1
|
Yan M, Liu T, Zhao Q. Integrated Approach for Improving Lutein Production of Chlorella sp. via Adaptive Evolution and Casein Acid Hydrolysate. Appl Biochem Biotechnol 2025:10.1007/s12010-025-05279-0. [PMID: 40358910 DOI: 10.1007/s12010-025-05279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/15/2025]
Abstract
Lutein is a high value-added product in microalgae. There are several strategies to improve its production, including isolation and selection of high-lutein producing algal strains; strain improvement by metabolic engineering, synthetic biology, or adaptive evolution; and metabolic regulation. In this study, an integrated approach was developed to improve lutein production by adaptive evolution and metabolic regulation. Firstly, a starting strain with a lutein content of ~5.18 mg/g was selected. Secondly, adaptive evolution was performed using an environmental stress of 300 mg/L phenol. The evolved strain, P30, was obtained after 30 cycles; its lutein content had increased to ~5.91 mg/g. Thirdly, the effects of 5-30 g/L NaCl on the lutein contents of the evolved strain were determined. We found that 10 g/L NaCl increased the lutein content by 11% and slightly inhibited growth. No significant changes were observed after adding 20-80 mg/L gibberellin under 10 g/L NaCl conditions. The addition of 10.5 mM casein acid hydrolysate (CAH) promoted the growth of the P30 strain under 10 g/L NaCl conditions. The lutein concentration of Chlorella sp. P30 was 6.91 mg/L at day 5, which was twice the lutein concentration of the starting strain at the same time. When osmotic pressure was removed, the lutein concentration was 8.42 mg/L. The results indicate that CAH supplementation enhances both microalgal growth and lutein biosynthesis. The results of this study provide a valuable reference for the metabolic regulation of lutein biosynthesis.
Collapse
Affiliation(s)
- Manlin Yan
- School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Ting Liu
- School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
2
|
Shi S, Zhang Y, Lin S, Zhang M, Zou W, Zhou J, Wang Y. Deciphering the promotion and inhibition of bicarbonate fertilization on microalgal activity and nutrient uptake from wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124810. [PMID: 40043562 DOI: 10.1016/j.jenvman.2025.124810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
Microalgal bioremediation is a promising alternative for biological wastewater treatment but constrained by low microalgal activities. Here, bicarbonate fertilization was introduced to enhance microalgal wastewater treatment, with systematic investigations of its biphasic dose-dependent effects on microalgal activity and nutrient uptake. The results showed that moderate inorganic carbon (MIC, 0.05 M) group significantly improved the biomass production, NH4+-N removal, and PO43--P removal by 76.0%, 21.3%, and 11.9%, respectively; whereas high inorganic carbon (HIC, 0.1 M) group inhibited them by 11.0%, 4.48%, and 52.7%, respectively, compared with low inorganic carbon (LIC, 0.005 M) group. Mechanistic analyses suggested that LIC group encountered high alkalinity, exacerbated carbon/trace element limitation, and attenuated extracellular polymeric substances (EPS) barriers and antioxidant systems; while HIC group increased salinity stresses, triggered morphological defense, and diminished light harvesting and phycospheric mass transfer, restricting microalgal activity and nutrient uptake. In contrast, MIC group relieved carbon limitation, accelerated photosynthetic electron transfer, and sustained intracellular redox homeostasis, underpinning the highest biomass production and nutrient removal. These findings could facilitate the practical application of bicarbonate fertilization in microalgal wastewater treatment.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Shuxuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meiman Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Weiming Zou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Yingmu Wang
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| |
Collapse
|
3
|
Yu C, Zheng J, Zhang Y, Hu Y, Luo W, Zhang J, Yu J, Liu J, Nixon PJ, Zhou W, Shao S. Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy. BIORESOURCE TECHNOLOGY 2025; 419:132043. [PMID: 39778684 DOI: 10.1016/j.biortech.2025.132043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/23/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %). Exogenous glycine betaine (GB) and nitric oxide (NO), typical salinity enhancers, improved biomass productivity (0.36 g L-1 d-1), C-phycocyanin (C-PC) yield (83 mg L-1 d-1), and the economic output-to-input ratio was significantly enhanced. Metabolomic analysis linked salt tolerance to elevated amino acid accumulation, protein synthesis, and glycolysis, while transcriptional evidence highlighted enhanced carbon fixation and nitrogen assimilation towards C-PC synthesis upon addition of GB and NO. This strategy also demonstrated high resistance to Microcystis aeruginosa, a common contaminant in open systems. It provides a sustainable and cost-effective approach for industry-oriented spirulina production in freshwater-limited regions.
Collapse
Affiliation(s)
- Chunli Yu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jiahui Zheng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuqin Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yao Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Wei Luo
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jing Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jianfeng Yu
- Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China; Department of Life Sciences, Imperial College London, London, UK
| | - Jin Liu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China
| | - Peter J Nixon
- Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China; Department of Life Sciences, Imperial College London, London, UK
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China.
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China.
| |
Collapse
|
4
|
Trentini AG, Salvio UD, Sánchez Novoa JG, Groppa MD, Navarro Llorens JM, Marconi PL. Obtaining more contaminant-resistant variants from a native Chlorella vulgaris strain. Rev Argent Microbiol 2024; 56:241-248. [PMID: 39089979 DOI: 10.1016/j.ram.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/26/2024] [Accepted: 05/29/2024] [Indexed: 08/04/2024] Open
Abstract
Cildáñez stream (in Matanza-Riachuelo basin, Buenos Aires) is one of the most polluted watercourses of Argentina, containing a mixed contamination from agricultural and industrial wastes. The application of water bioremediation processes for this kind of effluent will require microorganisms with a high tolerance to contamination. In this sense, obtaining higher contaminant-resistant microalgae lines is widely desired. In this study, adaptive laboratory evolution (ALE) and random mutagenesis were used to obtain Chlorella vulgaris LMPA-40 strains adapted to grow in polluted water from the Cildáñez stream. The ALE process was performed by 22 successive subcultures under selective pressure (Cildáñez wastewater alone or with the addition of phenol or H2O2) while random mutagenesis was performed with UV-C radiation at 275nm. Not all the cell lines obtained after ALE could adapt enough to overcome the stress caused by the Cildáñez wastewater, indicating that the process is quite random and depends on the stressor used. The best results were obtained for the Cildáñez wastewater adapted cells (Cild 3 strain) that were more resistant than the original strain. The concentration of protein, Chlorophyll A, Chlorophyll B, and carotenoids in the Cild 3 ALE evolved strain was higher than that of the control strain. However, this strain exhibited half of the lipid content compared to the same control strain. Interestingly, these alterations and the acquired tolerance may be reversed over time during storage. These findings suggest that the acquisition of novel cell lines could not be permanent, a fact that must be considered for future trials.
Collapse
Affiliation(s)
- Andrea G Trentini
- Laboratorio de Biotecnología y Medio Ambiente, CEBBAD-CONICET, Universidad Maimónides, Argentina
| | - Uriel D Salvio
- Laboratorio de Biotecnología y Medio Ambiente, CEBBAD-CONICET, Universidad Maimónides, Argentina
| | - Juan G Sánchez Novoa
- Laboratorio de Biotecnología y Medio Ambiente, CEBBAD-CONICET, Universidad Maimónides, Argentina
| | - María D Groppa
- IQUIFIB-CONICET, FFyB, Universidad de Buenos Aires, Argentina
| | - Juana M Navarro Llorens
- Metabolic Engineering Group, Department of Biochemistry and Molecular Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia L Marconi
- Laboratorio de Biotecnología y Medio Ambiente, CEBBAD-CONICET, Universidad Maimónides, Argentina.
| |
Collapse
|
5
|
Ma D, Li J, Liu J, Wang R, Meng Q, Li J, Zhang S, Shan A. The gain effect of microbial consortia induced by adaptive domestication for efficient conversion of Chinese cabbage waste by anaerobic fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171313. [PMID: 38417508 DOI: 10.1016/j.scitotenv.2024.171313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
The resource-based treatment of Chinese cabbage waste by anaerobic fermentation can effectively mitigate air, soil, and groundwater pollution. However, the compatibility between fermentative microorganisms and the environment might be a crucial limiting factor for the resource recycling of Chinese cabbage waste. Therefore, the gain effect of microbial consortia (JMRS, JMRST, JMRSZ, JCCW, JCCWT and JCCWZ) induced by adaptive domestication for efficient conversion of Chinese cabbage waste by anaerobic fermentation were explored in this study. A total of 42 single subsamples with same weights were randomly divided into seven treatments: sterile deionized water (Control); anaerobic fermentation inoculated with JMRS (MRS); anaerobic fermentation inoculated with JMRST (MRST); anaerobic fermentation inoculated with JMRSZ (MRSZ); anaerobic fermentation inoculated with JCCW (CCW); anaerobic fermentation inoculated with JCCWT (CCWT); anaerobic fermentation inoculated with JCCWZ (CCWZ) and samples were taken on days 30 and 60 after anaerobic fermentation. The results exhibited that all the treatments contributed to high levels of lactic acid (178.77-201.79 g/kg dry matter) and low levels of ammonia-N (12.99-21.03 g/kg total nitrogen). Meanwhile, MRSZ enhanced (p < 0.05) acetic acid levels (1.53 g/kg dry matter) and resulted in the lowest yeast counts. Microbiologically, the addition of microbial consortia decreased the linear discriminant analysis (LDA) scores of Massilia and Stenotrophomonas maltophilia. Moreover, MRSZ enriched (p < 0.05) Lactobacillus hilgardii, and decreased (p < 0.05) the abundance of bacteria containing mobile elements and potentially pathogenic bacteria. In conclusion, JMRSZ improved the efficient conversion of Chinese cabbage waste for resource utilization.
Collapse
Affiliation(s)
- Dongbo Ma
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Jiawei Li
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Jingkai Liu
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Ruixue Wang
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Qingwei Meng
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Jianping Li
- College of animal science and technology, Northeast Agricultural University, Harbin, China
| | - Sujiang Zhang
- Tarim Key Laboratory of Animal Husbandry Science and Technology, College of Animal Science and Technology, Tarim University, Alar 843300, China
| | - Anshan Shan
- College of animal science and technology, Northeast Agricultural University, Harbin, China.
| |
Collapse
|
6
|
Zhao Y, Wang Q, Gu D, Huang F, Liu J, Yu L, Yu X. Melatonin, a phytohormone for enhancing the accumulation of high-value metabolites and stress tolerance in microalgae: Applications, mechanisms, and challenges. BIORESOURCE TECHNOLOGY 2024; 393:130093. [PMID: 38000641 DOI: 10.1016/j.biortech.2023.130093] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
High-value metabolites, such as carotenoids, lipids, and proteins, are synthesized by microalgae and find applications in various fields, including food, health supplements, and cosmetics. However, the potential of the microalgal industry to serve these sectors is constrained by low productivity and high energy consumption. Environmental stressors can not only stimulate the accumulation of secondary metabolites in microalgae but also induce oxidative stress, suppressing cell growth and activity, thereby resulting in a decrease in overall productivity. Using melatonin (MT) under stressful conditions is an effective approach to enhance the productivity of microalgal metabolites. This review underscores the role of MT in promoting the accumulation of high-value metabolites and enhancing stress resistance in microalgae under stressful and wastewater conditions. It discusses the underlying mechanisms whereby MT enhances metabolite synthesis and improves stress resistance. The review also offers new perspectives on utilizing MT to improve microalgal productivity and stress resistance in challenging environments.
Collapse
Affiliation(s)
- Yongteng Zhao
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Qingwei Wang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Dan Gu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Feiyan Huang
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Jiani Liu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China
| | - Lei Yu
- Yunnan Urban Agricultural Engineering & Technological Research Center, College of Agronomy and Life Science, Kunming University, Kunming 650214, China.
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| |
Collapse
|
7
|
Varunraj R, Priyadharshini U, Vijay K, Balamurugan S. Adaptive laboratory evolution empowers lipids and biomass overproduction in Chlorella vulgaris for environmental applications. ENVIRONMENTAL RESEARCH 2023; 238:117125. [PMID: 37709245 DOI: 10.1016/j.envres.2023.117125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
Microalgal strain improvement with commercial features is needed to generate green biological feedstock to produce lipids for bioenergy. Hence, improving algal strain with enhanced lipid content without hindering cellular physiological parameters is pivotal for commercial applications of microalgae. In this report, we demonstrated the adaptive laboratory evolution (ALE) by hypersaline conditions to improve the algal strains for increasing the lipid overproduction capacity of Chlorella vulgaris for environmental applications. The evolved strains (namely E2 and E2.5) without notable impairment in general physiological parameters were scrutinized after 35 cycles. Conventional gravimetric lipid analysis showed that total lipid accumulation was hiked by 2.2-fold in the ALE strains compared to the parental strains. Confocal observation of algal cells stained with Nile-red showed that the abundance of lipid droplets was higher in the evolved strains without any apparent morphological aberrations. Furthermore, evolved strains displayed notable antioxidant potential than the control cells. Interestingly, carbohydrates and protein content were significantly decreased in the evolved cells, indicating that carbon flux was redirected into lipogenesis in the evolved cells. Altogether, our findings demonstrated a potential and feasible strategy for microalgal strain improvement for simultaneous lipids and biomass hyperaccumulation.
Collapse
Affiliation(s)
- Rajendran Varunraj
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Uthayakumar Priyadharshini
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Kannusamy Vijay
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India
| | - Srinivasan Balamurugan
- Microalgal Biotechnology Laboratory, Department of Biotechnology, Bharathidasan University, Tiruchirappalli, 620024, India.
| |
Collapse
|
8
|
Photosynthetic and transcriptomic responses of Chlorella sp. to tigecycline. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
9
|
Li D, Zhao Q. Study of carbon fixation and carbon partitioning of evolved Chlorella sp.'s strain under different carbon dioxide conditions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Zhao Y, Ngo HH, Yu X. Phytohormone-like small biomolecules for microalgal biotechnology. Trends Biotechnol 2022; 40:1025-1028. [DOI: 10.1016/j.tibtech.2022.06.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
|
11
|
Trovão M, Schüler LM, Machado A, Bombo G, Navalho S, Barros A, Pereira H, Silva J, Freitas F, Varela J. Random Mutagenesis as a Promising Tool for Microalgal Strain Improvement towards Industrial Production. Mar Drugs 2022; 20:440. [PMID: 35877733 PMCID: PMC9318807 DOI: 10.3390/md20070440] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Microalgae have become a promising novel and sustainable feedstock for meeting the rising demand for food and feed. However, microalgae-based products are currently hindered by high production costs. One major reason for this is that commonly cultivated wildtype strains do not possess the robustness and productivity required for successful industrial production. Several strain improvement technologies have been developed towards creating more stress tolerant and productive strains. While classical methods of forward genetics have been extensively used to determine gene function of randomly generated mutants, reverse genetics has been explored to generate specific mutations and target phenotypes. Site-directed mutagenesis can be accomplished by employing different gene editing tools, which enable the generation of tailor-made genotypes. Nevertheless, strategies promoting the selection of randomly generated mutants avoid the introduction of foreign genetic material. In this paper, we review different microalgal strain improvement approaches and their applications, with a primary focus on random mutagenesis. Current challenges hampering strain improvement, selection, and commercialization will be discussed. The combination of these approaches with high-throughput technologies, such as fluorescence-activated cell sorting, as tools to select the most promising mutants, will also be discussed.
Collapse
Affiliation(s)
- Mafalda Trovão
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - Lisa M. Schüler
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Adriana Machado
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Gabriel Bombo
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Sofia Navalho
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Ana Barros
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Hugo Pereira
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
| | - Joana Silva
- Allmicroalgae Natural Products S.A., R&D Department, Rua 25 de Abril s/n, 2445-413 Pataias, Portugal; (M.T.); (A.M.); (A.B.); (J.S.)
| | - Filomena Freitas
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal
| | - João Varela
- GreenCoLab—Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (L.M.S.); (G.B.); (S.N.); (H.P.)
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Chen Z, Xie Y, Qiu S, Li M, Yuan W, Ge S. Granular indigenous microalgal-bacterial consortium for wastewater treatment: Establishment strategy, functional microorganism, nutrient removal, and influencing factor. BIORESOURCE TECHNOLOGY 2022; 353:127130. [PMID: 35398536 DOI: 10.1016/j.biortech.2022.127130] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Granular indigenous microalgal-bacterial consortium (G-IMBC) system integrates the advantages of the MBC and granular activated sludge technologies, also with superior microalgal wastewater adaptation capacity. In this review, the concept of IMBC was firstly described, followed by its establishment and acclimation strategies. Characteristics and advantages of G-IMBC system compared to other IMBC systems (i.e., attached and floc IMBC systems) were then introduced. Moreover, the involved functional microorganisms and their interactions, as well as nutrient removal mechanisms were systematically and critically reviewed. Finally, the influencing factors including wastewater characteristics and operation factors were discussed. This study aims to provide a comprehensive up-to-date summary of the G-IMBC system for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenqi Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
13
|
Zhong X, Zhang X, Zhou T, Lv G, Zhao Q. Exploring kinetics, removal mechanism and possible transformation products of tigecycline by Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152988. [PMID: 35026238 DOI: 10.1016/j.scitotenv.2022.152988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of antibiotics in wastewater leads to broad antibiotic resistance, threating human health. Microalgae have been receiving attention due to their ability to remove antibiotics from wastewater. Tigecycline (TGC) is a broad-spectrum glycylcycline antibiotic. It has not been investigated for removal by microalgae. The removal kinetics of TGC by Chlorella pyrenoidosa were evaluated under different initial dry cell densities, TGC concentrations, temperatures and light intensity conditions. Approximately 90% of TGC could be removed when the TGC concentration was 10 mg∙L-1 and the initial dry cell density was more than 0.2 g∙L-1. A low value of TGC per g dry cell weight ratio led to a high removal efficiency of TGC. The initial dry cell density of microalgae was also critical for the removal of TGC. A high initial dry cell density is better than a low initial dry cell density to remove TGC when the ratio of the TGC concentration to dry cell weight are the same at the beginning of the cultivation. The removal mechanisms were investigated. Photolysis was a slow process that did not lead to removal at the beginning. Adsorption, hydrolysis, photolysis and biodegradation by microalgae were the main contributors to the removal of TGC. TGC was easily hydrolyzed under high -temperature conditions. Three transformation products of TGC by microalgae were identified. The stability of TGC was evaluated in water and salt solutions of citric acid, K2HPO4·3H2O and ferric ammonium citrate. TGC was stable in ultrapure water and citric acid solution. TGC was hydrolyzed in K2HPO4·3H2O and ferric ammonium citrate solutions.
Collapse
Affiliation(s)
- Xueqing Zhong
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Xiangxiang Zhang
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Tianyi Zhou
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Nanjing 210023, People's Republic of China
| | - Quanyu Zhao
- School of Pharmaceutical Science, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing 211816, People's Republic of China.
| |
Collapse
|
14
|
Barten R, Peeters T, Navalho S, Fontowicz L, Wijffels RH, Barbosa M. Expanding the upper‐temperature boundary for the microalga
Picochlorum sp. (BPE23)
by adaptive laboratory evolution. Biotechnol J 2022; 17:e2100659. [DOI: 10.1002/biot.202100659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Robin Barten
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
| | - Teun Peeters
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
| | - Sofia Navalho
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
| | - Louis Fontowicz
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
| | - Rene H. Wijffels
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
- Biosciences and Aquaculture Nord University Bodø N‐8049 Norway
| | - Maria Barbosa
- Bioprocess Engineering & AlgaePARC Wageningen University and Research Wageningen PO Box 16, 6700 AA The Netherlands
| |
Collapse
|
15
|
Qiu S, Wu Z, Chen Z, Abbew AW, Li J, Ge S. Microalgal Activity and Nutrient Uptake from Wastewater Enhanced by Nanoscale Zerovalent Iron: Performance and Molecular Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:585-594. [PMID: 34933554 DOI: 10.1021/acs.est.1c05503] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Microalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth. In this study, a novel approach was proposed to simultaneously promote microalgal activity and nutrient uptake from wastewater using nanoscale zerovalent iron (nZVI), and the underlying molecular mechanism was explored. Compared to the control, 0.05 mg/L of nZVI significantly enhanced biomass production by 113.3% as well as NH4+-N and PO43--P uptake rates by 32.2% and 75.0%, respectively. These observations were attributed to the enhanced metabolic pathways and intracellular regulations. Specifically, nZVI alleviated the cellular oxidative stress via decreased peroxisome biogenesis as indicated by reduced reactive oxygen species, enzymes, and genes involved. nZVI promoted ammonium assimilation, phosphate metabolism, carbon fixation, and energy generation. Moreover, nZVI regulated the biosynthesis and conversions of intracellular biocomposition, leading to increased carotenoid, carbohydrate, and lipid productions and decreased protein and fatty acid yields. The above metabolisms were supported by the regulations of differentially expressed genes involved. This study provided an nZVI-based approach and molecular mechanism for enhancing microalgal activities and nutrient uptake from wastewater.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhengshuai Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Abdul-Wahab Abbew
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jinxiang Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| |
Collapse
|
16
|
Zhu Y, Li X, Wang Y, Ren L, Zhao Q. Lutein extraction by imidazolium-based ionic liquid-water mixture from dried and fresh Chlorella sp. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102528] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang B, Wu J, Meng F. Adaptive Laboratory Evolution of Microalgae: A Review of the Regulation of Growth, Stress Resistance, Metabolic Processes, and Biodegradation of Pollutants. Front Microbiol 2021; 12:737248. [PMID: 34484172 PMCID: PMC8416440 DOI: 10.3389/fmicb.2021.737248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/30/2021] [Indexed: 11/27/2022] Open
Abstract
Adaptive laboratory evolution (ALE) experiments are a serviceable method for the industrial utilization of the microalgae, which can improve the phenotype, performance, and stability of microalgae to obtain strains containing beneficial mutations. In this article, we reviewed the research into the microalgae ALE test and assessed the improvement of microalgae growth, tolerance, metabolism, and substrate utilization by ALE. In addition, the principles of ALE and the key factors of experimental design, as well as the issues and drawbacks of the microalgae ALE method were discussed. In general, improving the efficiency of ALE and verifying the stability of ALE resulting strains are the primary problems that need to be solved in future research, making it a promising method for the application of microalgae biotechnology.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| | - Jiangyue Wu
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China
| |
Collapse
|
18
|
Yang Y, Zhang ZW, Liu RX, Ju HY, Bian XK, Zhang WZ, Zhang CB, Yang T, Guo B, Xiao CL, Bai H, Lu WY. Research progress in bioremediation of petroleum pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:46877-46893. [PMID: 34254241 DOI: 10.1007/s11356-021-15310-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
With the enhancement of environmental protection awareness, research on the bioremediation of petroleum hydrocarbon environmental pollution has intensified. Bioremediation has received more attention due to its high efficiency, environmentally friendly by-products, and low cost compared with the commonly used physical and chemical restoration methods. In recent years, bacterium engineered by systems biology strategies have achieved biodegrading of many types of petroleum pollutants. Those successful cases show that systems biology has great potential in strengthening petroleum pollutant degradation bacterium and accelerating bioremediation. Systems biology represented by metabolic engineering, enzyme engineering, omics technology, etc., developed rapidly in the twentieth century. Optimizing the metabolic network of petroleum hydrocarbon degrading bacterium could achieve more concise and precise bioremediation by metabolic engineering strategies; biocatalysts with more stable and excellent catalytic activity could accelerate the process of biodegradation by enzyme engineering; omics technology not only could provide more optional components for constructions of engineered bacterium, but also could obtain the structure and composition of the microbial community in polluted environments. Comprehensive microbial community information lays a certain theoretical foundation for the construction of artificial mixed microbial communities for bioremediation of petroleum pollution. This article reviews the application of systems biology in the enforce of petroleum hydrocarbon degradation bacteria and the construction of a hybrid-microbial degradation system. Then the challenges encountered in the process and the application prospects of bioremediation are discussed. Finally, we provide certain guidance for the bioremediation of petroleum hydrocarbon-polluted environment.
Collapse
Affiliation(s)
- Yong Yang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Zhan-Wei Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Rui-Xia Liu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Hai-Yan Ju
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Xue-Ke Bian
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Wan-Ze Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Chuan-Bo Zhang
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China
| | - Ting Yang
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Bing Guo
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - Chen-Lei Xiao
- CNOOC EnerTech-Safety & Environmental Protection Co., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China
| | - He Bai
- China Offshore Environmental Service Ltd., Tianwei Industrial Park, No. 75 Taihua Rd, TEDA, Tianjin, 300457, China.
- Tianjin Huakan Environmental Protection Technology Co. Ltd., No. 67 Guangrui West Rd, Hedong District, Tianjin, 300170, China.
| | - Wen-Yu Lu
- School of Chemical Engineering and Technology, Tianjin University, No.135, Ya Guan Rd, Jinnan District, Tianjin, 300350, China.
| |
Collapse
|
19
|
Zheng Y, Hong K, Wang B, Liu D, Chen T, Wang Z. Genetic Diversity for Accelerating Microbial Adaptive Laboratory Evolution. ACS Synth Biol 2021; 10:1574-1586. [PMID: 34129323 DOI: 10.1021/acssynbio.0c00589] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Adaptive laboratory evolution (ALE) is a widely used and highly effective tool for improving microbial phenotypes and investigating the evolutionary roots of biological phenomena. Serving as the raw materials of evolution, mutations have been extensively utilized to increase the chances of engineering molecules or microbes with tailor-made functions. The generation of genetic diversity is therefore a core technology for accelerating ALE, and a high-quality mutant library is crucial to its success. Because of its importance, technologies for generating genetic diversity have undergone rapid development in recent years. Here, we review the existing techniques for the construction of mutant libraries, briefly introduce their mechanisms and applications, discuss ongoing and emerging efforts to apply engineering technologies in the construction of mutant libraries, and suggest future perspectives for library construction.
Collapse
Affiliation(s)
- Yangyang Zheng
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Kunqiang Hong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Baowei Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Dingyu Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Tao Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Zhiwen Wang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
20
|
Qiu S, Yu Z, Hu Y, Chen Z, Guo J, Xia W, Ge S. An evolved native microalgal consortium-snow system for the bioremediation of biogas and centrate wastewater: Start-up, optimization and stabilization. WATER RESEARCH 2021; 196:117038. [PMID: 33751972 DOI: 10.1016/j.watres.2021.117038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/24/2021] [Accepted: 02/19/2021] [Indexed: 06/12/2023]
Abstract
It is necessary to develop sustainable technologies for centrate wastewater (CW) and biogas treatment from sludge anaerobic digestion (AD) systems in an environmentally friendly and economical manner. The microalgae-based bioremediation approach presents a competitive alternative due to its capacity for nutrient recovery and carbon sequestration. However, process instabilities and operating challenges limit its development and implementation largely due to the complexities in the CW and biogas. In this study, the evolved native microalgal consortium (ENMC) was firstly developed using the gradual stress increase method to enhance their adaptation in high ammonium condition. The supplementation of local snow (with Ca2+ and Mg2+) and biogas into CW significantly enhanced ENMC growth through batch tests. Subsequently, an integrated ENMC-snow (ENMCS) system was proposed consisting of a hydrolysis-acidification reactor (HAR), biogas upgrade reactor, and photobioreactor (PBR). The ENMCS system was systematically investigated under both batch and semi-continuous operations, by adjusting primary process parameters including the fill ratio, feeding time, hydraulic retention time (HRT), wastewater pretreatment, and PBR type. It was eventually optimized as a 24 h, 70% fermented CW diluted with 30% snow water, semi-continuous feeding system with a fill ratio of 50% and HRT of 6 d in an open-PBR. Long-term operation (310 days) showed superior biomass yield (0.3059 ± 0.0039 g/(L•d)) and nutrient removal efficiencies (95.6 ± 0.13% and 90.8 ± 0.44% for NH4+-N and PO43--P removal). Meanwhile, biogas was upgraded with an 82.2% CO2 reduction. The economic and environmental analysis further demonstrated the ENMCS system as an effective alternative for the bioremediation of AD effluents while simultaneously producing value-added biomass, especially applicable to snowy regions.
Collapse
Affiliation(s)
- Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China; Department of Biology, Queen's University, Kingston, ON, Canada K7L 3N6
| | - Ziwei Yu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yanbing Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Wenhao Xia
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|