1
|
Zhu S, Chen A, Zhang J, Luo S, Yang J, Chai Y, Zeng J, Bai M, Yang Z, Lu G. Deciphering the biodegradation of thiamethoxam by Phanerochaete chrysosporium with natural siderite: Synergistic mechanisms, transcriptomics characterization, and molecular simulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136327. [PMID: 39481264 DOI: 10.1016/j.jhazmat.2024.136327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/12/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Fungi play vital roles in the fate of organic pollutants, particularly when interacting with minerals in aquatic and soil environments. Mechanisms by which fungi may mitigate pollutions in fungus-mineral interactions are still unclear. Inspired by biogeochemical cycling, we constructed a range of co-culture systems to investigate synergistic effects of the white-rot fungus Phanerochaete chrysosporium and the iron-bearing mineral siderite on thiamethoxam (THX) transformation, a common neonicotinoid pesticide. Co-culturing with siderite significantly enhanced THX transformation during the initial 10 days with a dose effect, achieving 86 % removal within 25 days. Fungi could affect siderite's dissolution, transformation, and precipitation through their biological activities. These interactions triggered physiological adaptation and resilience in fungi. Siderite could enhance the activity of fungal ligninolytic enzymes and cytochrome P450, facilitating biotransformation. Genes expression related to growth, energy metabolism, and oxidative stress response upregulated, enhancing fungal resilience to THX. The primary THX degradation pathways included nitro-reduction, C-N cleavage, and de-chlorination. Molecular dynamics simulations provided insights into catalytic mechanisms of enzyme-THX interactions. Together, siderite could act as natural enhancers that endowed fungi to resist physical and chemical stresses in environments, providing insights into contaminants attenuation, fungal biomineralization, and the coevolution of the Earth's lithosphere and biosphere.
Collapse
Affiliation(s)
- Shiye Zhu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiale Zhang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jizhao Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Youzheng Chai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Jianhua Zeng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266000, PR China
| | - Ma Bai
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhenghang Yang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Gen Lu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, PR China
| |
Collapse
|
2
|
Duan Y, Chen L, Ma L, Amin FR, Zhai Y, Chen G, Li D. From lignocellulosic biomass to single cell oil for sustainable biomanufacturing: Current advances and prospects. Biotechnol Adv 2024; 77:108460. [PMID: 39383979 DOI: 10.1016/j.biotechadv.2024.108460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
As global temperatures rise and arid climates intensify, the reserves of Earth's resources and the future development of humankind are under unprecedented pressure. Traditional methods of food production are increasingly inadequate in meeting the demands of human life while remaining environmentally sustainable and resource-efficient. Consequently, the sustainable supply of lipids is expected to become a pivotal area for future food development. Lignocellulose biomass (LB), as the most abundant and cost-effective renewable resource, has garnered significant attention from researchers worldwide. Thus, bioprocessing based on LB is appearing as a sustainable model for mitigating the depletion of energy reserves and reducing carbon footprints. Currently, the transformation of LB primarily focuses on producing biofuels, such as bioethanol, biobutanol, and biodiesel, to address the energy crisis. However, there are limited reports on the production of single cell oil (SCO) from LB. This review, therefore, provides a comprehensive summary of the research progress in lignocellulosic pretreatment. Subsequently, it describes how the capability for lignocellulosic use can be conferred to cells through genetic engineering. Additionally, the current status of saccharification and fermentation of LB is outlined. The article also highlights the advances in synthetic biology aimed at driving the development of oil-producing microorganism (OPM), including genetic transformation, chassis modification, and metabolic pathway optimization. Finally, the limitations currently faced in SCO production from straw are discussed, and future directions for achieving high SCO yields from various perspectives are proposed. This review aims to provide a valuable reference for the industrial application of green SCO production.
Collapse
Affiliation(s)
- Yu Duan
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Limei Chen
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Longxue Ma
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Farrukh Raza Amin
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yida Zhai
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China; School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Guofu Chen
- School of Marine Science and Technology, Harbin Institute of Technology (Weihai), Weihai 264209, PR China.
| | - Demao Li
- Tianjin Key Laboratory for Industrial Biological System and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
3
|
Zhang Y, Liu Z, Sun Y, Du Y, Zhao Z, Liu Q, Song Y. Lipid production from corn straw by cellobiohydrolase and delta-6 desaturase engineered Mucor circinelloides strains under solid state fermentation. Sci Rep 2024; 14:18784. [PMID: 39138250 PMCID: PMC11322153 DOI: 10.1038/s41598-024-68499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Previously, we constructed engineered M. circinelloides strains that can not only utilize cellulose, but also increase the yield of γ-linolenic acid (GLA). In the present study, an in-depth analysis of lipid accumulation by engineered M. circinelloides strains using corn straw was to be explored. When a two-stage temperature control strategy was adopted with adding 1.5% cellulase and 15% inoculum, the engineered strains led to increases in the lipid yield (up to 1.56 g per 100 g dry medium) and GLA yield (up to 274 mg per 100 g dry medium) of 1.8- and 2.3-fold, respectively, compared with the control strain. This study proved the engineered M. circinelloides strains, especially for Mc-C2PD6, possess advantages in using corn straw to produce GLA. This work provided a reference for transformation from agricultural cellulosic waste to functional lipid in one step, which might play a positive role in promoting the sustainable development of biological industry.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Zhuo Liu
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yan Sun
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Yuanxin Du
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Zixuan Zhao
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China
| | - Qing Liu
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- School of Agricultural Engineering and Food Science, Colin Ratledge Center for Microbial Lipids, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
4
|
Jiang D, Yang M, Chen K, Jiang W, Zhang L, Ji XJ, Jiang J, Lu L. Exploiting synthetic biology platforms for enhanced biosynthesis of natural products in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2024; 399:130614. [PMID: 38513925 DOI: 10.1016/j.biortech.2024.130614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
With the rapid development of synthetic biology, researchers can design, modify, or even synthesize microorganisms de novo, and microorganisms endowed with unnatural functions can be considered "artificial life" and facilitate the development of functional products. Based on this concept, researchers can solve critical problems related to the insufficient supply of natural products, such as low yields, long production cycles, and cumbersome procedures. Due to its superior performance and unique physiological and biochemical characteristics, Yarrowia lipolytica is a favorable chassis cell used for green biomanufacturing by numerous researchers. This paper mainly reviews the development of synthetic biology techniques for Y. lipolytica and summarizes the recent research progress on the synthesis of natural products in Y. lipolytica. This review will promote the continued innovative development of Y. lipolytica by providing theoretical guidance for research on the biosynthesis of natural products.
Collapse
Affiliation(s)
- Dahai Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Manqi Yang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Kai Chen
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Wenxuan Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Liangliang Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Jianchun Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China; Institute of Chemical Industry of Forest Products, CAF, Nanjing 210042, People's Republic of China
| | - Liming Lu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, People's Republic of China; Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, People's Republic of China; Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, Xiamen 361021, People's Republic of China.
| |
Collapse
|
5
|
Li Z, Zhong X, Luan C, Wen N, Shi C, Liu S, Xu Y, He Q, Wu Y, Yang J. Simultaneous ultrasound and microwave application in myosin-chlorogenic acid conjugation: Unlocking enhanced emulsion stability. Food Chem X 2024; 21:101149. [PMID: 38312490 PMCID: PMC10837472 DOI: 10.1016/j.fochx.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
This study investigated the grafting chlorogenic acid (CA) onto myosin, utilizing various techniques including conventional method, ultrasound, microwave, and combination of ultrasound and microwave (UM). The grafting efficiency was as follows: conventional method < microwave < ultrasound < UM. The UM technique manifested the highest CA-binding capacity (80.26 μmol/g myosin) through covalent bonding, and a much shorter time was required for conjugation than conventional method. The conjugation of polyphenol significantly increased the solubility of myosin with reduced aggregation behavior, which was accompanied by structural alterations from ordered structures (α-helix and β-sheet) to disordered forms. The emulsion stabilized by UM-myosin-CA conjugate exhibited the most homogeneous microstructure with favorable creaming stability. Moreover, the resulting emulsion presented strong oxidation resistance and storage stability. These results illustrate the promising potential of employing CA-grafted myosin, especially when processed using the UM technique, in the development of highly efficient emulsifiers.
Collapse
Affiliation(s)
- Zhiyu Li
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Xiaomei Zhong
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Cuirong Luan
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Nanhua Wen
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
| | - Chuanyang Shi
- Department of Nutrition and Food Studies, Steinhardt School of Culture, Education, and Human Development, New York University, NY, United States
| | - Shuji Liu
- Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, Fisheries Research Institute of Fujian, Xiamen, China
| | - Yizhou Xu
- College of Oceanography, Fujian Agriculture and Forest University, Fuzhou, China
| | - Quan He
- Department of Engineering, Faculty of Agriculture, Dalhousie University, NS, Canada
| | - Yijing Wu
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| | - Jie Yang
- Institute of Oceanography, Department of Geography and Oceanography, Minjiang University, Fuzhou, China
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Minjiang University, Fuzhou, China
| |
Collapse
|
6
|
Thomas NM, Sathasivam V, Thirunavukarasu M, Muthukrishnan A, Muthukrishnan S, Rajkumar V, Velusamy G, Packiaraj G. Influence of Borassus flabellifer Endocarps Hydrolysate on Fungal Biomass and Fatty Acids Production by the Marine Fungus Aspergillus sp. Appl Biochem Biotechnol 2024; 196:923-948. [PMID: 37273094 DOI: 10.1007/s12010-023-04588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Polyunsaturated Fatty Acids (PUFAs) are important nutrients for human health. We aimed to evaluate the efficiency of marine water fungus Aspergillus sp. (Accession no: MZ505709) for lipid biosynthesis. The Yeast Extract Glucose (YEG) medium was supplemented with different concentration of Borassus flabellifer Endocarps Hydrolysate (BFEH; 1-5%) to evaluate the fungal biomass and its lipid accumulation. The combination of glucose and BFEH as carbon source increased the fresh weight (25.43 ± 0.33 g/L), dry weight (21.39 ± 0.77 g/L) and lipid yield (3.14 ± 0.09 g/L) of fungal biomass. The lipid content of dried fungal biomass has shown 91.08 ± 5.07 mg cod liver oil equivalents/g and 125.98 ± 5.96 mg groundnut oil equivalents/g biomass. GC-MS and NMR spectrometry analysis revealed the compounds involved in fatty acid metabolism and lipid signaling pathways along with the presence of linolenic acid. Interestingly, fungus grown in BFEH enriched medium has recorded the maximum amount of lipids with major fatty acid derivatives. Increase in the growth rate of Artemia franciscana was observed, when the extracted fungal lipid was supplemented as a food supplement. Therefore, this study suggests that marine fungal lipid may serve as potential natural compound as nutraceuticals and aquafeeds.
Collapse
Affiliation(s)
- Nancy Mary Thomas
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Vinoth Sathasivam
- Department of Biotechnology, Sona College of Arts and Science, Salem, 636 005, Tamil Nadu, India
| | | | - Arun Muthukrishnan
- Department of Biotechnology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | | | | - Gayathri Velusamy
- Department of Zoology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | | |
Collapse
|
7
|
Sun ML, Gao X, Lin L, Yang J, Ledesma-Amaro R, Ji XJ. Building Yarrowia lipolytica Cell Factories for Advanced Biomanufacturing: Challenges and Solutions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:94-107. [PMID: 38126236 DOI: 10.1021/acs.jafc.3c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microbial cell factories have shown great potential for industrial production with the benefit of being environmentally friendly and sustainable. Yarrowia lipolytica is a promising and superior non-model host for biomanufacturing due to its cumulated advantages compared to model microorganisms, such as high fluxes of metabolic precursors (acetyl-CoA and malonyl-CoA) and its naturally hydrophobic microenvironment. However, although diverse compounds have been synthesized in Y. lipolytica cell factories, most of the relevant studies have not reached the level of industrialization and commercialization due to a number of remaining challenges, including unbalanced metabolic flux, conflict between cell growth and product synthesis, and cytotoxic effects. Here, various metabolic engineering strategies for solving the challenges are summarized, which is developing fast and extremely conducive to rational design and reconstruction of robust Y. lipolytica cell factories for advanced biomanufacturing. Finally, future engineering efforts for enhancing the production efficiency of this platform strain are highlighted.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiaoxia Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jing Yang
- 2011 College, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
8
|
Pham TA, Luu TH, Dam TH, To KA. Bioconversion of Shrimp Waste into Functional Lipid by a New Oleaginous Sakaguchia sp. Mol Biotechnol 2024:10.1007/s12033-023-01014-4. [PMID: 38198050 DOI: 10.1007/s12033-023-01014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Chitin, the second most abundant biomolecule after cellulose in nature, is a significant aquaculture by-product, and is estimated at 6-8 million tons annually. Chitin is composed of monomeric N-acetylglucosamine (NAG) which can be seen as an alternative feedstock for biotechnology. Microbial functional lipids have gained attention due to their bioactivity and sustainable production. In this study, a new oleaginous yeast strain named Sakaguchia sp. HKC2 was found to be able to use NAG as the carbon source for growth and accumulate functional lipids such as PUFAs and carotenoids. When cultured on the NAG-containing medium, strain HKC2 exhibited slower growth and slower intracellular lipid accumulation compared to those on a glucose-containing medium. However, the lipids obtained from HKC2 grown on NAG medium were richer in PUFAs. Notably, torularhodin-a powerful bioactive carotenoid-was found in all HKC2 cultures on NAG, while torulene was abundant in glucose medium. These findings highlight a novel avenue for utilizing aquatic by-products and unlocking their potential.
Collapse
Affiliation(s)
- Tuan Anh Pham
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam.
- Laboratory of Applied Microbiology (LAM), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam.
| | - Thi Huyen Luu
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Thuy Hang Dam
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
- Laboratory of Applied Microbiology (LAM), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| | - Kim Anh To
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST), 1 Dai Co Viet, Hai Ba Trung, Hanoi, Vietnam
| |
Collapse
|
9
|
Zhang Y, Yang Y, Liu Q, Li S, Song Y. Lipid Accumulation by Snf-β Engineered Mucor circinelloides Strains on Glucose and Xylose. Appl Biochem Biotechnol 2023; 195:7697-7707. [PMID: 37086376 DOI: 10.1007/s12010-023-04531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays the regulatory roles in the utilization of selective carbon sources and lipid metabolism. Previously, the role of β subunit of SNF1 in lipid accumulation was evaluated by overexpression and knockout of Snf-β in oleaginous fungus M. circinelloides. In the present study, the growth and lipid accumulation of Snf-β overexpression and knockout strains were further analyzed and compared with glucose or xylose as a single or mixed carbon sources. The results showed that the lipid contents in Snf-β knockout strain improved by 23.2% (for glucose), 28.4% (for xylose), and 30.5% (for mixed glucose and xylose) compared with that of the control strain, respectively. The deletion of Snf-β subunit also altered the transcriptional level of acetyl-CoA carboxylase (ACC). The highest transcriptional levels of ACC1 in Snf-β knockout strain at 24 h were increased by 2.4-fold (for glucose), 2.8-fold (for xylose), and 3.1-fold (for mixed glucose and xylose) compared with that of the control strain, respectively. Our results indicated that Snf-β subunit enhanced lipid accumulation through the regulation of ACC1 in response to xylose or mixed sugars of glucose and xylose more significantly than that of response to glucose. This is the first study to explore the effect of Snf-β subunit of M. circinelloides in regulating lipid accumulation responding to different carbon nutrient signals of glucose and xylose. This study provides a foundation for the future application of the Snf-β engineered strains in lipid production from lignocellulose.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022, People's Republic of China.
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China.
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Qing Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000, People's Republic of China
| |
Collapse
|
10
|
Najar-Almanzor CE, Velasco-Iglesias KD, Nunez-Ramos R, Uribe-Velázquez T, Solis-Bañuelos M, Fuentes-Carrasco OJ, Chairez I, García-Cayuela T, Carrillo-Nieves D. Microalgae-assisted green bioremediation of food-processing wastewater: A sustainable approach toward a circular economy concept. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118774. [PMID: 37619389 DOI: 10.1016/j.jenvman.2023.118774] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Wastewater disposal is a major environmental issue that pollutes water, causing eutrophication, habitat destruction, and economic impact. In Mexico, food-processing effluents pose a huge environmental threat due to their excessive nutrient content and their large volume discharged every year. Some of the most harmful residues are tequila vinasses, nejayote, and cheese whey. Each liter of tequila generates 13-15 L of vinasses, each kilogram of cheese produces approximately 9 kg of cheese whey, and each kilogram of nixtamalized maize results in the production of 2.5-3.3 L of nejayote. A promising strategy to reduce the contamination derived from wastewater is through microalgae-based wastewater treatment. Microalgae have a high adaptability to hostile environments and they can feed on the nutrients in the effluents to grow. Moreover, to increase the viability, profitability, and value of wastewater treatments, a microalgae biorefinery could be proposed. This review will focus on the circular bioeconomy scheme focused on the simultaneous food-processing wastewater treatment and its use to grow microalgae biomass to produce added-value compounds. This strategy allows for the revalorization of wastewater, decreases contamination of water sources, and produces valuable compounds that promote human health such as phycobiliproteins, carotenoids, omega-3 fatty acids, exopolysaccharides, mycosporine-like amino acids, and as a source of clean energy: biodiesel, biogas, and bioethanol.
Collapse
Affiliation(s)
- Cesar E Najar-Almanzor
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Karla D Velasco-Iglesias
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Regina Nunez-Ramos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tlalli Uribe-Velázquez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Minerva Solis-Bañuelos
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Oscar J Fuentes-Carrasco
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Isaac Chairez
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico; Tecnologico de Monterrey, Institute of Advanced Materials for the Sustainable Manufacturing, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Tomás García-Cayuela
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico
| | - Danay Carrillo-Nieves
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Av. General Ramón Corona No. 2514, 45201, Zapopan, Jal., Mexico.
| |
Collapse
|
11
|
Naseema Rasheed R, Pourbakhtiar A, Mehdizadeh Allaf M, Baharlooeian M, Rafiei N, Alishah Aratboni H, Morones-Ramirez JR, Winck FV. Microalgal co-cultivation -recent methods, trends in omic-studies, applications, and future challenges. Front Bioeng Biotechnol 2023; 11:1193424. [PMID: 37799812 PMCID: PMC10548143 DOI: 10.3389/fbioe.2023.1193424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/08/2023] [Indexed: 10/07/2023] Open
Abstract
The burgeoning human population has resulted in an augmented demand for raw materials and energy sources, which in turn has led to a deleterious environmental impact marked by elevated greenhouse gas (GHG) emissions, acidification of water bodies, and escalating global temperatures. Therefore, it is imperative that modern society develop sustainable technologies to avert future environmental degradation and generate alternative bioproduct-producing technologies. A promising approach to tackling this challenge involves utilizing natural microbial consortia or designing synthetic communities of microorganisms as a foundation to develop diverse and sustainable applications for bioproduct production, wastewater treatment, GHG emission reduction, energy crisis alleviation, and soil fertility enhancement. Microalgae, which are photosynthetic microorganisms that inhabit aquatic environments and exhibit a high capacity for CO2 fixation, are particularly appealing in this context. They can convert light energy and atmospheric CO2 or industrial flue gases into valuable biomass and organic chemicals, thereby contributing to GHG emission reduction. To date, most microalgae cultivation studies have focused on monoculture systems. However, maintaining a microalgae monoculture system can be challenging due to contamination by other microorganisms (e.g., yeasts, fungi, bacteria, and other microalgae species), which can lead to low productivity, culture collapse, and low-quality biomass. Co-culture systems, which produce robust microorganism consortia or communities, present a compelling strategy for addressing contamination problems. In recent years, research and development of innovative co-cultivation techniques have substantially increased. Nevertheless, many microalgae co-culturing technologies remain in the developmental phase and have yet to be scaled and commercialized. Accordingly, this review presents a thorough literature review of research conducted in the last few decades, exploring the advantages and disadvantages of microalgae co-cultivation systems that involve microalgae-bacteria, microalgae-fungi, and microalgae-microalgae/algae systems. The manuscript also addresses diverse uses of co-culture systems, and growing methods, and includes one of the most exciting research areas in co-culturing systems, which are omic studies that elucidate different interaction mechanisms among microbial communities. Finally, the manuscript discusses the economic viability, future challenges, and prospects of microalgal co-cultivation methods.
Collapse
Affiliation(s)
| | - Asma Pourbakhtiar
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | | | - Maedeh Baharlooeian
- Department of Marine Biology, Faculty of Marine Science and Oceanography, Khorramshahr University of Marine Science and Technology, Khorramshahr, Iran
| | - Nahid Rafiei
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Hossein Alishah Aratboni
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
| | - Jose Ruben Morones-Ramirez
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca, Nuevo León, Mexico
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Universidad Autonoma de Nuevo Leon (UANL), Av Universidad s/n, CD. Universitaria, San Nicolás de los Garza, Nuevo León, Mexico
| | - Flavia Vischi Winck
- Regulatory Systems Biology Lab, Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
12
|
Taubner RS, Baumann LMF, Steiner M, Pfeifer K, Reischl B, Korynt K, Bauersachs T, Mähnert B, Clifford EL, Peckmann J, Schuster B, Birgel D, Rittmann SKMR. Lipidomics and Comparative Metabolite Excretion Analysis of Methanogenic Archaea Reveal Organism-Specific Adaptations to Varying Temperatures and Substrate Concentrations. mSystems 2023; 8:e0115922. [PMID: 36880756 PMCID: PMC10134847 DOI: 10.1128/msystems.01159-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023] Open
Abstract
Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.
Collapse
Affiliation(s)
- Ruth-Sophie Taubner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
- Institute for Chemical Technology of Organic Materials, Johannes Kepler Universität Linz, Linz, Upper Austria, Austria
- Space Research Institute, Austrian Academy of Sciences, Graz, Styria, Austria
| | - Lydia M. F. Baumann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Michael Steiner
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Barbara Reischl
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| | - Kordian Korynt
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Thorsten Bauersachs
- Institute of Geosciences, Department of Organic Geochemistry, Christian Albrechts Universität, Kiel, Schleswig-Holstein, Germany
| | - Barbara Mähnert
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Elisabeth L. Clifford
- Marine Biology/Microbial Oceanography, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
| | - Jörn Peckmann
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Daniel Birgel
- Institute for Geology, Center for Earth System Research and Sustainability, Universität Hamburg, Hamburg, Germany
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Vienna, Austria
- Arkeon GmbH, Tulln an der Donau, Austria
| |
Collapse
|
13
|
Zhang Y, Yang Y, Zhang H, Liu Q, Song Y. Effect of Different Carbons on Lipid Production and SNF1 Transcription in Mucor Circinelloides. Indian J Microbiol 2023; 63:146-151. [PMID: 37188240 PMCID: PMC10172402 DOI: 10.1007/s12088-023-01070-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Sucrose non-fermenting 1 (SNF1) protein kinase plays an important role in the utilization of selective carbon sources and regulation of lipid metabolism. In order to further explore the function of SNF1 in regulating lipid accumulation by responding nutritional signals from non-glucose carbon sources, in the present study, the lipid production and SNF1 transcriptional levels of Mucor circinelloides were analyzed and compared on different carbon sources. The results indicated that M. circinelloides could effectively utilize some secondary metabolic carbon sources of monosaccharides and disaccharides for growth and lipids production, such as fructose, maltose and galactose. Snf-β subunit was associated with the regulation of lipid metabolism in response to nutritional signals from different carbon sources. This is the first report on the transcriptional analysis of SNF1 subunits on different carbons metabolism in oleaginous filamentous fungi. This research has suggested that genetic engineering of SNF1 subunits will alter the lipid production of M. circinelloides from alternative carbon sources. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01070-z.
Collapse
Affiliation(s)
- Yao Zhang
- Food Bioengineering and Technology Laboratory, Department of Food Science and Nutrition, College of Culture and Tourism, University of Jinan, 13 Shungeng Road, Jinan, 250022 People’s Republic of China
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yueping Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Han Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Qiu Liu
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, 255000 People’s Republic of China
| |
Collapse
|
14
|
Cao L, Yin M, Shi TQ, Lin L, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce nutritional fatty acids: Current status and future perspectives. Synth Syst Biotechnol 2022; 7:1024-1033. [PMID: 35801090 PMCID: PMC9249680 DOI: 10.1016/j.synbio.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 11/26/2022] Open
Abstract
Due to their vital physiological functions, nutritional fatty acids have great potential as nutraceutical food supplements for preventing an array of diseases such as inflammation, depression, arthritis, osteoporosis, diabetes and cancer. Microbial biosynthesis of fatty acids follows the trend of sustainable development, as it enables green, environmentally friendly and efficient production. As a natural oleaginous yeast, Yarrowia lipolytica is especially well-suited for the production of fatty acids. Moreover, it has a variety of genetic engineering tools and novel metabolic engineering strategies that make it a robust workhorse for the production of an array of value-added products. In this review, we summarize recent advances in metabolic engineering strategies for accumulating nutritional fatty acids in Y. lipolytica, including conjugated fatty acids and polyunsaturated fatty acids. In addition, the future prospects of nutritional fatty acid production using the Y. lipolytica platform are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
|
15
|
Yue YK, Yang Z, Xing JJ, Guo XN, Zhu KX. Fabrication and stabilization mechanisms of Pickering emulsions based on gliadin/arabinoxylan complexes. Food Chem 2022; 393:133458. [PMID: 35751209 DOI: 10.1016/j.foodchem.2022.133458] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 12/01/2022]
Abstract
In the present work, the Pickering emulsions with enhanced oxidation stability were fabricated using gliadin (G)/arabinoxylan nanoparticles (GANPs). The influence of different G/AX ratios on the properties of GANPs and corresponding physicochemical characteristics of Pickering emulsions were investigated. Results indicated that the droplet size and ζ-potential of Pickering emulsions declined with the decrease of G/AX ratios. Pickering emulsion with the smallest G/AX ratio (1:4) exhibited excellent oxidative and coalescence stability due to the formation of viscoelastic gel network, which was supported by confocal laser scanning microscopy (CLSM) images. Furthermore, the increase of salt ions in a lower concentration (0-0.2 M) was conducive to the flocculation of the droplets, while further increasing the NaCl concentration impaired the emulsion stability. Such elements revealed that G/AX complex is a promising stabilizer of Pickering emulsions with prominent antioxidant activity, which have favorable potential applications in protecting the functional properties of polyunsaturated fatty acids (PUFAs).
Collapse
Affiliation(s)
- Yi-Ke Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Zhen Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Jun-Jie Xing
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Xiao-Na Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Ke-Xue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China.
| |
Collapse
|
16
|
Song Y, Hu Z, Xiong Z, Li S, Liu W, Tian T, Yang X. Comparative transcriptomic and lipidomic analyses indicate that cold stress enhanced the production of the long C18–C22 polyunsaturated fatty acids in Aurantiochytrium sp. Front Microbiol 2022; 13:915773. [PMID: 36204624 PMCID: PMC9530390 DOI: 10.3389/fmicb.2022.915773] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aurantiochytrium sp. belonging to Thraustochytrids are known for their capacity to produce long-chain polyunsaturated fatty acids (PUFAs). However, effects of cold stress accompanied with staged-temperature control on the fatty acid metabolism in Aurantiochytrium sp. were rarely studied. In this study, cold stress (15°C, 5°C) was applied for Aurantiochytrium sp., with the physiological responses (morphology, growth, fatty acid profiling) and gene expression related FA synthesis, lipid metabolism, and regulatory processes was observed. Results showed that there is a significant change for the lipid types under 5°C (251 species) and 15°C (97 species) treatment. The 5°C treatment was benefit for the C18–C22 PUFAs with the yield of docosahexaenoic acid (DHA) increased to 1.25 times. After incubation at 15°C, the accumulation of eicosadienoic acid (EA) (20:2) was increased to 2.00-fold. Based on transcriptomic and qPCR analysis, an increase in genes involved in fatty acid synthase (FAS) and polyketide synthase (PKS) pathways was observed under low-temperature treatment. With upregulation of 3-ketoacyl-CoA synthase (2.44-fold), ketoreductase (2.50-fold), and dTDP-glucose 4,6-Dehydratase (rfbB) (2.31-fold) involved in PKS pathway, the accumulation of DHA was enhanced under 5°C. While, FAS and fatty elongase 3 (ELO) involved in the FAS pathway were upregulated (1.55-fold and 2.45-fold, respectively) to accumulate PUFAs at 15°C. Additionally, glycerol-3-phosphate acyltransferase (GPAT), lysophospholipid acyltransferase (LPAT), phosphatidic acid phosphatase (PAP), phosphatidylserine synthase (PSS), and phosphatidylserine decarboxylase (PSD) involved in glycerophospholipid biosynthesis were upregulated at 5°C increasing the accumulation of phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and phosphatidylinositol (PI). However, glycolysis and the TCA cycle were inhibited under 5°C. This study provides a contribution to the application of two-staged temperature control in the Aurantiochytrium sp. fermentation for producing cold stress-enhancing PUFAs, in order to better understand the function of the key genes for future genetic engineering.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zheng Xiong
- Shenzhen Institute of Modern Agricultural Equipment, Shenzhen, China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wei Liu
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Tian Tian
- Shenzhen Institute of Modern Agricultural Equipment, Shenzhen, China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- *Correspondence: Xuewei Yang,
| |
Collapse
|
17
|
Jia YL, Wang YZ, Nong FT, Ma W, Huang PW, Sun XM. Identification and characterization of fatty acid desaturases in Schizochytrium sp. HX-308. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
18
|
Improving the Lipid Profile of Black Soldier Fly (Hermetia illucens) Larvae for Marine Aquafeeds: Current State of Knowledge. SUSTAINABILITY 2022. [DOI: 10.3390/su14116472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The replacement of fish meal and fish oil by insect-based ingredients in the formulation of marine aquafeeds can be an important step towards sustainability. To pursue this goal, the modulation of the lipid profile of black soldier fly larvae (Hermetia illucens) has received great attention. While its nutritional profile can shift with diet, the ability to modulate its lipidome is yet to be understood. The present work provides an overview of the lipid modulation of H. illucens larvae through its diet, aiming to produce a more suitable ingredient for marine aquafeeds. Marine-based substrates significantly improve the lipid profile of H. illucens larvae, namely its omega-3 fatty acids profile. An improvement of approximately 40% can be achieved using fish discards. Substantial levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two essential fatty acids for marine fish and shrimp species, were recorded in H. illucens larvae fed on fish discards and coffee silverskin with Schyzochytrium sp. Unfortunately, these improvements are still deeply connected to marine-based bioresources, some still being too costly for use at an industrial scale (e.g., microalgae). New approaches using solutions from the biotechnology toolbox will be decisive to make H. illucens larvae a feasible alternative ingredient for marine aquafeeds without having to rely on marine bioresources.
Collapse
|
19
|
Wang K, Shi TQ, Lin L, Wei P, Ledesma-Amaro R, Ji XJ, Huang H. Advances in synthetic biology tools paving the way for the biomanufacturing of unusual fatty acids using the Yarrowia lipolytica chassis. Biotechnol Adv 2022; 59:107984. [DOI: 10.1016/j.biotechadv.2022.107984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/18/2022]
|
20
|
Wang K, Shi TQ, Wang J, Wei P, Ledesma-Amaro R, Ji XJ. Engineering the Lipid and Fatty Acid Metabolism in Yarrowia lipolytica for Sustainable Production of High Oleic Oils. ACS Synth Biol 2022; 11:1542-1554. [PMID: 35311250 DOI: 10.1021/acssynbio.1c00613] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleic acid is widely applied in the chemical, material, nutritional, and pharmaceutical industries. However, the current production of oleic acid via high oleic plant oils is limited by the long growth cycle and climatic constraints. Moreover, the global demand for high oleic plant oils, especially the palm oil, has emerged as the driver of tropical deforestation causing tropical rainforest destruction, climate change, and biodiversity loss. In the present study, an alternative and sustainable strategy for high oleic oil production was established by reprogramming the metabolism of the oleaginous yeast Yarrowia lipolytica using a two-layer "push-pull-block" strategy. Specifically, the fatty acid synthesis pathway was first engineered to increase oleic acid proportion by altering the fatty acid profiles. Then, the content of storage oils containing oleic acid was boosted by engineering the synthesis and degradation pathways of triacylglycerides. The strain resulting from this two-layer engineering strategy produced the highest titer of high oleic microbial oil reaching 56 g/L with 84% oleic acid in fed-batch fermentation, representing a remarkable improvement of a 110-fold oil titer and 2.24-fold oleic acid proportion compared with the starting strain. This alternative and sustainable method for high oleic oil production shows the potential of substitute planting.
Collapse
Affiliation(s)
- Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People’s Republic of China
| | - Jinpeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Ping Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, U.K
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| |
Collapse
|
21
|
Phosphorus and Nitrogen Limitation as a Part of the Strategy to Stimulate Microbial Lipid Biosynthesis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112411819] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microbial lipids called a sustainable alternative to traditional vegetable oils invariably capture the attention of researchers. In this study, the effect of limiting inorganic phosphorus (KH2PO4) and nitrogen ((NH4)2SO4) sources in lipid-rich culture medium on the efficiency of cellular lipid biosynthesis by Y. lipolytica yeast has been investigated. In batch cultures, the carbon source was rapeseed waste post-frying oil (50 g/dm3). A significant relationship between the concentration of KH2PO4 and the amount of lipids accumulated has been revealed. In the shake-flask cultures, storage lipid yield was correlated with lower doses of phosphorus source in the medium. In bioreactor culture in mineral medium with (g/dm3) 3.0 KH2PO4 and 3.0 (NH4)2SO4, the cellular lipid yield was 47.5% (w/w). Simultaneous limitation of both phosphorus and nitrogen sources promoted lipid accumulation in cells, but at the same time created unfavorable conditions for biomass growth (0.78 gd.m./dm3). Increased phosphorus availability with limited cellular access to nitrogen resulted in higher biomass yields (7.45 gd.m./dm3) than phosphorus limitation in a nitrogen-rich medium (4.56 gd.m./dm3), with comparable lipid yields (30% and 32%). Regardless of the medium composition, the yeast preferentially accumulated oleic and linoleic acids as well as linolenic acid up to 8.89%. Further, it is crucial to determine the correlation between N/P molar ratios, biomass growth and efficient lipid accumulation. In particular, considering the contribution of phosphorus as a component of coenzymes in many metabolic pathways, including lipid biosynthesis and respiration processes, its importance as a factor in the cultivation of the oleaginous microorganisms was highlighted.
Collapse
|
22
|
Oladzad S, Fallah N, Mahboubi A, Afsham N, Taherzadeh MJ. Date fruit processing waste and approaches to its valorization: A review. BIORESOURCE TECHNOLOGY 2021; 340:125625. [PMID: 34332444 DOI: 10.1016/j.biortech.2021.125625] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
In the Middle East and North Africa, dates are a traditional and economically valuable crop, playing an essential role in people's daily diets. Date fruit production and related processing industry generate a large quantity of waste; for illustration, the date juicing industry produces roughly 17-28% Date press cake (DPC), which is mainly discarded in open lands and drains. Considering the generation volume and the nutrient content of DPC, this organic by-product stream can be valorized through the production of a wide range of products with a great market appeal, such as volatile fatty acids, activated carbon, organic acids, etc. To provide an insight into the feasibility of the application DPC as a green precursor for various chemical and biological processes, the chemical and nutritional composition of dates and DPC, an overview of the date processing industries, and common practices conducted for DPC valorization addressed and thoroughly discussed, in this review.
Collapse
Affiliation(s)
- Sepideh Oladzad
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden; Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Narges Fallah
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | - Amir Mahboubi
- Swedish Centre for Resource Recovery, University of Borås, 501 90, Borås, Sweden
| | - Neda Afsham
- Department of Chemical Engineering, Amirkabir University of Technology, 15875-4413, Tehran, Iran
| | | |
Collapse
|
23
|
Sun T, Yu Y, Wang K, Ledesma-Amaro R, Ji XJ. Engineering Yarrowia lipolytica to produce fuels and chemicals from xylose: A review. BIORESOURCE TECHNOLOGY 2021; 337:125484. [PMID: 34320765 DOI: 10.1016/j.biortech.2021.125484] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The production of chemicals and fuels from lignocellulosic biomass has great potential industrial applications due to its economic feasibility and environmental attractiveness. However, the utilized microorganisms must be able to use all the sugars present in lignocellulosic hydrolysates, especially xylose, the second most plentiful monosaccharide on earth. Yarrowia lipolytica is a good candidate for producing various valuable products from biomass, but this yeast is unable to catabolize xylose efficiently. The development of metabolic engineering facilitated the application of Y. lipolytica as a platform for the bioconversion of xylose into various value-added products. Here, we reviewed the research progress on natural xylose-utilization pathways and their reconstruction in Y. lipolytica. The progress and emerging trends in metabolic engineering of Y. lipolytica for producing chemicals and fuels are further introduced. Finally, challenges and future perspectives of using lignocellulosic hydrolysate as substrate for Y. lipolytica are discussed.
Collapse
Affiliation(s)
- Tao Sun
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yizi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Kaifeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
24
|
Microbial lipid biosynthesis from lignocellulosic biomass pyrolysis products. Biotechnol Adv 2021; 54:107791. [PMID: 34192583 DOI: 10.1016/j.biotechadv.2021.107791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/18/2021] [Accepted: 06/24/2021] [Indexed: 01/08/2023]
Abstract
Lipids are a biorefinery platform to prepare fuel, food and health products. They are traditionally obtained from plants, but those of microbial origin allow for a better use of land and C resources, among other benefits. Several (thermo)chemical and biochemical strategies are used for the conversion of C contained in lignocellulosic biomass into lipids. In particular, pyrolysis can process virtually any biomass and is easy to scale up. Products offer cost-effective, renewable C in the form of readily fermentable molecules and other upgradable intermediates. Although the production of microbial lipids has been studied for 30 years, their incorporation into biorefineries was only described a few years ago. As pyrolysis becomes a profitable technology to depolymerize lignocellulosic biomass into assimilable C, the number of investigations on it raises significantly. This article describes the challenges and opportunities resulting from the combination of lignocellulosic biomass pyrolysis and lipid biosynthesis with oleaginous microorganisms. First, this work presents the basics of the individual processes, and then it shows state-of-the-art processes for the preparation of microbial lipids from biomass pyrolysis products. Advanced knowledge on separation techniques, structure analysis, and fermentability is detailed for each biomass pyrolysis fraction. Finally, the microbial fatty acid platform comprising biofuel, human food and animal feed products, and others, is presented. Literature shows that the microbial lipid production from anhydrosugars, like levoglucosan, and short-chain organic acids, like acetic acid, is straightforward. Indeed, processes achieving nearly theoretical yields form the latter have been described. Some authors have shown that lipid biosynthesis from different lignin sources is biochemically feasible. However, it still imposes major challenges regarding strain performance. No report on the fermentation of pyrolytic lignin is yet available. Research on the microbial uptake of pyrolytic humins remains vacant. Microorganisms that make use of methane show promising results at the proof-of-concept level. Overall, despite some issues need to be tackled, it is now possible to conceive new versatile biorefinery models by combining lignocellulosic biomass pyrolysis products and robust oleaginous microbial cell factories.
Collapse
|
25
|
Leng L, Li W, Chen J, Leng S, Chen J, Wei L, Peng H, Li J, Zhou W, Huang H. Co-culture of fungi-microalgae consortium for wastewater treatment: A review. BIORESOURCE TECHNOLOGY 2021; 330:125008. [PMID: 33773267 DOI: 10.1016/j.biortech.2021.125008] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
The treatment of wastewater by microalgae has been studied and proved to be effective through previous studies. Due to the small size of microalgae, how to efficiently harvest microalgae from wastewater is a crucial factor restricting the development of algal technologies. Fungi-assisted microalgae bio-flocculation for microalgae harvesting and wastewater treatment simultaneously, which was overlooked previously, has attracted increasing attention in the recent decade due to its low cost and high efficiency. This review found that fungal hyphae and microalgae can stick together due to electrostatic neutralization, surface protein interaction, and exopolysaccharide adhesion in the co-culture process, realizing co-pelletization of microalgae and fungi, which is conducive to microalgae harvesting. Besides, the combination of fungi and microalgae has a complementary effect on pollutant removal from wastewaters. The co-culture of fungi-microalgae has excellent development prospects with both environmental and economic benefits, and it is expected to be applied on an industrial scale.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Wenting Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jie Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Songqi Leng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Jiefeng Chen
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Liang Wei
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Haoyi Peng
- School of Energy Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
26
|
A state-of-the-art review on the synthetic mechanisms, production technologies, and practical application of polyunsaturated fatty acids from microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102281] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Tang WY, Wang DP, Tian Y, Fan X, Wang C, Lu XY, Li PW, Ji XJ, Liu HH. Metabolic engineering of Yarrowia lipolytica for improving squalene production. BIORESOURCE TECHNOLOGY 2021; 323:124652. [PMID: 33421835 DOI: 10.1016/j.biortech.2020.124652] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The aim of this present research is to enhance the squalene production in Yarrowia lipolytica using pathway engineering and bioprocess engineering. Firstly, to improve the production of squalene, the endogenous HMG-CoA reductase (HMG1) was overexpressed in Y. lipolytica to yield 208.88 mg/L squalene. Secondly, the HMG1 and diacylglycerol acyltranferase (DGA1) were co-overexpressed, the derived recombinant Y. lipolytica SQ-1 strain produced 439.14 mg/L of squalene. Thirdly, by optimizing the fermentation medium, the improved titer of squalene with 514.34 mg/L was obtained by the engineered strain SQ-1 grown on YPD-80 medium. Finally, by optimizing the addition concentrations of acetate, citrate and terbinafine, the 731.18 mg/L squalene was produced in the engineered strain SQ-1 with the addition of 0.5 mg/L terbinafine. This work describes the highest reported squalene titer in Y. lipolytica to date. This study will provide the foundation for further engineering Y. lipolytica capable of cost-efficiently producing squalene.
Collapse
Affiliation(s)
- Wen-Yan Tang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Dong-Ping Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Pei-Wang Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
28
|
Liu H, Song Y, Fan X, Wang C, Lu X, Tian Y. Yarrowia lipolytica as an Oleaginous Platform for the Production of Value-Added Fatty Acid-Based Bioproducts. Front Microbiol 2021; 11:608662. [PMID: 33469452 PMCID: PMC7813756 DOI: 10.3389/fmicb.2020.608662] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/26/2020] [Indexed: 01/14/2023] Open
Abstract
The microbial fermentation process has been used as an alternative pathway to the production of value-added natural products. Of the microorganisms, Yarrowia lipolytica, as an oleaginous platform, is able to produce fatty acid-derived biofuels and biochemicals. Nowadays, there are growing progresses on the production of value-added fatty acid-based bioproducts in Y. lipolytica. However, there are fewer reviews performing the metabolic engineering strategies and summarizing the current production of fatty acid-based bioproducts in Y. lipolytica. To this end, we briefly provide the fatty acid metabolism, including fatty acid biosynthesis, transportation, and degradation. Then, we introduce the various metabolic engineering strategies for increasing bioproduct accumulation in Y. lipolytica. Further, the advanced progress in the production of fatty acid-based bioproducts by Y. lipolytica, including nutraceuticals, biofuels, and biochemicals, is summarized. This review will provide attractive thoughts for researchers working in the field of Y. lipolytica.
Collapse
Affiliation(s)
- Huhu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yulan Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiao Fan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xiangyang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
29
|
Production of Polyunsaturated Fatty Acids by Fungal Biofactories and Their Application in Food Industries. Fungal Biol 2021. [DOI: 10.1007/978-3-030-64406-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Zhang Y, Nielsen J, Liu Z. Yeast based biorefineries for oleochemical production. Curr Opin Biotechnol 2020; 67:26-34. [PMID: 33360103 DOI: 10.1016/j.copbio.2020.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/04/2020] [Accepted: 11/22/2020] [Indexed: 12/17/2022]
Abstract
Biosynthesis of oleochemicals enables sustainable production of natural and unnatural alternatives from renewable feedstocks. Yeast cell factories have been extensively studied and engineered to produce a variety of oleochemicals, focusing on both central carbon metabolism and lipid metabolism. Here, we review recent progress towards oleochemical synthesis in yeast based biorefineries, as well as utilization of alternative renewable feedstocks, such as xylose and l-arabinose. We also review recent studies of C1 compound utilization or co-utilization and discuss how these studies can lead to third generation yeast based biorefineries for oleochemical production.
Collapse
Affiliation(s)
- Yiming Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jens Nielsen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200 Copenhagen N, Denmark.
| | - Zihe Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
31
|
Wang S, Lan C, Wang Z, Wan W, Zhang H, Cui Q, Song X. Optimizing Eicosapentaenoic Acid Production by Grafting a Heterologous Polyketide Synthase Pathway in the Thraustochytrid Aurantiochytrium. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:11253-11260. [PMID: 32829640 DOI: 10.1021/acs.jafc.0c04299] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Eicosapentaenoic acid (EPA) is an essential nutritional supplement for human health. The most prominent dietary source of EPA is fish oil, which is unsustainable because of the decline in fishery resources and serious environmental pollution. Alternatively, a heterologous polyketide synthase pathway for EPA biosynthesis was assembled in Thraustochytrid Aurantiochytrium. A 2A peptide-based facile assembly platform that can achieve multigene expression as a polycistron was first established. The platform was then applied to express the EPA biosynthetic gene cluster from Shewanella japonica in Aurantiochytrium. In the shake flask fermentation, the lipid and PUFA yields of the mutant were increased by 26.9 and 36.0%, respectively, and led to about 5-fold increase of the EPA yield. The final EPA titer reached 2.7 g/L in fed-batch fermentation. This study provides a novel metabolic engineering strategy to regulate the EPA ratio in microalgal oil for human nutritional supplementation.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Huidan Zhang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, Shandong, China
| |
Collapse
|
32
|
Wang J, Ledesma-Amaro R, Wei Y, Ji B, Ji XJ. Metabolic engineering for increased lipid accumulation in Yarrowia lipolytica - A Review. BIORESOURCE TECHNOLOGY 2020; 313:123707. [PMID: 32595069 DOI: 10.1016/j.biortech.2020.123707] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Current energy security and climate change policies encourage the development and utilization of bioenergy. Oleaginous yeasts provide a particularly attractive platform for the sustainable production of biofuels and industrial chemicals due to their ability to accumulate high amounts of lipids. In particular, microbial lipids in the form of triacylglycerides (TAGs) produced from renewable feedstocks have attracted considerable attention because they can be directly used in the production of biodiesel and oleochemicals analogous to petrochemicals. As an oleaginous yeast that is generally regarded as safe, Yarrowia lipolytica has been extensively studied, with large amounts of data on its lipid metabolism, genetic tools, and genome sequencing and annotation. In this review, we highlight the newest strategies for increasing lipid accumulation using metabolic engineering and summarize the research advances on the overaccumulation of lipids in Y. lipolytica. Finally, perspectives for future engineering approaches are proposed.
Collapse
Affiliation(s)
- Jinpeng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, UK
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of State Ministry of Education, Key Laboratory of Henan Province for Drug Quality Control and Evaluation, Collaborative Innovation Center of New Drug Research and Safety Evaluation, Zhengzhou University, 100 Kexue Avenue, Zhengzhou 450001, People's Republic of China
| | - Boyang Ji
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
33
|
Chang L, Tang X, Zhang H, Chen YQ, Chen H, Chen W. Improved Lipogenesis in Mortierella alpina by Abolishing the Snf4-Mediated Energy-Saving Mode under Low Glucose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10787-10798. [PMID: 32880458 DOI: 10.1021/acs.jafc.0c04572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sensing nutrient levels and coordinating metabolism are requisites for all living organisms. In eukaryotes, heterotrimeric adenosine monophosphate-activated protein kinase/sucrose nonfermenting 1 (SNF1) is an energy monitor that primarily functions by regulating cell metabolism with its γ-subunit being responsible for energy sensing. Because of its strong lipogenesis capacity and dependence on nutrient availability, Mortierella alpina is an ideal model to investigate the SNF1 role. Knockdown of the M. alpina SNF1-γ-subunit (MaSnf4) abolished the energy preservation mode. In a low glucose medium (15 g/L), the fatty acid content in the MaSnf4-knockdown strain was similar to that in a high glucose medium (50 g/L), comprising 16 ± 1.17% of the dry cell weight after 96 h of culture (1.59 g/L), together with 1.41 ± 0.13 and 4.15 ± 0.19 fold increased acetyl-CoA carboxylase 1 and ATP-citrate lyase enzymatic activities, respectively. Metabolite analysis confirmed that knocking down MaSnf4 enhanced amino acid recycling and repressed the tricarboxylic acid cycle. In this case, more carbon skeleton acetyl-CoA and reductive nicotinamide adenine dinucleotide phosphate were rerouted into the fatty acid synthesis pathway. These findings provide new insight into the correlation between energy preservation and MaSnf4-regulated lipogenesis, which may enhance further development of cost-effective strategies to enhance lipid productivity in M. alpina.
Collapse
Affiliation(s)
- Lulu Chang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, Jiangsu 214122, P. R. China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing 100048, P. R. China
| |
Collapse
|