1
|
Xu S, Song G, Qi X, Kan G, Sampath Jayaweer JAA, An Y. Engineered interaction elements enable enhanced multi-enzyme assembly and cascade biocatalysis for indigo synthesis. BIORESOURCE TECHNOLOGY 2025; 429:132540. [PMID: 40239898 DOI: 10.1016/j.biortech.2025.132540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/01/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Efficient interacting peptides or protein scaffolds can be used to achieve multi-enzymatic cascade reactions to trigger substrate channeling effect, prevent intermediate diffusion, and control the flux of metabolites. However, the limited availability of existing interactive elements hinders the broad application of the multi-enzyme assembly strategy. Here, a peptide-peptide pair (PB1C/PB2N) and a protein-peptide pair (importin/PB2C) were fused to the target protein to induce protein assembly for the first time. The newly developed interactive elements, when combined with the existing RIDD/RIAD pair, can more efficiently achieve multi-enzymatic cascade reactions. The indigo synthesis pathway was optimized through cascade biocatalysis based on these interactive elements. As a result, compared with the co-expression of multiple enzymes, the interaction element-based cascade biocatalysis increased the yield of indigo by twofold. Our results demonstrate the potential of PB1C/PB2N and importin/PB2C scaffold systems as tools for enzyme assembly to control metabolic flux and increase the efficiency of biosynthetic pathways.
Collapse
Affiliation(s)
- Shumin Xu
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resource Mining and Molecular Breeding, China
| | - Gao Song
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resource Mining and Molecular Breeding, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong, China
| | - Guoshi Kan
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resource Mining and Molecular Breeding, China
| | | | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang, China; Shenyang Key Laboratory of Microbial Resource Mining and Molecular Breeding, China.
| |
Collapse
|
2
|
Yu W, Jin K, Xu X, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Engineering microbial cell factories by multiplexed spatiotemporal control of cellular metabolism: Advances, challenges, and future perspectives. Biotechnol Adv 2025; 79:108497. [PMID: 39645209 DOI: 10.1016/j.biotechadv.2024.108497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Generally, the metabolism in microbial organism is an intricate, spatiotemporal process that emerges from gene regulatory networks, which affects the efficiency of product biosynthesis. With the coming age of synthetic biology, spatiotemporal control systems have been explored as versatile strategies to promote product biosynthesis at both spatial and temporal levels. Meanwhile, the designer synthetic compartments provide new and promising approaches to engineerable spatiotemporal control systems to construct high-performance microbial cell factories. In this article, we comprehensively summarize recent developments in spatiotemporal control systems for tailoring advanced cell factories, and illustrate how to apply spatiotemporal control systems in different microbial species with desired applications. Future challenges of spatiotemporal control systems and perspectives are also discussed.
Collapse
Affiliation(s)
- Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Jiangsu Province Basic Research Center for Synthetic Biology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Zhang R, Kang SY, Gaascht F, Peña EL, Schmidt-Dannert C. Design of a Genetically Programmable and Customizable Protein Scaffolding System for the Hierarchical Assembly of Robust, Functional Macroscale Materials. ACS Synth Biol 2024; 13:3724-3745. [PMID: 39480180 DOI: 10.1021/acssynbio.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Inspired by the properties of natural protein-based biomaterials, protein nanomaterials are increasingly designed with natural or engineered peptides or with protein building blocks. Few examples describe the design of functional protein-based materials for biotechnological applications that can be readily manufactured, are amenable to functionalization, and exhibit robust assembly properties for macroscale material formation. Here, we designed a protein-scaffolding system that self-assembles into robust, macroscale materials suitable for in vitro cell-free applications. By controlling the coexpression in Escherichia coli of self-assembling scaffold building blocks with and without modifications for covalent attachment of cross-linking cargo proteins, hybrid scaffolds with spatially organized conjugation sites are overproduced that can be readily isolated. Cargo proteins, including enzymes, are rapidly cross-linked onto scaffolds for the formation of functional materials. We show that these materials can be used for the in vitro operation of a coimmobilized two-enzyme reaction and that the protein material can be recovered and reused. We believe that this work will provide a versatile platform for the design and scalable production of functional materials with customizable properties and the robustness required for biotechnological applications.
Collapse
Affiliation(s)
- Ruijie Zhang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Sun-Young Kang
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - François Gaascht
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Eliana L Peña
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Claudia Schmidt-Dannert
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
- BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| |
Collapse
|
4
|
Chen Z, Yu S, Liu J, Guo L, Wu T, Duan P, Yan D, Huang C, Huo Y. Concentration Recognition-Based Auto-Dynamic Regulation System (CRUISE) Enabling Efficient Production of Higher Alcohols. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310215. [PMID: 38626358 PMCID: PMC11187965 DOI: 10.1002/advs.202310215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/12/2024] [Indexed: 04/18/2024]
Abstract
Microbial factories lacking the ability of dynamically regulating the pathway enzymes overexpression, according to in situ metabolite concentrations, are suboptimal, especially when the metabolic intermediates are competed by growth and chemical production. The production of higher alcohols (HAs), which hijacks the amino acids (AAs) from protein biosynthesis, minimizes the intracellular concentration of AAs and thus inhibits the host growth. To balance the resource allocation and maintain stable AA flux, this work utilizes AA-responsive transcriptional attenuator ivbL and HA-responsive transcriptional activator BmoR to establish a concentration recognition-based auto-dynamic regulation system (CRUISE). This system ultimately maintains the intracellular homeostasis of AA and maximizes the production of HA. It is demonstrated that ivbL-driven enzymes overexpression can dynamically regulate the AA-to-HA conversion while BmoR-driven enzymes overexpression can accelerate the AA biosynthesis during the HA production in a feedback activation mode. The AA flux in biosynthesis and conversion pathways is balanced via the intracellular AA concentration, which is vice versa stabilized by the competition between AA biosynthesis and conversion. The CRUISE, further aided by scaffold-based self-assembly, enables 40.4 g L-1 of isobutanol production in a bioreactor. Taken together, CRUISE realizes robust HA production and sheds new light on the dynamic flux control during the process of chemical production.
Collapse
Affiliation(s)
- Zhenya Chen
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
- Tangshan Research InstituteBeijing Institute of Technology, No. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
| | - Shengzhu Yu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Jing Liu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Liwei Guo
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Tong Wu
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Peifeng Duan
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Dongli Yan
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Chaoyong Huang
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
| | - Yi‐Xin Huo
- Key Laboratory of Molecular Medicine and BiotherapyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyHaidian DistrictNo. 5 South Zhongguancun StreetBeijing100081China
- Tangshan Research InstituteBeijing Institute of Technology, No. 57, South Jianshe Road, Lubei DistrictTangshanHebei063000China
| |
Collapse
|
5
|
Liu N, Dong W, Yang H, Li JH, Chiu TY. Application of artificial scaffold systems in microbial metabolic engineering. Front Bioeng Biotechnol 2023; 11:1328141. [PMID: 38188488 PMCID: PMC10771841 DOI: 10.3389/fbioe.2023.1328141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
In nature, metabolic pathways are often organized into complex structures such as multienzyme complexes, enzyme molecular scaffolds, or reaction microcompartments. These structures help facilitate multi-step metabolic reactions. However, engineered metabolic pathways in microbial cell factories do not possess inherent metabolic regulatory mechanisms, which can result in metabolic imbalance. Taking inspiration from nature, scientists have successfully developed synthetic scaffolds to enhance the performance of engineered metabolic pathways in microbial cell factories. By recruiting enzymes, synthetic scaffolds facilitate the formation of multi-enzyme complexes, leading to the modulation of enzyme spatial distribution, increased enzyme activity, and a reduction in the loss of intermediate products and the toxicity associated with harmful intermediates within cells. In recent years, scaffolds based on proteins, nucleic acids, and various organelles have been developed and employed to facilitate multiple metabolic pathways. Despite varying degrees of success, synthetic scaffolds still encounter numerous challenges. The objective of this review is to provide a comprehensive introduction to these synthetic scaffolds and discuss their latest research advancements and challenges.
Collapse
Affiliation(s)
- Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Wei Dong
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Huanming Yang
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| | - Jing-Hua Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Tsan-Yu Chiu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou, China
| |
Collapse
|