1
|
Kobayashi M, Negishi J, Ishida N, Hashimoto Y, Sasaki Y, Akiyoshi K, Kimura T, Kishida A. Effects of the matrix-bounded nanovesicles of high-hydrostatic pressure decellularized tissues on neural regeneration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2024; 25:2404380. [PMID: 39308888 PMCID: PMC11413956 DOI: 10.1080/14686996.2024.2404380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Decellularized tissues have been used as implantable materials for tissue regeneration because of their high biofunctionality. We have reported that high hydrostatic pressured (HHP) decellularized tissue developed in our laboratory exhibits good in vivo performance, but the details of the mechanism are still not known. Based on previous reports of bioactive factors called matrix bound nanovesicles (MBVs) within decellularized tissues, this study aims to investigate whether MBVs are also present in decellularized tissues prepared by HHP decellularization, which is different from the previously reported methods. In this study, we tried to extract bioactive factors from HHP decellularized brain and placenta, and evaluated their effects on nerves in vitro and in vivo, where its effects have been previously reported. The results confirmed that those factors can be extracted even if the decellularization method and tissue of origin differ, and that they have effects on a series of processes toward nerve regeneration, such as neurite outgrowth and nerve fiber repair.
Collapse
Affiliation(s)
- Mako Kobayashi
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| | - Jun Negishi
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda City, Nagano, Japan
| | - Naoki Ishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| | - Yoshihide Hashimoto
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
- Department of Biomedical Engineering, Toyo University, Asaka-city, Saitama, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Chiyoda, Tokyo, Japan
| |
Collapse
|
2
|
Zang L, Fu D, Zhang F, Li N, Ma X. Tenuigenin activates the IRS1/Akt/mTOR signaling by blocking PTPN1 to inhibit autophagy and improve locomotor recovery in spinal cord injury. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116841. [PMID: 37355079 DOI: 10.1016/j.jep.2023.116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tenuigenin (TEN) is a main pharmacologically active component of Polygala tenuifolia Willd. (Polygalaceae), which has shown neuroprotective functions in Alzheimer's disease. Moreover, TEN also demonstrated an anti-oxidative impact in an in vitro model of Parkinson's disease, reducing damage and loss of dopaminergic neurons. AIM This work focuses on the impact of TEN on locomotor recovery following spinal cord injury (SCI) and underpinning molecules involved. METHODS A rat model of SCI was generated, and the rats were treated with TEN, oe-PTPN1 (PTP non-receptor type 1), a protein kinase B (Akt)/mammalian target of rapamycin (mTOR) antagonist LY294002, or an autophagy inhibitor 3-methyladenine (3-MA). Subsequently, locomotor function was detected. Pathological changes and neuronal activity in the spinal cord tissues were analyzed by hematoxylin and eosin staining, Nissl staining, and TUNEL assays. Protein expression of Beclin-1 and microtubule associated protein 1 light chain 3 beta (LC3B)-II/LC3B-I, PTPN1, IRS1, mTOR, and phosphorylated Akt (p-Akt) was analyzed by western blot assays. The LC3B expression was further examined by immunofluorescence staining. RESULTS Treatment with TEN restored the locomotor function of SCI rats, reduced the cavity area and cell apoptosis, upregulated growth-associated protein 43 and neurofilament 200, and decreased the Beclin-1 and LC3B-II/LC3B-I levels in the spinal cord. TEN suppressed PTPN1 protein level, while PTPN1 suppressed IRS1 protein to reduce the p-Akt and mTOR levels. Either PTPN1 overexpression or LY294002 treatment blocked the promoting effect of TEN on SCI recovery. However, treatment with 3-MA suppressed autophagy, which consequently rescued the locomotor function and reduced neuron loss induced by PTPN1. CONCLUSION This study demonstrates that TEN suppresses autophagy to promote function recovery in SCI rats by blocking PTPN1 and rescuing the IRS1/Akt/mTOR signaling.
Collapse
Affiliation(s)
- Li'e Zang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Dewang Fu
- Department of Urology Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Fan Zhang
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Ning Li
- Department of Neurology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, PR China.
| | - Xue Ma
- Department of Emergency, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121002, Liaoning, PR China.
| |
Collapse
|
3
|
Wang H, Shi J, Wang J, Hu Y. MicroRNA‑378: An important player in cardiovascular diseases (Review). Mol Med Rep 2023; 28:172. [PMID: 37503766 PMCID: PMC10436248 DOI: 10.3892/mmr.2023.13059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/31/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease (CVD) is a common chronic clinical condition and is the main cause of death in humans worldwide. Understanding the genetic and molecular mechanisms involved in the development of CVD is essential to develop effective prevention strategies and therapeutic measures. An increasing number of CVD‑related genetic studies have been conducted, including those on the potential roles of microRNAs (miRs). These studies have demonstrated that miR‑378 is involved in the pathological processes of CVD, including those of myocardial infarction, heart failure and coronary heart disease. Despite the potential importance of miR‑378 CVD, a comprehensive summary of the related literature is lacking. Thus, the present review aimed to summarize the findings of previous studies on the roles and mechanisms of miR‑378 in a variety of CVDs and provide an up‑to date basis for further r research targeting the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Huan Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jingjing Shi
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Jiuchong Wang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| | - Yuanhui Hu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China
| |
Collapse
|
4
|
Wang Y, Yi H, Song Y. miRNA Therapy in Laboratory Models of Acute Spinal Cord Injury in Rodents: A Meta-analysis. Cell Mol Neurobiol 2023; 43:1147-1161. [PMID: 35648313 PMCID: PMC11414433 DOI: 10.1007/s10571-022-01235-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/18/2022] [Indexed: 11/28/2022]
Abstract
miRNA therapy is popularly investigated in treating acute spinal cord injury (SCI) and offers a significant prospect for the treatment of acute SCI. We aimed to provide pre-clinical validations of miRNA in the treatment of SCI. A systematic search of EMBASE, PubMed, Web of Science, the Cochrane Library, and Scopus databases was performed. Rats, which were the most used animals (70%, n = 46 articles), receiving miRNA therapy got prominent recovery in SCI models [BBB score, SMD 3.90, 95% CI 3.08-4.73, p < 0.01]. Locomotor function of fore and hind limbs in SCI mice receiving miRNA therapy (30%, n = 19 articles) [grip strength, SMD 3.22, 95% CI 2.14-4.26; p < 0.01; BBB score, SMD 3.47, 95% CI 2.38-4.56, p < 0.01; BMS, SMD 2.27, 95% CI 1.34-3.20, p < 0.01] also recovered better than mice in control group. Then, we conducted the subgroup analysis and did find that high-quality articles trended to report non-therapeutic effect of miRNA. Furtherly, we analyzed 46 miRNAs, including 9 miRNA families (miR-21-5p/34a-3p/124-3p/126-3p/223-3p/543-3p/30-3p/136-3p/15-5p), among which miR-30-3p/136-3p/15-5p family were not effective in recovering locomotor function of rats. Conclusively, miRNAs are curative drugs for SCI, however, appropriate miRNA carrier and which miRNA is the most efficacious for SCI should be furtherly investigated.
Collapse
Affiliation(s)
- Yang Wang
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China.
| | - Hanxiao Yi
- Department of Radiotherapy, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 600 Tianhe Road, Tianhe District, Guangzhou, Guangdong Province, China
| | - Yancheng Song
- Department of Orthopedics, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, No. 19 Nonglinxia Road, Yuexiu District, Guangzhou, Guangdong Province, China
| |
Collapse
|
5
|
Lim YJ, Jung GN, Park WT, Seo MS, Lee GW. Therapeutic potential of small extracellular vesicles derived from mesenchymal stem cells for spinal cord and nerve injury. Front Cell Dev Biol 2023; 11:1151357. [PMID: 37035240 PMCID: PMC10073723 DOI: 10.3389/fcell.2023.1151357] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Neural diseases such as compressive, congenital, and traumatic injuries have diverse consequences, from benign mild sequelae to severe life-threatening conditions with associated losses of motor, sensory, and autonomic functions. Several approaches have been adopted to control neuroinflammatory cascades. Traditionally, mesenchymal stem cells (MSCs) have been regarded as therapeutic agents, as they possess growth factors and cytokines with potential anti-inflammatory and regenerative effects. However, several animal model studies have reported conflicting outcomes, and therefore, the role of MSCs as a regenerative source for the treatment of neural pathologies remains debatable. In addition, issues such as heterogeneity and ethical issues limited their use as therapeutic agents. To overcome the obstacles associated with the use of traditional agents, we explored the therapeutic potentials of extracellular vesicles (EVs), which contain nucleic acids, functional proteins, and bioactive lipids, and play crucial roles in immune response regulation, inflammation reduction, and cell-to-cell communication. EVs may surpass MSCs in size issue, immunogenicity, and response to the host environment. However, a comprehensive review is required on the therapeutic potential of EVs for the treatment of neural pathologies. In this review, we discuss the action mechanism of EVs, their potential for treating neural pathologies, and future perspectives regarding their clinical applications.
Collapse
Affiliation(s)
- Young-Ju Lim
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Gyeong Na Jung
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Wook-Tae Park
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| | - Min-Soo Seo
- Department of Veterinary Tissue Engineering, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Gun Woo Lee
- Department of Orthopedic Surgery, Yeungnam University College of Medicine, Yeungnam University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
6
|
Protein tyrosine phosphatase 1B (PTP1B) as a potential therapeutic target for neurological disorders. Biomed Pharmacother 2022; 155:113709. [PMID: 36126456 DOI: 10.1016/j.biopha.2022.113709] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is a typical member of the PTP family, considered a direct negative regulator of several receptor and receptor-associated tyrosine kinases. This widely localized enzyme has been involved in the pathophysiology of several diseases. More recently, PTP1B has attracted attention in the field of neuroscience, since its activation in brain cells can lead to schizophrenia-like behaviour deficits, anxiety-like effects, neurodegeneration, neuroinflammation and depression. Conversely, PTP1B inhibition has been shown to prevent microglial activation, thus exerting a potent anti-inflammatory effect and has also shown potential to increase the cognitive process through the stimulation of hippocampal insulin, leptin and BDNF/TrkB receptors. Notwithstanding, most research on the clinical efficacy of targeting PTP1B has been developed in the field of obesity and type 2 diabetes mellitus (TD2M). However, despite the link existing between these metabolic alterations and neurodegeneration, no clinical trials assessing the neurological advantages of PTP1B inhibition have been performed yet. Preclinical studies, though, have provided strong evidence that targeting PTP1B could allow to reach different pathophysiological mechanisms at once. herefore, specific interventions or trials should be designed to modulate PTP1B activity in brain, since it is a promising strategy to decelerate or prevent neurodegeneration in aged individuals, among other neurological diseases. The present paper fails to include all neurological conditions in which PTP1B could have a role; instead, it focuses on those which have been related to metabolic alterations and neurodegenerative processes. Moreover, only preclinical data is discussed, since clinical studies on the potential of PTP1B inhibition for treating neurological diseases are still required.
Collapse
|
7
|
MiRNAs as Promising Translational Strategies for Neuronal Repair and Regeneration in Spinal Cord Injury. Cells 2022; 11:cells11142177. [PMID: 35883621 PMCID: PMC9318426 DOI: 10.3390/cells11142177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/10/2022] [Indexed: 12/10/2022] Open
Abstract
Spinal cord injury (SCI) represents a devastating injury to the central nervous system (CNS) that is responsible for impaired mobility and sensory function in SCI patients. The hallmarks of SCI include neuroinflammation, axonal degeneration, neuronal loss, and reactive gliosis. Current strategies, including stem cell transplantation, have not led to successful clinical therapy. MiRNAs are crucial for the differentiation of neural cell types during CNS development, as well as for pathological processes after neural injury including SCI. This makes them ideal candidates for therapy in this condition. Indeed, several studies have demonstrated the involvement of miRNAs that are expressed differently in CNS injury. In this context, the purpose of the review is to provide an overview of the pre-clinical evidence evaluating the use of miRNA therapy in SCI. Specifically, we have focused our attention on miRNAs that are widely associated with neuronal and axon regeneration. “MiRNA replacement therapy” aims to transfer miRNAs to diseased cells and improve targeting efficacy in the cells, and this new therapeutic tool could provide a promising technique to promote SCI repair and reduce functional deficits.
Collapse
|
8
|
Shi J, Zhang Y, Wang P, Nie Y, Ma Q. Luminous MoS 2 nanosheet-based electrochemiluminescence biosensor with biomimetic vesicle for miRNA-210 detection. Talanta 2022; 237:122969. [PMID: 34736693 DOI: 10.1016/j.talanta.2021.122969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/17/2022]
Abstract
In this work, a novel electrochemiluminescence (ECL) sensor has been developed to detect miRNA-210 in the serum of triple negative breast cancer (TNBC) patients. The luminous MoS2 nanosheets were synthesized via the solvothermal method and served as ECL emitters for the first time. As a result, the ECL properties of as-prepared MoS2 nanosheets were significantly improved. Furthermore, the biomimetic magnetic vesicles were used as capture platform in the ECL sensing strategy. Due to the highly efficient fluidity and magnetic property, the biomimetic vesicles with hairpin aptamers can capture target gene in the serum. After magnetic separation, the captured miRNA-210 can trigger the target-catalyzed hairpin assembly (CHA) sensing process on the magnetic electrode and hybridize MoS2 nanosheets labeled probe DNA. The concentration of miRNA-210 can be quantified by the ECL enhancement of the MoS2 nanosheets. This approach has achieved the sensitive detection for miRNA-210 in a range from 1 fM to 100 pM with the detection limit of 0.3 fM. The luminous MoS2 nanosheets-based ECL sensing system with the biomimetic vesicles would provide a new pathway to explore 2D nanomaterials for developing a wide range of bioanalytical applications.
Collapse
Affiliation(s)
- Jingwei Shi
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yang Zhang
- Department of Laboratory Medicine Center, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Peilin Wang
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yixin Nie
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Zhang H, Yu H, Yang H, Zhan Y, Liu X. miR-378-3p alleviates contusion spinal cord injury by negatively regulating ATG12. Int J Exp Pathol 2021; 102:200-208. [PMID: 34709686 DOI: 10.1111/iep.12400] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs or miRs) serve essential roles in the pathogenic process of spinal cord injury (SCI). The present study investigated the role of miR-378-3p and autophagy-related 12 (ATG12) in SCI. RT-qPCR was used to detect the mRNA expression levels of miR-378-3p and ATG12. Cell viability and membrane integrity were evaluated using CCK-8 and LDH assays. For the analysis of the interaction between miR-378-3p and ATG12, a dual-luciferase reporter assay was conducted. The hindlimb function of rats was detected with the Basso, Beattie and Bresnahan score, and the motor deficit index score was used to evaluate nerve function. Using these approaches, it was identified that miR-378-3p expression was downregulated, while that of ATG12 was upregulated in SCI tissues and in cells exposed to hypoxia. Hypoxia repressed the expression of miR-378-3p via hypoxia-inducible factor 1-α. The overexpression of miR-378-3p exerted anti-apoptotic effects on nerve cells by directly repressing ATG12. The infusion of miR-378-3p improved hindlimb motor function and the neurological functions of rats with contusion SCI, which contributed to amelioration of functional deficits and the relief of contusion SCI. Therefore, it was concluded that upregulated expression of miR-378-3p in PC12 or N2A cells repressed the apoptosis of nerve cells, and the administration of miR-378-3p in model rats with contusion SCI improved neurological and motor functions.
Collapse
Affiliation(s)
- Haocong Zhang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Hailong Yu
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Huifeng Yang
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Zhan
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinwei Liu
- Department of Orthopaedics, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
10
|
The roles of MicroRNAs in neural regenerative medicine. Exp Neurol 2020; 332:113394. [DOI: 10.1016/j.expneurol.2020.113394] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/25/2020] [Indexed: 12/22/2022]
|
11
|
Almurshidi B, Carver W, Scott G, Ray SK. Roles of miRNAs in spinal cord injury and potential therapeutic interventions. NEUROIMMUNOLOGY AND NEUROINFLAMMATION 2019; 6:11. [PMID: 33869675 PMCID: PMC8052101 DOI: 10.20517/2347-8659.2019.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Spinal cord injury (SCI) affects approximately 200,000 individuals per year worldwide. There are more than 27 million people worldwide living with long-term disability due to SCI. Historically, it was thought that the central nervous system (CNS) had little ability for regeneration; however, more recent studies have demonstrated potential for repair within the CNS. Because of this, there exists a renewed interest in the discovery of novel approaches to promote regeneration in the CNS including the spinal cord. It is important to know the roles of the microRNAs (miRNAs) in modulation of pathogenesis in SCI and the potentials of the miRNA-based clinical interventions for controlling post-injury symptoms and improving functional recovery. The miRNAs, which are non-coding RNAs with an average of 22 nucleotides in length, are post-transcriptional gene regulators that cause degradation of the target mRNAs and thus negatively control their translation. This review article focuses on current research related to miRNAs and their roles in modulating SCI symptoms, asserting that miRNAs contribute to critical post-SCI molecular processes including neuroplasticity, functional recovery, astrogliosis, neuropathic pain, inflammation, and apoptosis. In particular, miR-96 provides a promising therapeutic opportunity to improve the outcomes of clinical interventions, including the way SCI injuries are evaluated and treated.
Collapse
Affiliation(s)
- Badria Almurshidi
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Wayne Carver
- Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | - Geoff Scott
- Department of Environmental Health Sciences, Arnold School of Public Health, CENR, University of South Carolina, Columbia, SC 29209, USA
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| |
Collapse
|