1
|
Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021; 13:v13081658. [PMID: 34452522 PMCID: PMC8402729 DOI: 10.3390/v13081658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.
Collapse
|
2
|
Eckelbarger KJ, Hodgson AN. Invertebrate oogenesis – a review and synthesis: comparative ovarian morphology, accessory cell function and the origins of yolk precursors. INVERTEBR REPROD DEV 2021. [DOI: 10.1080/07924259.2021.1927861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kevin J. Eckelbarger
- Darling Marine Center, School of Marine Sciences, The University of Maine, Walpole, Maine, U.S.A
| | - Alan N. Hodgson
- Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa
| |
Collapse
|
3
|
Ahmed RB, Urbisz AZ, Świątek P. An ultrastructural study of the ovary cord organization and oogenesis in the amphibian leech Batracobdella algira (Annelida, Clitellata, Hirudinida). PROTOPLASMA 2021; 258:191-207. [PMID: 33033944 DOI: 10.1007/s00709-020-01560-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
This study reveals the ovary micromorphology and the course of oogenesis in the leech Batracobdella algira (Glossiphoniidae). Using light, fluorescence, and electron microscopies, the paired ovaries were analyzed. At the beginning of the breeding season, the ovaries were small, but as oogenesis progressed, they increased in size significantly, broadened, and elongated. A single convoluted ovary cord was located inside each ovary. The ovary cord was composed of numerous germ cells gathered into syncytial groups, which are called germ-line cysts. During oogenesis, the clustering germ cells differentiated into two functional categories, i.e., nurse cells and oocytes, and therefore, this oogenesis was recognized as being meroistic. As a rule, each clustering germ cell had one connection in the form of a broad cytoplasmic channel (intercellular bridge) that connected it to the cytophore. There was a synchrony in the development of the clustering germ cells in the whole ovary cord. In the immature leeches, the ovary cords contained undifferentiated germ cells exclusively, from which, previtellogenic oocytes and nurse cells differentiated as the breeding season progressed. Only the oocytes grew considerably, gathered nutritive material, and protruded at the ovary cord surface. The vitellogenic oocytes subsequently detached from the cord and filled tightly the ovary sac, while the nurse cells and the cytophore degenerated. Ripe eggs were finally deposited into the cocoons. A comparison of the ovary structure and oogenesis revealed that almost all of the features that are described in the studied species were similar to those that are known from other representatives of Glossiphoniidae, which indicates their evolutionary conservatism within this family.
Collapse
Affiliation(s)
- Raja Ben Ahmed
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| | - Anna Z Urbisz
- Faculté des Sciences de Tunis, LR18ES41 Ecologie, Biologie et Physiologie des organismes aquatiques, Université de Tunis El Manar, 2092, Tunis, Tunisia
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| | - Piotr Świątek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa, 9, 40-007, Katowice, Poland
| |
Collapse
|
4
|
Urbisz AZ, Nakano T, Świątek P. Ovary cord micromorphology in the blood-sucking haemadipsid leech Haemadipsa japonica (Hirudinida: Arhynchobdellida: Hirudiniformes). Micron 2020; 138:102929. [DOI: 10.1016/j.micron.2020.102929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
|
5
|
Świątek P, Urbisz AZ. Architecture and Life History of Female Germ-Line Cysts in Clitellate Annelids. Results Probl Cell Differ 2019; 68:515-551. [PMID: 31598870 DOI: 10.1007/978-3-030-23459-1_21] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Animal female and male germ-line cells often form syncytial units termed cysts, clusters, or clones. Within these cysts, the cells remain interconnected by specific cell junctions known as intercellular bridges or ring canals, which enable cytoplasm to be shared and macromolecules and organelles to be exchanged between cells. Numerous analyses have shown that the spatial organization of cysts and their functioning may differ between the sexes and taxa. The vast majority of our knowledge about the formation and functioning of germ-line cysts comes from studies of model species (mainly Drosophila melanogaster); the other systems of the cyst organization and functioning are much less known and are sometimes overlooked. Here, we present the current state of the knowledge of female germ-line cysts in clitellate annelids (Clitellata), which is a monophyletic taxon of segmented worms (Annelida). The organization of germ-line cysts in clitellates differs markedly from that of the fruit fly and vertebrates. In Clitellata, germ cells are not directly connected one to another, but, as a rule, each cell has one ring canal that connects it to an anuclear central cytoplasmic core, a cytophore. Thus, this pattern of cell distribution is similar to the germ-line cysts of Caenorhabditis elegans. The last decade of studies has revealed that although clitellate female germ-line cysts have a strong morphological plasticity, e.g., cysts may contain from 16 to as many as 2500 cells, the oogenesis always shows a meroistic mode, i.e., the interconnected cells take on different fates; a few (sometimes only one) become oocytes, whereas the rest play the role of supporting (nurse) cells and do not continue oogenesis.This is the first comprehensive summary of the current knowledge on the organization and functioning of female germ-line cysts in clitellate annelids.
Collapse
Affiliation(s)
- Piotr Świątek
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland.
| | - Anna Z Urbisz
- Faculty of Biology and Environmental Protection, Department of Animal Histology and Embryology, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
6
|
Ovaries of the white worm ( Enchytraeus albidus , Annelida, Clitellata) are composed of 16-celled meroistic germ-line cysts. Dev Biol 2017; 426:28-42. [DOI: 10.1016/j.ydbio.2017.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/18/2017] [Accepted: 04/18/2017] [Indexed: 01/31/2023]
|
7
|
Gorgoń S, Wardas A, Krodkiewska M, Świątek P. Oogenesis in three species of Naidinae (Annelida, Clitellata) is extraovarian of the Stylaria type. ZOOLOGY 2017; 121:111-124. [DOI: 10.1016/j.zool.2016.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 01/27/2023]
|
8
|
Liao Z, Mao Q, Li J, Lu C, Wu W, Chen H, Chen Q, Jia D, Wei T. Virus-Induced Tubules: A Vehicle for Spread of Virions into Ovary Oocyte Cells of an Insect Vector. Front Microbiol 2017; 8:475. [PMID: 28382031 PMCID: PMC5360704 DOI: 10.3389/fmicb.2017.00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 03/08/2017] [Indexed: 11/13/2022] Open
Abstract
Many arthropod-borne viruses are persistently propagated and transovarially transmitted by female insect vectors through eggs, but the mechanism remains poorly understood. Insect oocytes are surrounded by a layer of follicular cells, which are connected to the oocyte through actin-based microvilli. Here, we demonstrate that a plant reovirus, rice gall dwarf virus (RGDV), exploits virus-containing tubules composed of viral non-structural protein Pns11 to pass through actin-based junctions between follicular cells or through actin-based microvilli from follicular cells into oocyte of its leafhopper vector Recilia dorsalis, thus overcoming transovarial transmission barriers. We further determine that the association of Pns11 tubules with actin-based cellular junctions or microvilli of the ovary is mediated by a specific interaction between Pns11 and actin. Interestingly, RGDV can replicate and assemble progeny virions in the oocyte cytoplasm. The destruction of the tubule assembly by RNA interference with synthesized double-stranded RNA targeting the Pns11 gene strongly inhibits transovarial transmission of RGDV by its vectors. For the first time, we show that a virus can exploit virus-induced tubule as a vehicle to overcome the transovarial transmission barrier by insect vectors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Taiyun Wei
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Plant Virology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
9
|
Urbisz AZ, Lai YT, Świątek P. Barbronia weberi(Clitellata, Hirudinida, Salifidae) has ovary cords of the Erpobdella type. J Morphol 2013; 275:479-88. [DOI: 10.1002/jmor.20229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/10/2013] [Accepted: 10/18/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| | - Yi-Te Lai
- Institute of Zoology; National Taiwan University; 1 Roosevelt Rd., Sec. 4, Da-an District Taipei 106 Taiwan
- Department of Biology; University of Eastern Finland; PO Box 111 FI 80101 Joensuu Finland
| | - Piotr Świątek
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| |
Collapse
|
10
|
Bielecki A, Świątek P, Cichocka JM, Siddall ME, Urbisz AZ, Płachno BJ. Diversity of features of the female reproductive system and other morphological characters in leeches (Citellata, Hirudinida) in phylogenetic conception. Cladistics 2013; 30:540-554. [DOI: 10.1111/cla.12058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2013] [Indexed: 01/22/2023] Open
Affiliation(s)
- Aleksander Bielecki
- Department of Zoology; University of Warmia and Mazury; Oczapowskiego 5 10-719 Olsztyn Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| | - Joanna M. Cichocka
- Department of Zoology; University of Warmia and Mazury; Oczapowskiego 5 10-719 Olsztyn Poland
| | - Mark E. Siddall
- Division of Invertebrate Zoology; American Museum of Natural History; New York NY USA
| | - Anna Z. Urbisz
- Department of Animal Histology and Embryology; University of Silesia; Bankowa 9 40-007 Katowice Poland
| | - Bartosz J. Płachno
- Department of Plant Cytology and Embryology; Jagiellonian University; Grodzka 52 31- 044 Cracow Poland
| |
Collapse
|
11
|
Urbisz AZ, Świątek P. Ovary organization and oogenesis in two species of Lumbriculida (Annelida, Clitellata). ZOOLOGY 2013; 116:118-28. [DOI: 10.1016/j.zool.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 07/16/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023]
|
12
|
An ultrastructural study of the ovary cord organization and oogenesis in Erpobdella johanssoni (Annelida, Clitellata: Hirudinida). Micron 2013; 44:275-86. [DOI: 10.1016/j.micron.2012.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/18/2012] [Accepted: 07/29/2012] [Indexed: 11/22/2022]
|
13
|
Rost-Roszkowska MM, Vilimova J, Sosinka A, Skudlik J, Franzetti E. The role of autophagy in the midgut epithelium of Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca). ARTHROPOD STRUCTURE & DEVELOPMENT 2012; 41:271-279. [PMID: 22445350 DOI: 10.1016/j.asd.2012.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 05/31/2023]
Abstract
Eubranchipus grubii (Crustacea, Branchiopoda, Anostraca) is an omnivorous filter feeder whose life span lasts no more than 12 weeks. Adult males and females of E. grubii were used for ultrastructural studies of the midgut epithelium and an analysis of autophagy. The midgut epithelium is formed by columnar digestive cells and no regenerative cells were observed. A distinct regionalization in the distribution of organelles appears - basal, perinuclear and apical regions were distinguished. No differences in the ultrastructure of digestive cells were observed between males and females. Autophagic disintegration of organelles occurs throughout the midgut epithelium. Degenerated organelles accumulate in the neighborhood of Golgi complexes, and these complexes presumably take part in phagophore and autophagosome formation. In some cases, the phagophore also surrounds small autophagosomes, which had appeared earlier. Fusion of autophagosomes and lysosomes was not observed, but lysosomes are enclosed during autophagosome formation. Autophagosomes and autolysosomes are discharged into the midgut lumen due to apocrine secretion. Autophagy plays a role in cell survival by protecting the cell from cell death.
Collapse
Affiliation(s)
- M M Rost-Roszkowska
- University of Silesia, Department of Animal Histology and Embryology, Katowice, Poland.
| | | | | | | | | |
Collapse
|
14
|
Świątek P, Urbisz AZ, Strużyński W, Płachno BJ, Bielecki A, Cios S, Salonen E, Klag J. Ovary architecture of two branchiobdellid species and Acanthobdella peledina (Annelida, Clitellata). ZOOL ANZ 2012. [DOI: 10.1016/j.jcz.2011.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
15
|
Ma XX, Zhu JQ, Zhou H, Yang WX. The formation of zona radiata in Pseudosciaena crocea revealed by light and transmission electron microscopy. Micron 2012; 43:435-44. [DOI: 10.1016/j.micron.2011.10.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/23/2011] [Accepted: 10/25/2011] [Indexed: 11/16/2022]
|
16
|
Eitel M, Guidi L, Hadrys H, Balsamo M, Schierwater B. New insights into placozoan sexual reproduction and development. PLoS One 2011; 6:e19639. [PMID: 21625556 PMCID: PMC3098260 DOI: 10.1371/journal.pone.0019639] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 04/13/2011] [Indexed: 11/18/2022] Open
Abstract
Unraveling animal life cycles and embryonic development is basic to understanding animal biology and often sheds light on phylogenetic relationships. A key group for understanding the evolution of the Metazoa is the early branching phylum Placozoa, which has attracted rapidly increasing attention. Despite over a hundred years of placozoan research the life cycle of this enigmatic phylum remains unknown. Placozoa are a unique model system for which the nuclear genome was published before the basic biology (i.e. life cycle and development) has been unraveled. Four organismal studies have reported the development of oocytes and one genetic study has nourished the hypothesis of sexual reproduction in natural populations at least in the past. Here we report new observations on sexual reproduction and embryonic development in the Placozoa and support the hypothesis of current sexual reproduction. The regular observation of oocytes and expressed sperm markers provide support that placozoans reproduce sexually in the field. Using whole genome and EST sequences and additional cDNA cloning we identified five conserved sperm markers, characteristic for different stages in spermatogenesis. We also report details on the embryonic development up to a 128-cell stage and new ultrastructural features occurring during early development. These results suggest that sperm and oocyte generation and maturation occur in different placozoans and that clonal lineages reproduce bisexually in addition to the standard mode of vegetative reproduction. The sum of observations is best congruent with the hypothesis of a simple life cycle with an alternation of reproductive modes between bisexual and vegetative reproduction.
Collapse
Affiliation(s)
- Michael Eitel
- Stiftung Tierärztliche Hochschule Hannover, ITZ, Ecology and Evolution, Hannover, Germany.
| | | | | | | | | |
Collapse
|
17
|
Rost-Roszkowska MM, Poprawa I, Wójtowicz M, Kaczmarek L. Ultrastructural changes of the midgut epithelium in Isohypsibius granulifer granulifer Thulin, 1928 (Tardigrada: Eutardigrada) during oogenesis. PROTOPLASMA 2011; 248:405-14. [PMID: 20661605 DOI: 10.1007/s00709-010-0186-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 07/14/2010] [Indexed: 05/19/2023]
Abstract
The midgut epithelium of Isohypsibius granulifer granulifer (Eutardigrada) is composed of columnar digestive cells. At its anterior end, a group of cells with cytoplasm which differs from the cytoplasm of digestive cells is present. Probably, those cells respond to crescent-like cells (midgut regenerative cells) described for some tardigrade species. Their mitotic divisions have not been observed. We analyzed the ultrastructure of midgut digestive cells in relation to five different stages of oogenesis (previtellogenesis, beginning of the vitellogenesis, vitellogenesis--early choriogenesis, vitellogenesis--middle choriogenesis, late choriogenesis). In the midgut epithelium cells, the gradual accumulation of glycogen granules, lipid droplets and structures of varying electron density occurs. During vitellogenesis and choriogenesis, in the cytoplasm of midgut cells we observed the increasing number of organelles which are responsible for the intensive synthesis of lipids, proteins and saccharides such as cisterns of endoplasmic reticulum and Golgi complexes. At the end of oogenesis, autophagy also intensifies in midgut epithelial cells, which is probably caused by the great amount of reserve material. Midgut epithelium of analyzed species takes part in the yolk precursor synthesis.
Collapse
|
18
|
Urbisz AZ, Krodkiewska M, Świątek P. Ovaries of Tubificinae (Clitellata, Naididae) resemble ovary cords found in Hirudinea (Clitellata). ZOOMORPHOLOGY 2010; 129:235-247. [PMID: 21170399 PMCID: PMC2991200 DOI: 10.1007/s00435-010-0116-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 11/16/2022]
Abstract
The ultrastructure of the ovaries and oogenesis was studied in three species of three genera of Tubificinae. The paired ovaries are small, conically shaped structures, connected to the intersegmental septum between segments X and XI by their narrow end. The ovaries are composed of syncytial cysts of germ cells interconnected by stable cytoplasmic bridges (ring canals) and surrounded by follicular cells. The architecture of the germ-line cysts is exactly the same as in all clitellate annelids studied to date, i.e. each cell in a cyst has only one ring canal connecting it to the central, anuclear cytoplasmic mass, the cytophore. The ovaries found in all of the species studied seem to be meroistic, i.e. the ultimate fate of germ cells within a cyst is different, and the majority of cells withdraw from meiosis and become nurse cells; the rest continue meiosis, gather macromolecules, cell organelles and storage material, and become oocytes. The ovaries are polarized; their narrow end contains mitotically dividing oogonia and germ cells entering the meiosis prophase; whereas within the middle and basal parts, nurse cells, a prominent cytophore and growing oocytes occur. During late previtellogenesis/early vitellogenesis, the oocytes detach from the cytophore and float in the coelom; they are usually enveloped by the peritoneal epithelium and associated with blood vessels. Generally, the organization of ovaries in all of the Tubificinae species studied resembles the polarized ovary cords found within the ovisacs of some Euhirudinea. The organization of ovaries and the course of oogenesis between the genera studied and other clitellate annelids are compared. Finally, it is suggested that germ-line cysts formation and the meroistic mode of oogenesis may be a primary character for all Clitellata.
Collapse
Affiliation(s)
- Anna Z. Urbisz
- Department of Animal Histology and Embryology, Silesian University, Bankowa 9, 40-007 Katowice, Poland
| | - Mariola Krodkiewska
- Department of Hydrobiology, Silesian University, Bankowa 9, 40-007 Katowice, Poland
| | - Piotr Świątek
- Department of Animal Histology and Embryology, Silesian University, Bankowa 9, 40-007 Katowice, Poland
| |
Collapse
|
19
|
Ben Ahmed R, Fuchs AZ, Tekaya S, Harrath AH, Świątek P. Ovary cords organization in Hirudo troctina Johnson, 1816 and Limnatis nilotica (Savigny, 1822) (Clitellata, Hirudinea). ZOOL ANZ 2010. [DOI: 10.1016/j.jcz.2010.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
20
|
Jedrzejowska I, Kubrakiewicz J. Yolk nucleus--the complex assemblage of cytoskeleton and ER is a site of lipid droplet formation in spider oocytes. ARTHROPOD STRUCTURE & DEVELOPMENT 2010; 39:350-359. [PMID: 20457275 DOI: 10.1016/j.asd.2010.05.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/28/2010] [Accepted: 05/01/2010] [Indexed: 05/29/2023]
Abstract
Oocytes (future egg cells) of various animal groups often contain complex organelle assemblages (Balbiani bodies, yolk nuclei). The molecular composition and function of Balbiani bodies, such as those found in the oocytes of Xenopus laevis, have been recently recognized. In contrast, the functional significance of more complex and highly ordered yolk nuclei has not been elucidated to date. In this report we describe the structure, cytochemical content and evolution of the yolk nucleus in the oocytes of a common spider, Clubiona sp. We show that the yolk nucleus is a spherical, rather compact and persistent cytoplasmic accumulation of several different organelles. It consists predominantly of a highly elaborate cytoskeletal scaffold of condensed filamentous actin and a dense meshwork of intermediate-sized filaments. The yolk nucleus also comprises cisterns of endoplasmic reticulum, mitochondria, lipid droplets and other organelles. Nascent lipid droplets are regularly found in the cortical regions of the yolk nucleus in association with the endoplasmic reticulum. Single lipid droplets become surrounded by filamentous cages formed by intermediate filaments. Coexistence of the forming lipid droplets with the endoplasmic reticulum in the cortical zone of the yolk nucleus and their later investment by intermediate-sized filamentous cages suggest that the yolk nucleus is the birthplace of lipid droplets.
Collapse
Affiliation(s)
- Izabela Jedrzejowska
- Department of Animal Developmental Biology, Zoological Institute, University of Wrocław, Wrocław, Poland.
| | | |
Collapse
|
21
|
ŚWIĄTEK PIOTR, KROK FRANCISZEK, BIELECKI ALEKSANDER. Germ-line cysts are formed during oogenesis inErpobdella octoculata(Annelida, Clitellata, Erpobdellidae). INVERTEBR REPROD DEV 2010. [DOI: 10.1080/07924259.2010.9652317] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Świątek P. Ovary cord structure and oogenesis in Hirudo medicinalis and Haemopis sanguisuga (Clitellata, Annelida): remarks on different ovaries organization in Hirudinea. ZOOMORPHOLOGY 2008. [DOI: 10.1007/s00435-008-0065-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
23
|
Zelazowska M, Kilarski W. Possible participation of mitochondria in lipid yolk formation in oocytes of paddlefish and sturgeon. Cell Tissue Res 2007; 335:585-91. [PMID: 17876607 DOI: 10.1007/s00441-007-0459-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 06/11/2007] [Indexed: 11/28/2022]
Abstract
The ovary of paddlefish and sturgeons (Acipenseriformes) is composed of discrete units: the ovarian nests and ovarian follicles. The ovarian nests comprise oogonia and numerous early dictyotene oocytes surrounded by somatic prefollicular cells. Each ovarian follicle consists of a spherical oocyte and a layer of follicular cells situated on a thick basal lamina, encompassed by thecal cells. The cytoplasm of previtellogenic oocytes is differentiated into two distinct zones: the homogeneous and granular zones. The homogeneous cytoplasm is organelle-free, whereas the granular cytoplasm contains numerous organelles, including mitochondria and lipid droplets. We have analyzed the cytoplasm of early dictyotene and previtellogenic oocytes ultrastructurally and histologically. In the cytoplasm of early dictyotene oocytes, two morphologically different types of mitochondria can be distinguished: (1) with well-developed cristae and (2) with distorted and fused cristae. In previtellogenic oocytes, the mitochondria of the second type show various stages of cristae distortion; they contain and release material morphologically similar to that of lipid droplets and eventually degenerate. This process of mitochondrial transformation is accompanied by an accumulation of lipid droplets that form a single large accumulation (lipid body) located in the vicinity of the oocyte nucleus (germinal vesicle). The lipid body eventually disperses in the oocyte center. The possible participation of these mitochondria in the formation of oocyte lipid droplets is discussed.
Collapse
Affiliation(s)
- Monika Zelazowska
- Department of Systematic Zoology, Institute of Zoology, Jagiellonian University, R. Ingardena 6, 30-060 Kraków, Poland. [corrected]
| | | |
Collapse
|
24
|
Spałek-Wołczyńska A, Klag J, Bielecki A, Swiatek P. Oogenesis in four species ofPiscicola (Hirudinea, Rhynchobdellida). J Morphol 2007; 269:18-28. [PMID: 17886887 DOI: 10.1002/jmor.10568] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Piscicola has a pair of elongated sac-shaped ovaries. Inside the ovaries are numerous small somatic cells and regularly spherical egg follicles. Each follicle is composed of three types of cells: many (average 30) germ cells (cystocytes) interconnected by intercellular bridges in clones (cysts), one intermediate cell, and three to five outer follicle cells (envelope cells). Each germ cell in a clone has one intercellular bridge connecting it to the central anucleate cytoplasmic mass, the cytophore. Each cluster of germ cells is completely embedded inside a single huge somatic follicle cell, the intermediate (interstitial) cell. The most spectacular feature of the intermediate cell is its development of a system of intracytoplasmic canals apparently formed of invaginations of its cell membrane. Initially the complex of germ cell cluster + intermediate cell is enclosed within an envelope composed of squamous cells. As oogenesis progresses the envelope cells gradually degenerate. All the germ cells that have terminated their mitotic divisions are of similar size and enter meiotic prophase, but one of the cystocytes promptly starts to grow faster and differentiates into the oocyte, whereas the remaining cystocytes withdraw from meiosis and become nurse cells (trophocytes). Numerous mitochondria, ER, and a vast amount of ribosomes are transferred from the trophocytes via the cytophore toward the oocyte. Eventually the oocyte ingests all the content of the cytophore, and the trophocytes degenerate. Little vitellogenesis takes place; the oocyte gathers nutrients in the form of small lipid droplets. At the end of oogenesis, an electron-dense fibrous vitelline envelope appears around the oocyte, among short microvilli. At the same time, electron-dense cortical granules occur in the oocyte cortical cytoplasm; at the end of oogenesis they are numerous, but after fertilization they disappear from the ooplasm. In the present article we point out many differences in the course of oogenesis in two related families of rhynchobdellids: piscicolids and glossiphoniids.
Collapse
|