1
|
Li T, Sun W, Qian D, Wang P, Liu X, He C, Chang T, Liao G, Zhang J. Plant-derived biomass-based hydrogels for biomedical applications. Trends Biotechnol 2025; 43:802-811. [PMID: 39384469 DOI: 10.1016/j.tibtech.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/28/2024] [Accepted: 09/16/2024] [Indexed: 10/11/2024]
Abstract
Hydrogels made of plant-derived biomass have gained popularity in biomedical applications because they are frequently affordable, readily available, and biocompatible. Finding the perfect plant-derived biomass-based hydrogels for biomedicine that can replicate essential characteristics of human tissues in regard to structure, function, and performance has proved to be difficult. In this review, we summarize some of the major contributions made to this topic, covering basic ideas and different biomass-based hydrogels made of cellulose, hemicellulose, and lignin. Also included is an in-depth discussion regarding the biosafety and toxicity assessments of biomass-based hydrogels. Finally, this review also highlights important scientific debates and major obstacles regarding biomass-based hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Tushuai Li
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Wenxue Sun
- Shandong University of Traditional Chinese Medicine, Ji'nan 250355, China; Translational Pharmaceutical Laboratory, Jining No.1 People's Hospital, Shandong First Medical University, Jining 272000, China; Institute of Translational Pharmacy, Jining Medical Research Academy, Jining 272000, China
| | - Da Qian
- Department of Burn and Plastic Surgery-Hand Surgery, Changshu Hospital Affiliated to Soochow University, Changshu No.1 People's Hospital, Suzhou 215500, China
| | - Peng Wang
- Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China
| | - Xingyu Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Chengsheng He
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Tong Chang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jie Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, PR China.
| |
Collapse
|
2
|
Biswas A, Cheng HN, Chisholm B, Beni R, Liu Z, Vermillion K, Appell M, Forson K, El Seoud O, Alves CR, Furtado RF. Self-Thickening Materials Derived from Phenylpropanoid Ene Reactions. Molecules 2025; 30:977. [PMID: 40076202 PMCID: PMC11901909 DOI: 10.3390/molecules30050977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
In this work, we report the observation of uncatalyzed ene reactions between several phenylpropanoid compounds and diethyl azodicarboxylate (DEAD). For allylbenzene, the reaction produces the ene product at molar ratios of up to 1:2 of allylbenzene to DEAD. At higher levels of DEAD, more complex reactions are observed. For the reaction between methyl eugenol and DEAD, similar ene reaction products have been found. However, the reaction of eugenol with DEAD is more complex; in addition to the ene reaction, other reactions happen at the same time. Most of the structures of the resulting products have been elucidated using NMR spectroscopy (1H, 13C, and 2D), and the findings have been further corroborated by FTIR analysis. Interestingly, these products appear to undergo molecular aggregation, which results in self-thickening in their neat form. However, the viscosity significantly decreases upon dilution with a solvent. This self-thickening property suggests their potential use as thickening agents in organic solvent formulations.
Collapse
Affiliation(s)
- Atanu Biswas
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Huai N. Cheng
- Southern Regional Research Center, USDA Agricultural Research Service, 1100 Allen Toussaint Boulevard, New Orleans, LA 70124, USA
| | - Bret Chisholm
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Ryan Beni
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Zengshe Liu
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Karl Vermillion
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Michael Appell
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Kelton Forson
- National Center for Agricultural Utilization Research, USDA Agricultural Research Services, 1815 N. University Street, Peoria, IL 61604, USA
| | - Omar El Seoud
- Institute of Chemistry, University of São Paulo, São Paulo 05508-000, SP, Brazil
| | - Carlucio R. Alves
- Chemistry Department, State University of Ceará, Silas Munguba Av. 1.700, Fortaleza 60740-020, CE, Brazil
| | - Roselayne F. Furtado
- Embrapa Agroindústria Tropical, Rua Dra. Sara Mesquita 2270, Fortaleza 60511-110, CE, Brazil
| |
Collapse
|
3
|
Rabelsa G, Shobih, Hidayat J, Milana P, Budiawan W, Almuqqodas E, Nursam NM, Ibrahim A, Pranoto LM, Firdaus Y, Yuliarto B. The stability improvements of dye-sensitized solar cell with natural template for photoanode using lignin extracted from rice husk. Heliyon 2025; 11:e39913. [PMID: 39758394 PMCID: PMC11699364 DOI: 10.1016/j.heliyon.2024.e39913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 01/07/2025] Open
Abstract
In response to escalating global concerns over environmental pollution, the development of green dye-sensitized solar cells (DSSCs) has emerged as a promising technology for solar energy conversion. This study harnesses the potential of rice husk, an abundant agricultural waste in Indonesia, by extracting lignin through a simple recycling method. Lignin acts as a natural, non-toxic dopant and template for TiO₂ composites, enhancing the stability of the photoanode in DSSCs. A TiO₂ photoanode modified with 5 % lignin achieved a power conversion efficiency (PCE) of 4.81 %. After a 90-day stability test, the TiO2/lignin 5 % composite retained 78 % of its initial PCE, significantly outperforming pristine TiO₂ in terms of short-circuit current density (JSC) and open-circuit voltage (VOC). This improved stability is attributed to increased porosity, better lignin dispersion within the TiO₂ matrix, prevention of agglomeration, enhanced surface area for dye adsorption, and reduced electrolyte leakage. Furthermore, lignin's high thermal stability on the TiO₂ surface provides additional protection against dye degradation and electrolyte evaporation during repeated light exposure.
Collapse
Affiliation(s)
- Gita Rabelsa
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Shobih
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Jojo Hidayat
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Phutri Milana
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Widhya Budiawan
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Erdin Almuqqodas
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Natalita M. Nursam
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Ahmad Ibrahim
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Energy Research Institute @ NTU, Nanyang Technological University, Research Techno Plaza, 50 Nanyang Drive, 637553, Singapore
| | - Lia M. Pranoto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Yuliar Firdaus
- Research Center for Electronics, National Research and Innovation Agency, Bandung, 40135, Indonesia
| | - Brian Yuliarto
- Advanced Functional Materials Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung, 40132, Indonesia
| |
Collapse
|
4
|
Liao G, Sun E, Kana EBG, Huang H, Sanusi IA, Qu P, Jin H, Liu J, Shuai L. Renewable hemicellulose-based materials for value-added applications. Carbohydr Polym 2024; 341:122351. [PMID: 38876719 DOI: 10.1016/j.carbpol.2024.122351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/16/2024]
Abstract
The importance of renewable resources and environmentally friendly materials has grown globally in recent time. Hemicellulose is renewable lignocellulosic materials that have been the subject of substantial valorisation research. Due to its distinctive benefits, including its wide availability, low cost, renewability, biodegradability, simplicity of chemical modification, etc., it has attracted increasing interest in a number of value-added fields. In this review, a systematic summarizes of the structure, extraction method, and characterization technique for hemicellulose-based materials was carried out. Also, their most current developments in a variety of value-added adsorbents, biomedical, energy-related, 3D-printed materials, sensors, food packaging applications were discussed. Additionally, the most recent challenges and prospects of hemicellulose-based materials are emphasized and examined in-depth. It is anticipated that in the near future, persistent scientific efforts will enable the renewable hemicellulose-based products to achieve practical applications.
Collapse
Affiliation(s)
- Guangfu Liao
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Enhui Sun
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa; School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - E B Gueguim Kana
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Hongying Huang
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Isaac A Sanusi
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Scottsville 3209, South Africa
| | - Ping Qu
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hongmei Jin
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jun Liu
- School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Li Shuai
- National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China..
| |
Collapse
|
5
|
Yao L, Qian L, Song W, Zhang S, Zhang Y, Zhang L, Li X, Yan G, Nica V. Advancements in Ti 3C 2T x MXene Stability: Synergistic Antioxidant Strategies and Their Impact on Long-Lasting Flexible Sensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48147-48162. [PMID: 39190871 DOI: 10.1021/acsami.4c11281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Two-dimensional (2D) transition metal carbides (Ti3C2Tx MXene) have demonstrated substantial application potential across various fields, owing to their excellent metallic conductivity and solution processability. However, the rapid oxidation of Ti3C2Tx in aqueous environments, leading to a loss of stability within mere days, poses a significant obstacle for its practical applications. Herein, we introduce an antioxidant strategy that combines free radical scavenging with surface passivation, culminating in the design and synthesis of imidazolium-based ionic liquids (ILs) incorporating siloxane groups. By deploying a straightforward hydrolysis-addition reaction, we successfully fabricated IL-modified Ti3C2Tx materials (Ti3C2Tx-IL). The Ti3C2Tx -IL not only displayed exceptional conductivity exceeding 3.85 × 104 S/m and hydrophilic contact angles below 45° but also showcased its superior chemical stability and antioxidation mechanisms through various analyses, including visual color change experiments, spectroscopic and energy spectrum characterization, free radical scavenging tests, and density-functional-theory-based molecular simulations. Furthermore, when utilized as a conductive filler in the fabrication of a poly(vinyl alcohol)/nanocellulose fiber (PVA/CNF) composite hydrogel (PCMIL), the resultant sensors exhibited remarkable mechanical performance with up to 535% strain, 1.59 MPa strength, 4.35 MJ/m3 toughness, and a conductivity of 3.40 mS/cm, as well as a high sensitivity gauge factor of 3.3. Importantly, even after 45 days of storage, the PCMIL retained most of its functionalities, demonstrating superior performance in human-machine interaction applications compared to hydrogels made from unmodified Ti3C2Tx. This research establishes a robust antioxidant protection strategy for Ti3C2Tx, offering substantial technical reinforcement for its prospective applications in the realm of flexible electronics and sensing technologies.
Collapse
Affiliation(s)
- Liming Yao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Wenqi Song
- Technological Institute of Materials and Energy Science (TIMES), Xi'an Key Laboratory of Advanced Photo-Electronics Materials and Energy Conversion Device, School of Electronic Information, Xijing University, Xi'an 710123, People's Republic of China
| | - Sufeng Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Yuhao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Lijing Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Xikuan Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Guangqi Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Shaanxi Xian 710021, China
| | - Valentin Nica
- Department of Physics, "Alexandru Ioan Cuza" University of Iasi, Carol I Blvd., Iasi 700506, Romania
| |
Collapse
|
6
|
Feng X, Deng N, Yu W, Peng Z, Su D, Kang W, Cheng B. Review: Application of Bionic-Structured Materials in Solid-State Electrolytes for High-Performance Lithium Metal Batteries. ACS NANO 2024; 18:15387-15415. [PMID: 38843224 DOI: 10.1021/acsnano.4c02547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
Solid-state lithium metal batteries (SSLMBs) have gained significant attention in energy storage research due to their high energy density and significantly improved safety. But there are still certain problems with lithium dendrite growth, interface stability, and room-temperature practicality. Nature continually inspires human development and intricate design strategies to achieve optimal structural applications. Innovative solid-state electrolytes (SSEs), inspired by diverse natural species, have demonstrated exceptional physical, chemical, and mechanical properties. This review provides an overview of typical bionic-structured materials in SSEs, particularly those mimicking plant and animal structures, with a focus on their latest advancements in applications of solid-state lithium metal batteries. Commencing from plant structures encompassing roots, trunks, leaves, flowers, fruits, and cellular levels, the detailed influence of biomimetic strategies on SSE design and electrochemical performance are presented in this review. Subsequently, the recent progress of animal-inspired nanostructures in SSEs is summarized, including layered structures, surface morphologies, and interface compatibility in both two-dimensional (2D) and three-dimensional (3D) aspects. Finally, we also evaluate the current challenges and provide a concise outlook on future research directions. We anticipate that the review will provide useful information for future reference regarding the design of bionic-structured materials in SSEs.
Collapse
Affiliation(s)
- Xiaofan Feng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Wen Yu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Zhaozhao Peng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Dongyue Su
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, People's Republic of China
| |
Collapse
|
7
|
Wang Q, Ma C, Wang N, Mao H. Effects of quercetin on the DNA methylation pattern in tumor therapy: an updated review. Food Funct 2024; 15:3897-3907. [PMID: 38535893 DOI: 10.1039/d3fo03831a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Quercetin is a unique bioactive flavonoid, and is an excellent antioxidant and has anti-tumor effects by regulating different tumor-related processes like proliferation, apoptosis, invasion, and spread. The latest investigations reveal that quercetin may have the capability to influence DNA methylation modification, one of the primary factors in the development of tumors. Despite the fact that quercetin has significant therapeutic properties, its use as an anti-tumor medicine is constrained by its poor solubility, short half-life, and ineffective tumor targeting. Here, we review the structure and properties of quercetin, its capacity for DNA methylation modification in tumors, and the possibility of nanoscale delivery of quercetin for future tumor treatment.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Nan Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| | - Huixian Mao
- School of Pharmacy, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
8
|
Zhang H, Yuan W. Self-healable oxide sodium alginate/carboxymethyl chitosan nanocomposite hydrogel loading Cu 2+-doped MOF for enhanced synergistic and precise cancer therapy. Int J Biol Macromol 2024; 262:129996. [PMID: 38342271 DOI: 10.1016/j.ijbiomac.2024.129996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/25/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
The limitations of traditional therapeutic methods such as chemotherapy serious restricted the application in tumor treatment, including poor targeting, toxic side effects and poor precision. It is important to develop non-chemotherapeutic systems to achieve precise and efficient tumor treatment. Therefore, a functional metal-organic framework material (MOF) with porphyrin core and doped with Cu2+ and surface-modified with polydopamine (PDA), namely PCN-224(Cu)@PDA (PCP) was designed and prepared. After loaded into the injectable and self-healable hydrogels by dynamic Schiff base bonding of oxidized sodium alginate (OSA) and carboxymethyl chitosan (CMC), the multifunctional nanocomposite hydrogels were obtained, in which Cu2+ in MOF converts to Cu+ by reacting with glutathione (GSH) which reduces the tumor antioxidant activity to improve the CDT effect. The Cu2+/Cu+ induces Fenton-like reaction in tumor cells to produce a toxic hydroxyl radical (OH). PDA achieves photothermal conversion under NIR light for photothermal therapy (PTT), and porphyrin core as a ligand generates reactive oxygen species (ROS), presenting highly efficient photodynamic therapy (PDT). Injectable self-healing hydrogel as a loading platform can be in situ injected to tumor site to release PCP and endocytosed by tumor cells to achieve precise and synergistic CDT-PDT-PTT therapy.
Collapse
Affiliation(s)
- Hanyan Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
9
|
Zhang X, Huang H, Chen S, Xu Y, Xu F. Mono-component bacterial cellulose heterogeneous membrane mediated by ionic liquids for osmotic energy harvesting. Int J Biol Macromol 2024; 258:128984. [PMID: 38151089 DOI: 10.1016/j.ijbiomac.2023.128984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
The massive reserves of osmotic energy existing in estuary will be highly desired as promising energy source that avails to solve the problem of energy shortage and environment deterioration. The ion transport membrane is core component optimized through composite membrane heterostructure to maximize the osmotic energy harvesting but suffer from gaps and resistance increase, which limit their practical applications. Here we demonstrate mono-component heterogeneous regenerated bacterial cellulose (RBC) membranes fabricated by subtle regenerated technique through Ionic Liquids (ILs). Such membranes obtain heterogeneous nature by the difference in fiber intertwining states due to the different treatment conditions on both sides. It achieves osmotic energy conversion with maximum power density of 0.70 W·m-2at 100-fold, which provides ingenious strategy for excellent performance and low-cost osmotic energy harvesting. By minimizing pores and maximizing the surface charges, energy barriers can be lowered, ion permeable and selective transport channels for energy harvesting device can be increased, as supported by the numerical simulation. This is the first time the construction strategy for mono-component heterogeneous membrane mediated by ILs for osmotic energy harvesting is proposed, which averts gaps between the layers of different materials effectively and provides theoretical guidance for subsequent in-depth research on mono-component ion-selective heterogeneous membrane.
Collapse
Affiliation(s)
- Xiao Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Haocun Huang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Sheng Chen
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China
| | - Yanglei Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
10
|
Du C, Xu J, Ding G, He D, Zhang H, Qiu W, Li C, Liao G. Recent Advances in LDH/g-C 3N 4 Heterojunction Photocatalysts for Organic Pollutant Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3066. [PMID: 38063762 PMCID: PMC10707826 DOI: 10.3390/nano13233066] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 04/07/2024]
Abstract
Environmental pollution has been decreased by using photocatalytic technology in conjunction with solar energy. An efficient method to obtain highly efficient photocatalysts is to build heterojunction photocatalysts by combining graphitic carbon nitride (g-C3N4) with layered double hydroxides (LDHs). In this review, recent developments in LDH/g-C3N4 heterojunctions and their applications for organic pollutant removal are systematically exhibited. The advantages of LDH/g-C3N4 heterojunction are first summarized to provide some overall understanding of them. Then, a variety of approaches to successfully assembling LDH and g-C3N4 are simply illustrated. Last but not least, certain unmet research needs for the LDH/g-C3N4 heterojunction are suggested. This review can provide some new insights for the development of high-performance LDH/g-C3N4 heterojunction photocatalysts. It is indisputable that the LDH/g-C3N4 heterojunctions can serve as high-performance photocatalysts to make new progress in organic pollutant removal.
Collapse
Affiliation(s)
- Cheng Du
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.D.); (J.X.); (D.H.); (W.Q.)
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 518000, China;
| | - Jialin Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.D.); (J.X.); (D.H.); (W.Q.)
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 518000, China;
| | - Guixiang Ding
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Dayong He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.D.); (J.X.); (D.H.); (W.Q.)
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 518000, China;
| | - Hao Zhang
- Shenzhen Mindray Bio-Medical Electronics Co., Ltd., Shenzhen 518000, China;
| | - Weibao Qiu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.D.); (J.X.); (D.H.); (W.Q.)
| | - Chunxue Li
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350118, China;
| | - Guangfu Liao
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (C.D.); (J.X.); (D.H.); (W.Q.)
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
11
|
Song C, Gao C, Peng Q, Gibril ME, Wang X, Wang S, Kong F. A novel high-performance electrospun of polyimide/lignin nanofibers with unique electrochemical properties and its application as lithium-ion batteries separators. Int J Biol Macromol 2023; 246:125668. [PMID: 37419263 DOI: 10.1016/j.ijbiomac.2023.125668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 07/01/2023] [Indexed: 07/09/2023]
Abstract
Polypropylene is currently one of the most widely used separators in lithium batteries because of its low cost and chemical stability. However, it also has some intrinsic flaws that hamper the battery performance, such as poor wettability, low ionic conductivity, and some safety issues. This work introduces a novel electrospun nanofibrous consisting of polyimide (PI) blended with lignin (L) to serve as a new class of bio-based separators for lithium-ion batteries. The morphology and properties of the prepared membranes were studied in detail and compared with those of a commercial polypropylene separator. Interestingly, the polar groups in lignin promoted the affinity to the electrolytes and improved the liquid absorption properties of the PI-L membrane. Besides, the PI-L separator showed a higher ionic conductivity (1.78 × 10-3 S/cm) and Li+ transference number (0.787). Furthermore, the battery's cycle and rate performance improved due to adding of lignin. The capacity retention of the assembled LiFePO4 | PI-L | Li Battery was 95.1 % after 100 cycles at 1C current density, which was higher than that of the PP (90 %). Based on the results, PI-L, a bio-based battery separator, can potentially replace the current PP separators in lithium metal batteries.
Collapse
Affiliation(s)
- Changyong Song
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Chao Gao
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Qinggang Peng
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Magdi E Gibril
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Xiaohui Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Shoujuan Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
12
|
Wu DH, Huang H, Ul Haq M, Zhang L, Feng JJ, Wang AJ. Lignin-derived iron carbide/Mn, N, S-codoped carbon nanotubes as a high-efficiency catalyst for synergistically enhanced oxygen reduction reaction and rechargeable zinc-air battery. J Colloid Interface Sci 2023; 647:1-11. [PMID: 37236099 DOI: 10.1016/j.jcis.2023.05.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Design of efficient and durable oxygen reduction reaction (ORR) electrocatalysts still remains challenge in sustainable energy storage and conversion devices. To achieve sustainable development, it is of importance to prepare high-quality carbon-derived ORR catalysts from biomass. Herein, Fe5C2 nanoparticles (NPs) were facilely entrapped in Mn, N, S-codoped carbon nanotubes (Fe5C2/Mn, N, S-CNTs) by a one-step pyrolysis of the mixed lignin, metal precursors and dicyandiamide. The resulting Fe5C2/Mn, N, S-CNTs had open and tubular structures, which exhibited positive shifts in the onset potential (Eonset = 1.04 V) and high half-wave potential (E1/2 = 0.85 V), showing excellent ORR characteristics. Further, the typical catalyst-assembled Zn-air battery showed a high power density (153.19 mW cm-2) and good cycling performance as well as obvious cost advantage. The research provides some valuable insights for rational construction of low-cost and environmentally sustainable ORR catalysts in clean energy field, coupled by offering some valuable insights for reusing biomass wastes.
Collapse
Affiliation(s)
- Dong-Hui Wu
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Mahmood Ul Haq
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Li W, Yang F, Lin Z, Sun R, Chen L, Xie Y, Pang J, Jiang Z. Semi-crystalline sulfonated poly(ether ketone) proton exchange membranes: The trade-off of facile synthesis and performance. J Colloid Interface Sci 2023; 645:493-501. [PMID: 37159991 DOI: 10.1016/j.jcis.2023.04.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/22/2023] [Indexed: 05/11/2023]
Abstract
Improving the performance of proton exchange membranes (PEMs) through the synthesis of sulfonated polymers with elaborate molecular structures has received extensive approval. However, the tedious synthetic process and consequently high costs restrain their possible substitution for Nafion, a classic PEM material. Herein, a series of semi-crystalline sulfonated poly(ether ketone)s with fluorene-based units were prepared via direct copolymerization of commercially available monomers and followed post-sulfonation, namely SPEK-FD-x, where × represents the molar ratio of the fluorene-containing monomer to the employed bisphenol monomers. The entire synthetic pathway was facile without involving hardly accessible materials. Subsequently, various properties of SPEK-FD-x membranes were investigated and further compared with Nafion 117. Due to the formation of the well-defined hydrophilic-hydrophobic microphase separation morphology and the reinforcement of the PEK crystalline regions, the SPEK-FD-x membranes exhibited outstanding proton conductivity, resistance for methanol permeation, as well as dimensional, thermal, oxidative, and mechanical stability. Among them, the overall behavior of the SPEK-FD-25 membrane was comparable to or even greater than that of Nafion 117, most importantly, it also performed decently in both H2/air fuel cells and direct methanol fuel cells. Therefore, with the straightforward synthesis and superior performance, the SPEK-FD-x membranes may serve as a promising alternative to Nafion.
Collapse
Affiliation(s)
- Wenying Li
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Fan Yang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ziyu Lin
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Ruiyin Sun
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Liyuan Chen
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| | - Yunji Xie
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstr.18, D-76131 Karlsruhe, Germany.
| | - Jinhui Pang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China.
| | - Zhenhua Jiang
- Laboratory of High Performance Plastics (Jilin University), Ministry of Education. National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer. College of Chemistry, Jilin University, Changchun 130012, PR. China
| |
Collapse
|
14
|
Wu Q, Yang X, Yang J, Liu P, Ding G, Chen Z, Liao G. Size effect of ruthenium nanoparticles on water cracking properties with different crystal planes for boosting electrocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 644:238-245. [PMID: 37119641 DOI: 10.1016/j.jcis.2023.04.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/01/2023] [Accepted: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Small size ruthenium (Ru) nanoparticles have shown remarkable potential for electrocatalytic hydrogen evolution reaction (HER). Nevertheless, the complicated preparation and relatively low activity of small size Ru nanoparticles are two key challenges. In this work, carbon nanotubes supported Ru nanoparticles catalysts (cnts@NC-Ru t °C) with different sizes were prepared via using the combination of L-3,4-dihydroxyphenylalanine (l-dopa) self-polymerization oxidation reaction and different high temperature annealing to study the variation of particle activity with size. Electrochemical test results showed that the optimized cnts@NC-Ru 700 °C catalyst exhibited a very low overpotential at 10 mA/cm2 (21 mV) and tafel slope of 34.93 mV/dec when the mass loading of precious metal per unit area was merely 12.11 μg/cm2 that surpassed most recently reported high-performance Ru based catalyst. The results of density functional theory (DFT) calculation showed that small Ru nanoparticles had abundant active sites, and the H2O dissociation on small Ru nanoparticles (110) surface is quite easy than other surfaces, while (111) surface of small Ru nanoparticles is beneficial for Tafel step of HER. The synergy between (110) and (111) surfaces on the Ru cluster contributes to its outstanding HER performance. This study provides a novel design idea in promoting the preparation method and uncovering the reason of high activity of small size Ru nanoparticles.
Collapse
Affiliation(s)
- Qikang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China
| | - Xiaobo Yang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China
| | - Jing Yang
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Pengfei Liu
- Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, PR China
| | - Guixiang Ding
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, PR China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, PR China.
| | - Guangfu Liao
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
15
|
Yuan JS, Pavlovich MJ, Ragauskas AJ, Han B. Biotechnology for a sustainable future: biomass and beyond. Trends Biotechnol 2022; 40:1395-1398. [PMID: 36273928 DOI: 10.1016/j.tibtech.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua S Yuan
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | | | - Arthur J Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Buxing Han
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|