOLOGY 2023; 390:129817. [PMID: 37839644 DOI: 10.1016/j.biortech.2023.129817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 09/30/2023] [Indexed: 10/17/2023]
Abstract
Marine plants, including macroalgae and seagrass, show promise as biorenewable feedstocks for sustainable chemical manufacturing. This study explores their potential in producing 2,5-furandicarboxylic acid (FDCA), a versatile platform chemical for commodity polymers. FDCA-based polyethylene 2,5-furandicarboxylate offers a sustainable alternative to petroleum-derived polyethylene terephthalate, commonly used in plastic bottles. Our research pioneers the concept of a marine plant-based FDCA biorefinery, introducing innovative approaches for sustainability and cost-effectiveness. This review outlines the use of ionic liquid-based solvents (ILS) and deep eutectic solvent (DES) systems in FDCA production. Additionally, we propose biomodification strategies involving target enzyme-encoding genes to enhance the depolymerization of non-structural storage glucans in marine plants. Our findings pave the way for eco-friendly biorefineries and biorenewable plastics.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Research Institute for Basic Sciences, Pukyong National University, Busan 48513, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea.
| |
Collapse
|
3
|
Heo JB, Yun HR, Lee YS, Chung CH. Strategic biomodification for raw plant-based pretreatment biorefining toward sustainable chemistry. Crit Rev Biotechnol 2023; 43:870-883. [PMID: 35968908 DOI: 10.1080/07388551.2022.2092715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/16/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Plant-based pretreatment biorefining is the initial triggering process in biomass-conversion to bio-based chemical products. In view of chemical sustainability, the raw plant-based pretreatment biorefining process is more favorable than the fossil-based one. Its direct use contributes to reducing CO2 emissions and the production cost of the target products by eliminating costly steps, such as the separation and purification of intermediates. Three types of feedstock plant resources have been utilized as raw plant feedstock sources, such as: lignocellulosic, starchy, and inulin-rich feedstock plants. These plant sources can be directly used for bio-based chemical products. To enhance the efficiency of their pretreatment biorefining process, well-designed biomodification schemes are discussed in this review to afford important information on useful biomodification approaches. For lignocellulosic feedstock plants, the enzymes and regulatory elements involved in lignin reduction are discussed using: COMT, GAUT4, CSE, PvMYB4 repressor, etc. For inulin-rich feedstock plants, 1-SST, 1-FFT, 1-FEH, and endoinulinase are illustrated in relation with the reduction of chain length of inulin polymer. For starchy feedstock plants, their biomodification is targeted to enhancing the depolymerization efficiency of starch to glucose monomer units. For this biomodification target, six candidates are discussed. These are SBE I, SBE IIa, SBE IIb, GBSS I, PTSTI, GWD 1, and PTSTI. The biomodification strategies discussed here promise to be conducive to enhancing the efficiency of the plant-based pretreatment biorefining process.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Hee Rang Yun
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Research Institute for Basic Sciences, Pukyong National University, Busan, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|
4
|
Zhou Y, Liu L, Li M, Hu C. Algal biomass valorisation to high-value chemicals and bioproducts: Recent advances, opportunities and challenges. BIORESOURCE TECHNOLOGY 2022; 344:126371. [PMID: 34838628 DOI: 10.1016/j.biortech.2021.126371] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
Algae are considered promising biomass resources for biofuel production. However, some arguments doubt the economical and energetical feasibility of algal cultivation, harvesting, and conversion processes. Beyond biofuel, value-added bioproducts can be generated via algae conversion, which would enhance the economic feasibility of algal biorefineries. This review primarily focuses on valuable chemical and bioproduct production from algae. The methods for effective recovery of valuable algae components, and their applications are summarized. The potential routes for the conversion of lipids, carbohydrates, and proteins to valuable chemicals and bioproducts are assessed from recent studies. In addition, this review proposes the following challenges for future algal biorefineries: (1) utilization of naturally grown algae instead of cultivated algae; (2) fractionation of algae to individual components towards high-selectivity products; (3) avoidance of humin formation from algal carbohydrate conversion; (4) development of strategies for algal protein utilisation; and (5) development of efficient processes for commercialization and industrialization.
Collapse
Affiliation(s)
- Yingdong Zhou
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Li Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Mingyu Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, PR China.
| |
Collapse
|
5
|
Heo JB, Lee YS, Chung CH. Conversion of inulin-rich raw plant biomass to 2,5-furandicarboxylic acid (FDCA): Progress and challenge towards biorenewable plastics. Biotechnol Adv 2021; 53:107838. [PMID: 34571195 DOI: 10.1016/j.biotechadv.2021.107838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 12/27/2022]
Abstract
The current commercial plastic manufactures have been produced using petroleum-based resource. However, due to concerns over the resource depletion and the environmental sustainability, bioresource-based manufacturing processes have been developed to cope against these concerns. Bioresource-derived 2,5-furandicarboxylic acid (FDCA) can be utilized as a building block material for plastic manufactures. To date, numerous technologies have been developed for the production of FDCA using various types of bio-based feedstocks such as hydroxymethylfurfural (HMF), 6-C sugars, and polysaccharides. The commercial companies produce FDCA using HMF-based production processes due to their high production efficiency, but the high price of HMF is a problem bottleneck. Our review affords important information on breakthrough approaches for the cost-efficient and sustainable production of FDCA using raw plant feedstocks rich in inulin. These approaches include bioprocessing technology based on the direct use of raw plant feedstocks and biomodification of the target plant sources. For the former, an ionic liquid-based processing system is proposed for efficient pretreatment of raw plant feedstocks. For the latter, the genes encoding the key enzymes; sucrose:sucrose 1-fructoyltransferase (1-SST), fructan:fructan 1-fryuctosyltransferase (1-FFT), fructan 1-exohydrolase (1-FEH), and microbe-derived endoinulinase, are introduced for biomodification conducive to facilitating bioprocess and improving inulin content. These approaches would contribute to cost-efficiently and sustainably producing bio-based FDCA.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea.
| |
Collapse
|
6
|
Acid hydrolysis conditions for the production of fine chemicals from Gracilaria birdiae alga biomass. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Heo JB, Lee YS, Chung CH. Seagrass-based platform strategies for sustainable hydroxymethylfurfural (HMF) production: toward bio-based chemical products. Crit Rev Biotechnol 2021; 41:902-917. [PMID: 33648387 DOI: 10.1080/07388551.2021.1892580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Today, sustainable chemistry is a key trend in the chemical manufacturing industry due mainly to concerns over the global environment and resource security. In sustainable chemical manufacture, the choice of a bio-based feedstock plays a pivotal pillar. In terms of feedstock utilization for producing HMF, which is a multivalent platform intermediate easily convertible to valuable chemical products; biopolymers, biofuels, and other important chemicals, seagrass biomasses can be more favorable feedstocks compared with land plant resources due primarily to easy availability and no systematic farming. Moreover, seagrass feedstocks could contribute cost-effectively and sustainably producing HMF by exploiting the beach-cast seagrasses on seagrass-prairies with no feedstock cost, indicating that seagrass biomasses could be a most promising biofeedstock source for sustainable HMF production. We afford a platform bioprocessing technology that has not been attempted before for sustainable HMF production using raw seagrass biomass. This bioprocess can be operated by simple reaction conditions using inorganic Brønsted acids (mainly HCl) and ionic liquid solvents at relatively low temperatures (120-130 °C). In addition, some bioengineering strategies for improving the growth of seagrass biomass and the quantity/quality of nonstructural carbohydrates (starch, sucrose) that can be used as the feeding substrates for HMF production are also discussed. The main aim of this review is to provide some important information about breakthrough bio/technologies conducive to cost-effective and sustainable HMF production.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Genetic Biotechnology, Dong-A University, Busan, South Korea
| | - Yong-Suk Lee
- Division of Applied Life Science (BK21), Gyeongsang National University, Jinju, South Korea
| | - Chung-Han Chung
- Department of Biotechnology, Dong-A University, Busan, South Korea
| |
Collapse
|