1
|
Mahmood N, Arakelian A, Szyf M, Rabbani SA. Methyl-CpG binding domain protein 2 (Mbd2) drives breast cancer progression through the modulation of epithelial-to-mesenchymal transition. Exp Mol Med 2024; 56:959-974. [PMID: 38556549 PMCID: PMC11058268 DOI: 10.1038/s12276-024-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/27/2023] [Accepted: 01/25/2024] [Indexed: 04/02/2024] Open
Abstract
Methyl-CpG-binding domain protein 2 (Mbd2), a reader of DNA methylation, has been implicated in different types of malignancies, including breast cancer. However, the exact role of Mbd2 in various stages of breast cancer growth and progression in vivo has not been determined. To test whether Mbd2 plays a causal role in mammary tumor growth and metastasis, we performed genetic knockout (KO) of Mbd2 in MMTV-PyMT transgenic mice and compared mammary tumor progression kinetics between the wild-type (PyMT-Mbd2+/+) and KO (PyMT-Mbd2-/-) groups. Our results demonstrated that deletion of Mbd2 in PyMT mice impedes primary tumor growth and lung metastasis at the experimental endpoint (postnatal week 20). Transcriptomic and proteomic analyses of primary tumors revealed that Mbd2 deletion abrogates the expression of several key determinants involved in epithelial-to-mesenchymal transition, such as neural cadherin (N-cadherin) and osteopontin. Importantly, loss of the Mbd2 gene impairs the activation of the PI3K/AKT pathway, which is required for PyMT-mediated oncogenic transformation, growth, and survival of breast tumor cells. Taken together, the results of this study provide a rationale for further development of epigenetic therapies targeting Mbd2 to inhibit the progression of breast cancer.
Collapse
Affiliation(s)
- Niaz Mahmood
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada
- Department of Biochemistry, McGill University, Montréal, QC, H3A1A3, Canada
| | - Ani Arakelian
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, H3G1Y6, Canada
| | - Shafaat A Rabbani
- Department of Medicine, McGill University, Montréal, QC, H4A3J1, Canada.
| |
Collapse
|
2
|
Wang S, Wu Y, Liu M, Zhao Q, Jian L. DHW-208, A Novel Phosphatidylinositol 3-Kinase (PI3K) Inhibitor, Has Anti-Hepatocellular Carcinoma Activity Through Promoting Apoptosis and Inhibiting Angiogenesis. Front Oncol 2022; 12:955729. [PMID: 35903690 PMCID: PMC9315107 DOI: 10.3389/fonc.2022.955729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. Due to insidious onset and lack of early symptoms, most HCC patients are diagnosed at advanced stages without adequate methods but systemic therapies. PI3K/AKT/mTOR signaling pathway plays a crucial role in the progression and development of HCC. Aberrant activation of PI3K/AKT/mTOR pathway is involved in diverse biological processes, including cell proliferation, apoptosis, migration, invasion and angiogenesis. Therefore, the development of PI3K-targeted inhibitors is of great significance for the treatment of HCC. DHW-208 is a novel 4-aminoquinazoline derivative pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in HCC and investigate its underlying mechanism. DHW-208 could inhibit the proliferation, migration, invasion and angiogenesis of HCC through the PI3K/AKT/mTOR signaling pathway in vitro. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in HCC. Therefore, DHW-208 is a candidate compound to be developed as a small molecule PI3K inhibitor for the treatment of HCC, and our study provides a certain theoretical basis for the treatment of HCC and the development of PI3K inhibitors.
Collapse
Affiliation(s)
- Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Wu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| |
Collapse
|
3
|
Wu WS, Ling CH, Lee MC, Cheng CC, Chen RF, Lin CF, You RI, Chen YC. Targeting Src-Hic-5 Signal Cascade for Preventing Migration of Cholangiocarcinoma Cell HuCCT1. Biomedicines 2022; 10:biomedicines10051022. [PMID: 35625759 PMCID: PMC9138979 DOI: 10.3390/biomedicines10051022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver cancer with poor prognosis. The deregulation of a lot of oncogenic signaling molecules, such as receptor tyrosine kinases (RTKs), has been found to be associated with CCA progression. However, RTKs-based target therapy showed limited improvement suggesting a need to search for alternative targets for preventing CCA progression. To address this issue, we screened the oncogenic signal molecules upregulated in surgical tissues of CCAs. Interestingly, over-expression of hydrogen peroxide inducible clone-5 (Hic-5) coupled with over-activation of Src, AKT, JNK were observed in 50% of the cholangiocarcinoma with metastatic potential. To investigate whether these molecules may work together to trigger metastatic signaling, their up-and-down relationship was examined in a well-established cholangiocarcinoma cell line, HuCCT1. Src inhibitors PP1 (IC50, 13.4 μM) and dasatinib (IC50, 0.1 μM) significantly decreased both phosphorylated AKT (phosphor-AKT Thr450) and Hic-5 in HuCCT1. In addition, a knockdown of Hic-5 effectively suppressed activation of Src, JNK, and AKT. These implicated a positive cross-talk occurred between Hic-5 and Src for triggering AKT activation. Further, depletion of Hic-5 and inhibition of Src suppressed HuccT1 cell migration in a dose-dependent manner. Remarkably, prior transfection of Hic-5 siRNA for 24 h followed by treatment with PP1 or dasatinib for 24 h resulted in additive suppression of HuCCT1 migration. This suggested that a promising combinatory efficacy can be achieved by depletion of Hic-5 coupled with inhibition of Src. In the future, target therapy against CCA progression by co-targeting Hic-5 and Src may be successfully developed in vivo.
Collapse
Affiliation(s)
- Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Chin-Hsien Ling
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 110, Taiwan;
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chuan-Chu Cheng
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- Institute of Medical Sciences, Tzu Chi University, Hualien 970, Taiwan
| | - Rui-Fang Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Chen-Fang Lin
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan; (W.-S.W.); (C.-H.L.); (C.-C.C.); (R.-F.C.); (C.-F.L.)
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Correspondence:
| |
Collapse
|