1
|
Cao Y, Li J, Liu L, Du G, Liu Y. Harnessing microbial heterogeneity for improved biosynthesis fueled by synthetic biology. Synth Syst Biotechnol 2024; 10:281-293. [PMID: 39686977 PMCID: PMC11646789 DOI: 10.1016/j.synbio.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Metabolic engineering-driven microbial cell factories have made great progress in the efficient bioproduction of biochemical and recombinant proteins. However, the low efficiency and robustness of microbial cell factories limit their industrial applications. Harnessing microbial heterogeneity contributes to solving this. In this review, the origins of microbial heterogeneity and its effects on biosynthesis are first summarized. Synthetic biology-driven tools and strategies that can be used to improve biosynthesis by increasing and reducing microbial heterogeneity are then systematically summarized. Next, novel single-cell technologies available for unraveling microbial heterogeneity and facilitating heterogeneity regulation are discussed. Furthermore, a combined workflow of increasing genetic heterogeneity in the strain-building step to help in screening highly productive strains - reducing heterogeneity in the production process to obtain highly robust strains (IHP-RHR) facilitated by single-cell technologies was proposed to obtain highly productive and robust strains by harnessing microbial heterogeneity. Finally, the prospects and future challenges are discussed.
Collapse
Affiliation(s)
- Yanting Cao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Li G, Liang H, Gao R, Qin L, Xu P, Huang M, Zong MH, Cao Y, Lou WY. Yeast metabolism adaptation for efficient terpenoids synthesis via isopentenol utilization. Nat Commun 2024; 15:9844. [PMID: 39537637 PMCID: PMC11561230 DOI: 10.1038/s41467-024-54298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Microbial biosynthesis has become the leading commercial approach for large-scale production of terpenoids, a valuable class of natural products. Enhancing terpenoid production, however, requires complex modifications on the host organism. Recently, a two-step isopentenol utilization (IU) pathway relying solely on ATP as the cofactor has been proposed as an alternative to the mevalonate (MVA) pathway, streamlining the synthesis of the common terpenoid precursors. Herein, we find that isopentenol inhibits energy metabolism, leading to reduced efficiency of the IU pathway in Saccharomyces cerevisiae. To overcome this, we engineer an IU pathway-dependent (IUPD) strain, designed for growth-coupled production. The IUPD strain is compelled to enhance the ATP supply, essential for the IU pathway, and incorporates a high-throughput screening method for enzyme evolution. The refined IU pathway surpasses the MVA pathway in synthesizing complex terpenoids. Our work offers valuable insights into developing growth-coupled strains adapted to efficient natural product synthesis.
Collapse
Affiliation(s)
- Guangjian Li
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Hui Liang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ruichen Gao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Ling Qin
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Pei Xu
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Mingtao Huang
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Min-Hua Zong
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China
| | - Yufei Cao
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| | - Wen-Yong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, No. 381 Wushan Road, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Guan A, He Z, Wang X, Jia ZJ, Qin J. Engineering the next-generation synthetic cell factory driven by protein engineering. Biotechnol Adv 2024; 73:108366. [PMID: 38663492 DOI: 10.1016/j.biotechadv.2024.108366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Synthetic cell factory offers substantial advantages in economically efficient production of biofuels, chemicals, and pharmaceutical compounds. However, to create a high-performance synthetic cell factory, precise regulation of cellular material and energy flux is essential. In this context, protein components including enzymes, transcription factor-based biosensors and transporters play pivotal roles. Protein engineering aims to create novel protein variants with desired properties by modifying or designing protein sequences. This review focuses on summarizing the latest advancements of protein engineering in optimizing various aspects of synthetic cell factory, including: enhancing enzyme activity to eliminate production bottlenecks, altering enzyme selectivity to steer metabolic pathways towards desired products, modifying enzyme promiscuity to explore innovative routes, and improving the efficiency of transporters. Furthermore, the utilization of protein engineering to modify protein-based biosensors accelerates evolutionary process and optimizes the regulation of metabolic pathways. The remaining challenges and future opportunities in this field are also discussed.
Collapse
Affiliation(s)
- Ailin Guan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zixi He
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Wang
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhi-Jun Jia
- West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jiufu Qin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Cheng G, Sun H, Wang Q, Yang J, Qiao J, Zhong C, Cai T, Wang Y. Scanning the active center of formolase to identify key residues for enhanced C1 to C3 bioconversion. BIORESOUR BIOPROCESS 2024; 11:48. [PMID: 38735884 PMCID: PMC11089019 DOI: 10.1186/s40643-024-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/02/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Formolase (FLS) is a computationally designed enzyme that catalyzes the carboligation of two or three C1 formaldehyde molecules into C2 glycolaldehyde or C3 dihydroxyacetone (DHA). FLS lays the foundation for several artificial carbon fixation and valorization pathways, such as the artificial starch anabolic pathway. However, the application of FLS is limited by its low catalytic activity and product promiscuity. FINDINGS FLS, designed and engineered based on benzoylformate decarboxylase from Pseudomonas putida, was selected as a candidate for modification. To evaluate its catalytic activity, 25 residues located within an 8 Å distance from the active center were screened using single-point saturation mutagenesis. A screening approach based on the color reaction of the DHA product was applied to identify the desired FLS variants. After screening approximately 5,000 variants (approximately 200 transformants per site), several amino acid sites that were not identified by directed evolution were found to improve DHA formation. The serine-to-phenylalanine substitution at position 236 improved the activity towards DHA formation by 7.6-fold. Molecular dynamics simulations suggested that the mutation increased local hydrophobicity at the active site, predisposing the cofactor-C2 intermediate to nucleophilic attack by the third formaldehyde molecule for subsequent DHA generation. CONCLUSIONS This study provides improved FLS variants and valuable information into the influence of residues adjacent to the active center affecting catalytic efficiency, which can guide the rational engineering or directed evolution of FLS to optimize its performance in artificial carbon fixation and valorization.
Collapse
Affiliation(s)
- Guimin Cheng
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, People's Republic of China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Hongbing Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Qian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Jinxing Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jing Qiao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Cheng Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300222, People's Republic of China
| | - Tao Cai
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| | - Yu Wang
- Haihe Laboratory of Synthetic Biology, Tianjin, 300308, China.
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
5
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Jansen S, Mayer C. A Robust Growth-Based Selection Platform to Evolve an Enzyme via Dependency on Noncanonical Tyrosine Analogues. JACS AU 2024; 4:1583-1590. [PMID: 38665651 PMCID: PMC11040555 DOI: 10.1021/jacsau.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 04/28/2024]
Abstract
Growth-based selections evaluate the fitness of individual organisms at a population level. In enzyme engineering, such growth selections allow for the rapid and straightforward identification of highly efficient biocatalysts from extensive libraries. However, selection-based improvement of (synthetically useful) biocatalysts is challenging, as they require highly dependable strategies that artificially link their activities to host survival. Here, we showcase a robust and scalable growth-based selection platform centered around the complementation of noncanonical amino acid-dependent bacteria. Specifically, we demonstrate how serial passaging of populations featuring millions of carbamoylase variants autonomously selects biocatalysts with up to 90,000-fold higher initial rates. Notably, selection of replicate populations enriched diverse biocatalysts, which feature distinct amino acid motifs that drastically boost carbamoylase activity. As beneficial substitutions also originated from unintended copying errors during library preparation or cell division, we anticipate that our growth-based selection platform will be applicable to the continuous, autonomous evolution of diverse biocatalysts in the future.
Collapse
Affiliation(s)
- Suzanne
C. Jansen
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| | - Clemens Mayer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747
AG Groningen, The
Netherlands
| |
Collapse
|
7
|
De Maria A, Nieto-Domínguez M, Nikel PI. Synthesis of fluorinated amino acids by low-specificity, promiscuous aldolases coupled to in situ fluorodonor generation. Methods Enzymol 2024; 696:199-229. [PMID: 38658080 DOI: 10.1016/bs.mie.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluorine (F) is an important element in the synthesis of molecules broadly used in medicine, agriculture, and materials. F addition to organic structures represents a unique strategy for tuning molecular properties, yet this atom is rarely found in Nature and approaches to produce fluorometabolites (such as fluorinated amino acids, key building blocks for synthesis) are relatively scarce. This chapter discusses the use of L-threonine aldolase enzymes (LTAs), a class of enzymes that catalyze reversible aldol addition to the α-carbon of glycine. The C-C bond formation ability of LTAs, together with their known substrate promiscuity, make them ideal for in vitro F biocatalysis. Here, we describe protocols to harness the activity of the low-specificity LTAs isolated from Escherichia coli and Pseudomonas putida on 2-fluoroacetaldehyde to efficiently synthesize 4-fluoro-L-threonine in vitro. This chapter also provides a comprehensive account of experimental protocols to implement these activities in vivo. These methods are illustrative and can be adapted to produce other fluorometabolites of interest.
Collapse
Affiliation(s)
- Alberto De Maria
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
8
|
Zhou P, Gao C, Song W, Wei W, Wu J, Liu L, Chen X. Engineering status of protein for improving microbial cell factories. Biotechnol Adv 2024; 70:108282. [PMID: 37939975 DOI: 10.1016/j.biotechadv.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/23/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
With the development of metabolic engineering and synthetic biology, microbial cell factories (MCFs) have provided an efficient and sustainable method to synthesize a series of chemicals from renewable feedstocks. However, the efficiency of MCFs is usually limited by the inappropriate status of protein. Thus, engineering status of protein is essential to achieve efficient bioproduction with high titer, yield and productivity. In this review, we summarize the engineering strategies for metabolic protein status, including protein engineering for boosting microbial catalytic efficiency, protein modification for regulating microbial metabolic capacity, and protein assembly for enhancing microbial synthetic capacity. Finally, we highlight future challenges and prospects of improving microbial cell factories by engineering status of protein.
Collapse
Affiliation(s)
- Pei Zhou
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Wanqing Wei
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Li Z, Deng Y, Yang GY. Growth-coupled high throughput selection for directed enzyme evolution. Biotechnol Adv 2023; 68:108238. [PMID: 37619825 DOI: 10.1016/j.biotechadv.2023.108238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/20/2023] [Indexed: 08/26/2023]
Abstract
Directed enzyme evolution has revolutionized the rapid development of enzymes with desired properties. However, the lack of a high-throughput method to identify the most suitable variants from a large pool of genetic diversity poses a major bottleneck. To overcome this challenge, growth-coupled in vivo high-throughput selection approaches (GCHTS) have emerged as a novel selection system for enzyme evolution. GCHTS links the survival of the host cell with the properties of the target protein, resulting in a screening system that is easily measurable and has a high throughput-scale limited only by transformation efficiency. This allows for the rapid identification of desired variants from a pool of >109 variants in each experiment. In recent years, GCHTS approaches have been extensively utilized in the directed evolution of multiple enzymes, demonstrating success in catalyzing non-native substrates, enhancing catalytic activity, and acquiring novel functions. This review introduces three main strategies employed to achieve GCHTS: the elimination of toxic compounds via desired variants, enabling host cells to thrive in hazardous conditions; the complementation of an auxotroph with desired variants, where essential genes for cell growth have been eliminated; and the control of the transcription or expression of a reporter gene related to host cell growth, regulated by the desired variants. Additionally, we highlighted the recent developments in the in vivo continuous evolution of enzyme technology, including phage-assisted continuous evolution (PACE) and orthogonal DNA Replication (OrthoRep). Furthermore, this review discusses the challenges and future prospects in the field of growth-coupled selection for protein engineering.
Collapse
Affiliation(s)
- Zhengqun Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuting Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
10
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
11
|
Zhou Y, Chen J, Pu W, Cai N, Che B, Yang J, Wang M, Zhong S, Zuo X, Wang D, Wang Y, Zheng P, Sun J. Development of a growth-coupled selection platform for directed evolution of heme biosynthetic enzymes in Corynebacterium glutamicum. Front Bioeng Biotechnol 2023; 11:1236118. [PMID: 37654705 PMCID: PMC10465345 DOI: 10.3389/fbioe.2023.1236118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Heme is an important tetrapyrrole compound, and has been widely applied in food and medicine industries. Although microbial production of heme has been developed with metabolic engineering strategies during the past 20 years, the production levels are relatively low due to the multistep enzymatic processes and complicated regulatory mechanisms of microbes. Previous studies mainly adopted the strategies of strengthening precursor supply and product transportation to engineer microbes for improving heme biosynthesis. Few studies focused on the engineering and screening of efficient enzymes involved in heme biosynthesis. Herein, a growth-coupled, high-throughput selection platform based on the detoxification of Zinc-protoporphyrin IX (an analogue of heme) was developed and applied to directed evolution of coproporphyrin ferrochelatase, catalyzing the insertion of metal ions into porphyrin ring to generate heme or other tetrapyrrole compounds. A mutant with 3.03-fold increase in k cat/K M was selected. Finally, growth-coupled directed evolution of another three key enzymes involved in heme biosynthesis was tested by using this selection platform. The growth-coupled selection platform developed here can be a simple and effective strategy for directed evolution of the enzymes involved in the biosynthesis of heme or other tetrapyrrole compounds.
Collapse
Affiliation(s)
- Yingyu Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Wei Pu
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ningyun Cai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Bin Che
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jinxing Yang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mengmeng Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shasha Zhong
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xingtao Zuo
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Depei Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yu Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ping Zheng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Jibin Sun
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
12
|
Chen JP, Gong JS, Su C, Li H, Xu ZH, Shi JS. Improving the soluble expression of difficult-to-express proteins in prokaryotic expression system via protein engineering and synthetic biology strategies. Metab Eng 2023; 78:99-114. [PMID: 37244368 DOI: 10.1016/j.ymben.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Solubility and folding stability are key concerns for difficult-to-express proteins (DEPs) restricted by amino acid sequences and superarchitecture, resolved by the precise distribution of amino acids and molecular interactions as well as the assistance of the expression system. Therefore, an increasing number of tools are available to achieve efficient expression of DEPs, including directed evolution, solubilization partners, chaperones, and affluent expression hosts, among others. Furthermore, genome editing tools, such as transposons and CRISPR Cas9/dCas9, have been developed and expanded to construct engineered expression hosts capable of efficient expression ability of soluble proteins. Accounting for the accumulated knowledge of the pivotal factors in the solubility and folding stability of proteins, this review focuses on advanced technologies and tools of protein engineering, protein quality control systems, and the redesign of expression platforms in prokaryotic expression systems, as well as advances of the cell-free expression technologies for membrane proteins production.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, PR China
| |
Collapse
|
13
|
Nielsen JR, Weusthuis RA, Huang WE. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration. Biotechnol Adv 2023; 63:108102. [PMID: 36681133 DOI: 10.1016/j.biotechadv.2023.108102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Enzymes need to be efficient, robust, and highly specific for their effective use in commercial bioproduction. These properties can be introduced using various enzyme engineering techniques, with random mutagenesis and directed evolution (DE) often being chosen when there is a lack of structural information -or mechanistic understanding- of the enzyme. The screening or selection step of DE is the limiting part of this process, since it must ideally be (ultra)-high throughput, specifically target the catalytic activity of the enzyme and have an accurately quantifiable metric for said activity. Growth-coupling selection strategies involve coupling a desired enzyme activity to cellular metabolism and therefore growth, where growth (rate) becomes the output metric. Redox cofactors (NAD+/NADH and NADP+/NADPH) have recently been identified as promising target molecules for growth coupling, owing to their essentiality for cellular metabolism and ubiquitous nature. Redox cofactor oxidation or reduction can be disrupted through metabolic engineering and the use of specific culturing conditions, rendering the cell inviable unless a 'rescue' reaction complements the imposed metabolic deficiency. Using this principle, enzyme variants displaying improved cofactor oxidation or reduction rates can be selected for through an increased growth rate of the cell. In recent years, several E. coli strains have been developed that are deficient in the oxidation or reduction of NAD+/NADH and NADP+/NADPH pairs, and of non-canonical redox cofactor pairs NMN+/NMNH and NCD+/NCDH, which provides researchers with a versatile toolbox of enzyme engineering platforms. A range of redox cofactor dependent enzymes have since been engineered using a variety of these strains, demonstrating the power of using this growth-coupling technique for enzyme engineering. This review aims to summarize the metabolic engineering involved in creating strains auxotrophic for the reduced or oxidized state of redox cofactors, and the resulting successes in using them for enzyme engineering. Perspectives on the unique features and potential future applications of this technique are also presented.
Collapse
Affiliation(s)
- Jochem R Nielsen
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| | - Ruud A Weusthuis
- Department of Bioprocess Engineering, Wageningen University & Research, Wageningen 6700AA, the Netherlands.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
14
|
Exploring the mechanism of compromised thermostability of aromatic L-amino acid decarboxylase from Bacillus atrophaeus through comparative molecular dynamics simulations. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|