1
|
Koevoet D, Van Zantwijk L, Naber M, Mathôt S, van der Stigchel S, Strauch C. Effort drives saccade selection. eLife 2025; 13:RP97760. [PMID: 40193176 PMCID: PMC11975373 DOI: 10.7554/elife.97760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
What determines where to move the eyes? We recently showed that pupil size, a well-established marker of effort, also reflects the effort associated with making a saccade ('saccade costs'). Here, we demonstrate saccade costs to critically drive saccade selection: when choosing between any two saccade directions, the least costly direction was consistently preferred. Strikingly, this principle even held during search in natural scenes in two additional experiments. When increasing cognitive demand experimentally through an auditory counting task, participants made fewer saccades and especially cut costly directions. This suggests that the eye-movement system and other cognitive operations consume similar resources that are flexibly allocated among each other as cognitive demand changes. Together, we argue that eye-movement behavior is tuned to adaptively minimize saccade-inherent effort.
Collapse
Affiliation(s)
- Damian Koevoet
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Laura Van Zantwijk
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Marnix Naber
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| | - Sebastiaan Mathôt
- Department of Psychology, University of GroningenGroningenNetherlands
| | | | - Christoph Strauch
- Experimental Psychology, Helmholtz Institute, Utrecht UniversityUtrechtNetherlands
| |
Collapse
|
2
|
Tomou G, Baltaretu BR, Ghaderi A, Crawford JD. Saccades influence functional modularity in the human cortical vision network. Sci Rep 2025; 15:10683. [PMID: 40155663 PMCID: PMC11953456 DOI: 10.1038/s41598-025-95568-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025] Open
Abstract
Visual cortex is thought to show both dorsoventral and hemispheric modularity, but it is not known if the same functional modules emerge spontaneously from an unsupervised network analysis, or how they interact when saccades necessitate increased sharing of spatial information. Here, we address these issues by applying graph theory analysis to fMRI data obtained while human participants decided whether an object's shape or orientation changed, with or without an intervening saccade across the object. BOLD activation from 50 vision-related cortical nodes was used to identify local and global network properties. Modularity analysis revealed three sub-networks during fixation: a bilateral parietofrontal network linking areas implicated in visuospatial processing and two lateralized occipitotemporal networks linking areas implicated in object feature processing. When horizontal saccades required visual comparisons between visual hemifields, functional interconnectivity and information transfer increased, and the two lateralized ventral modules became functionally integrated into a single bilateral sub-network. This network included 'between module' connectivity hubs in lateral intraparietal cortex and dorsomedial occipital areas previously implicated in transsaccadic integration. These results provide support for functional modularity in the visual system and show that the hemispheric sub-networks are modified and functionally integrated during saccades.
Collapse
Affiliation(s)
- George Tomou
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
- Department of Psychology, York University, Toronto, Canada
| | - Bianca R Baltaretu
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
- Department of Biology, York University, Toronto, Canada
- Department of Experimental Psychology, Justus Liebig University Giessen, Giessen, Germany
| | - Amirhossein Ghaderi
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada
| | - J Douglas Crawford
- Centre for Vision Research, York University, Room 0009A, Lassonde Bldg, Toronto, ON, M3J 1P3, Canada.
- Centre for Integrative and Applied Neuroscience, York University, Toronto, Canada.
- Vision: Science to Applications (VISTA) program, York University, Toronto, Canada.
- Department of Psychology, York University, Toronto, Canada.
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
3
|
Mayer J, Mückschel M, Talebi N, Hommel B, Beste C. Directed connectivity in theta networks supports action-effect integration. Neuroimage 2025; 305:120965. [PMID: 39645157 DOI: 10.1016/j.neuroimage.2024.120965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/22/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
The ability to plan and carry out goal-directed behavior presupposes knowledge about the contingencies between movements and their effects. Ideomotor accounts of action control assume that agents integrate action-effect contingencies by creating action-effect bindings, which associate movement patterns with their sensory consequences. However, the neurophysiological underpinnings of action-effect binding are not yet well understood. Given that theta band activity has been linked to information integration, we thus studied action-effect integration in an electrophysiological study with N = 31 healthy individuals with a strong focus on theta band activity. We examined how information between functional neuroanatomical structures is exchanged to enable action planning. We show that theta band activity in a network encompassing the insular cortex (IC), the anterior temporal lobe (ATL), and the inferior frontal cortex (IFC) supports the establishment of action-effect bindings. All regions revealed bi-directional effective connectivities, indicating information transfer between these regions. The IC and ATL create a loop for information integration and the conceptual abstraction of it. The involvement of anterior regions of the IFC, particularly during the acquisition phase of the action-effect, likely reflects episodic control mechanisms in which a past event defines a "template" of what action-effect is to be expected. Taken together, the current findings connect well with major cognitive concepts. Our study suggests a functional relevance of theta band activity in an IC-ATL-IFC network, which in turn implies that basic ideomotor action-effect integration is implemented through theta band activity and effective connectivities between temporo-frontal structures.
Collapse
Affiliation(s)
- Jasmin Mayer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Bernhard Hommel
- School of Psychology, Shandong Normal University, Jinan, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; School of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
4
|
Huber-Huber C, Melcher D. Saccade execution increases the preview effect with faces: An EEG and eye-tracking coregistration study. Atten Percept Psychophys 2025; 87:155-171. [PMID: 37917292 PMCID: PMC11845433 DOI: 10.3758/s13414-023-02802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 11/04/2023]
Abstract
Under naturalistic viewing conditions, humans conduct about three to four saccadic eye movements per second. These dynamics imply that in real life, humans rarely see something completely new; there is usually a preview of the upcoming foveal input from extrafoveal regions of the visual field. In line with results from the field of reading research, we have shown with EEG and eye-tracking coregistration that an extrafoveal preview also affects postsaccadic visual object processing and facilitates discrimination. Here, we ask whether this preview effect in the fixation-locked N170, and in manual responses to the postsaccadic target face (tilt discrimination), requires saccade execution. Participants performed a gaze-contingent experiment in which extrafoveal face images could change their orientation during a saccade directed to them. In a control block, participants maintained stable gaze throughout the experiment and the extrafoveal face reappeared foveally after a simulated saccade latency. Compared with this no-saccade condition, the neural and the behavioral preview effects were much larger in the saccade condition. We also found shorter first fixation durations after an invalid preview, which is in contrast to reading studies. We interpret the increased preview effect under saccade execution as the result of the additional sensorimotor processes that come with gaze behavior compared with visual perception under stable fixation. In addition, our findings call into question whether EEG studies with fixed gaze capture key properties and dynamics of active, natural vision.
Collapse
Affiliation(s)
- Christoph Huber-Huber
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
| | - David Melcher
- Center for Brain & Health, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
5
|
Fakche C, Hickey C, Jensen O. Fast Feature- and Category-Related Parafoveal Previewing Support Free Visual Exploration. J Neurosci 2024; 44:e0841242024. [PMID: 39455256 PMCID: PMC11622175 DOI: 10.1523/jneurosci.0841-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
While humans typically saccade every ∼250 ms in natural settings, studies on vision tend to prevent or restrict eye movements. As it takes ∼50 ms to initiate and execute a saccade, this leaves only ∼200 ms to identify the fixated object and select the next saccade goal. How much detail can be derived about parafoveal objects in this short time interval, during which foveal processing and saccade planning both occur? Here, we had male and female human participants freely explore a set of natural images while we recorded magnetoencephalography and eye movements. Using multivariate pattern analysis, we demonstrate that future parafoveal images could be decoded at the feature and category level with peak decoding at ∼110 and ∼165 ms, respectively, while the decoding of fixated objects at the feature and category level peaked at ∼100 and ∼145 ms. The decoding of features and categories was contingent on the objects being saccade goals. In sum, we provide insight on the neuronal mechanism of presaccadic attention by demonstrating that feature- and category-specific information of foveal and parafoveal objects can be extracted in succession within a ∼200 ms intersaccadic interval. These findings rule out strict serial or parallel processing accounts but are consistent with a pipeline mechanism in which foveal and parafoveal objects are processed in parallel but at different levels in the visual hierarchy.
Collapse
Affiliation(s)
- Camille Fakche
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Clayton Hickey
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
6
|
Koerfer K, Watson T, Lappe M. Inability to pursue nonrigid motion produces instability of spatial perception. SCIENCE ADVANCES 2024; 10:eadp6204. [PMID: 39504371 PMCID: PMC11540027 DOI: 10.1126/sciadv.adp6204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024]
Abstract
Vision generates a stable representation of space by combining retinal input with internal predictions about the visual consequences of eye movements. We report a type of nonrigid motion that disrupts the connection between eye movements and perception, causing visual instability. This motion is accurately perceived during fixation, but it cannot be pursued. Catch-up saccades are accurately directed to the moving target but the motion stimulus appears to jump in space with each saccade. Our results reveal four major findings about perception and the visuomotor system: (i) Pursuit fails for certain types of motion; (ii) pursuit and catch-up saccades are independently controlled; (iii) prediction of saccade consequences is independent from saccade control; and (iv) the visual stability of moving objects relies on similar motion mechanisms as pursuit.
Collapse
Affiliation(s)
- Krischan Koerfer
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| | - Tamara Watson
- School of Social Sciences and MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster 48149, Germany
| |
Collapse
|
7
|
Liu X, Melcher D, Carrasco M, Hanning NM. Presaccadic preview shapes postsaccadic processing more where perception is poor. Proc Natl Acad Sci U S A 2024; 121:e2411293121. [PMID: 39236235 PMCID: PMC11406264 DOI: 10.1073/pnas.2411293121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024] Open
Abstract
The presaccadic preview of a peripheral target enhances the efficiency of its postsaccadic processing, termed the extrafoveal preview effect. Peripheral visual performance-and thus the quality of the preview-varies around the visual field, even at isoeccentric locations: It is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants to preview four tilted gratings at the cardinals, until a central cue indicated which one to saccade to. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' postsaccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.
Collapse
Affiliation(s)
- Xiaoyi Liu
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - David Melcher
- Division of Science, Psychology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Brain and Health, NYUAD Research Institute, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Marisa Carrasco
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
| | - Nina M Hanning
- Department of Psychology and Center for Neural Science, New York University, New York, NY 10012
- Institut für Psychologie, Humboldt-Universität zu Berlin, Berlin 10099, Germany
| |
Collapse
|
8
|
Yang J, Liang N, Pitts BJ, Prakah-Asante K, Curry R, Yu D. An Eye-Fixation Related Electroencephalography Technique for Predicting Situation Awareness: Implications for Driver State Monitoring Systems. HUMAN FACTORS 2024; 66:2138-2153. [PMID: 37851849 DOI: 10.1177/00187208231204570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
OBJECTIVE This study developed a fixation-related electroencephalography band power (FRBP) approach for situation awareness (SA) assessment in automated driving. BACKGROUND Maintaining good SA in Level 3 automated vehicles is crucial to drivers' takeover performance when the automated system fails. A multimodal fusion approach that enables the analysis of the visual behavioral and cognitive processes of SA can facilitate real-time assessment of SA in future driver state monitoring systems. METHOD Thirty participants performed three simulated automated driving tasks. After each task, the Situation Awareness Global Assessment Technique (SAGAT) was deployed to capture their SA about key elements that could affect their takeover task performance. Participants eye movements and brain activities were recorded. Data on their brain activity after each eye fixation on the key elements were extracted and labeled according to the correctness of the SAGAT. Mixed-effects models were used to identify brain regions that were indicative of SA, and machine learning models for SA assessment were developed based on the identified brain regions. RESULTS Participants' alpha and theta oscillation at frontal and temporal areas are indicative of SA. In addition, the FRBP technique can be used to predict drivers' SA with an accuracy of 88% using a neural network model. CONCLUSION The FRBP technique, which incorporates eye movements and brain activities, can provide more comprehensive evaluation of SA. Findings highlight the potential of utilizing FRBP to monitor drivers' SA in real-time. APPLICATION The proposed framework can be expanded and applied to driver state monitoring systems to measure human SA in real-world driving.
Collapse
Affiliation(s)
- Jing Yang
- Purdue University, West Lafayette, IN, USA
| | - Nade Liang
- Purdue University, West Lafayette, IN, USA
| | | | | | | | - Denny Yu
- Purdue University, West Lafayette, IN, USA
| |
Collapse
|
9
|
Moran C, Johnson PA, Landau AN, Hogendoorn H. Decoding Remapped Spatial Information in the Peri-Saccadic Period. J Neurosci 2024; 44:e2134232024. [PMID: 38871460 PMCID: PMC11270511 DOI: 10.1523/jneurosci.2134-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/20/2024] [Accepted: 04/22/2024] [Indexed: 06/15/2024] Open
Abstract
It has been suggested that, prior to a saccade, visual neurons predictively respond to stimuli that will fall in their receptive fields after completion of the saccade. This saccadic remapping process is thought to compensate for the shift of the visual world across the retina caused by eye movements. To map the timing of this predictive process in the brain, we recorded neural activity using electroencephalography during a saccade task. Human participants (male and female) made saccades between two fixation points while covertly attending to oriented gratings briefly presented at various locations on the screen. Data recorded during trials in which participants maintained fixation were used to train classifiers on stimuli in different positions. Subsequently, data collected during saccade trials were used to test for the presence of remapped stimulus information at the post-saccadic retinotopic location in the peri-saccadic period, providing unique insight into when remapped information becomes available. We found that the stimulus could be decoded at the remapped location ∼180 ms post-stimulus onset, but only when the stimulus was presented 100-200 ms before saccade onset. Within this range, we found that the timing of remapping was dictated by stimulus onset rather than saccade onset. We conclude that presenting the stimulus immediately before the saccade allows for optimal integration of the corollary discharge signal with the incoming peripheral visual information, resulting in a remapping of activation to the relevant post-saccadic retinotopic neurons.
Collapse
Affiliation(s)
- Caoimhe Moran
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- Department of Psychology,Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Philippa A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- Cognitive Psychology Unit, Institute of Psychology & Leiden Institute for Brain and Cognition, Leiden University, Leiden 2333 AK, The Netherlands
| | - Ayelet N Landau
- Department of Psychology,Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
- Department of Cognitive and Brain Sciences, Hebrew University of Jerusalem, Mount Scopus, Jerusalem 9190501, Israel
| | - Hinze Hogendoorn
- Melbourne School of Psychological Sciences, The University of Melbourne, Parkville, Melbourne, Victoria 3052, Australia
- School of Psychology and Counselling, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia
| |
Collapse
|
10
|
Harrison WJ, Stead I, Wallis TSA, Bex PJ, Mattingley JB. A computational account of transsaccadic attentional allocation based on visual gain fields. Proc Natl Acad Sci U S A 2024; 121:e2316608121. [PMID: 38941277 PMCID: PMC11228487 DOI: 10.1073/pnas.2316608121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 05/13/2024] [Indexed: 06/30/2024] Open
Abstract
Coordination of goal-directed behavior depends on the brain's ability to recover the locations of relevant objects in the world. In humans, the visual system encodes the spatial organization of sensory inputs, but neurons in early visual areas map objects according to their retinal positions, rather than where they are in the world. How the brain computes world-referenced spatial information across eye movements has been widely researched and debated. Here, we tested whether shifts of covert attention are sufficiently precise in space and time to track an object's real-world location across eye movements. We found that observers' attentional selectivity is remarkably precise and is barely perturbed by the execution of saccades. Inspired by recent neurophysiological discoveries, we developed an observer model that rapidly estimates the real-world locations of objects and allocates attention within this reference frame. The model recapitulates the human data and provides a parsimonious explanation for previously reported phenomena in which observers allocate attention to task-irrelevant locations across eye movements. Our findings reveal that visual attention operates in real-world coordinates, which can be computed rapidly at the earliest stages of cortical processing.
Collapse
Affiliation(s)
- William J. Harrison
- Psychology, School of Health, University of the Sunshine Coast, Sippy Downs, QLD4556, Australia
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD4072, Australia
- The School of Psychology, The University of Queensland, St. Lucia, QLD4072, Australia
| | - Imogen Stead
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD4072, Australia
| | - Thomas S. A. Wallis
- Centre for Cognitive Science and Institute of Psychology, Technical University of Darmstadt, Darmstadt64283, Germany
- Center for Mind, Brain and Behavior (CMBB), Universities of Marburg, Giessen, and Darmstadt, Marburg35032, Germany
| | - Peter J. Bex
- Department of Psychology, Northeastern University, Boston, MA02115
| | - Jason B. Mattingley
- Queensland Brain Institute, The University of Queensland, St. Lucia, QLD4072, Australia
- The School of Psychology, The University of Queensland, St. Lucia, QLD4072, Australia
- Canadian Institute for Advanced Research, Toronto, ONM5G 1M1, Canada
| |
Collapse
|
11
|
Liu X, Melcher D, Carrasco M, Hanning NM. Pre-saccadic Preview Shapes Post-Saccadic Processing More Where Perception is Poor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.18.541028. [PMID: 37292871 PMCID: PMC10245755 DOI: 10.1101/2023.05.18.541028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The pre-saccadic preview of a peripheral target enhances the efficiency of its post-saccadic processing, termed the extrafoveal preview effect. Peripheral visual performance -and thus the quality of the preview- varies around the visual field, even at iso-eccentric locations: it is better along the horizontal than vertical meridian and along the lower than upper vertical meridian. To investigate whether these polar angle asymmetries influence the preview effect, we asked human participants (to preview four tilted gratings at the cardinals, until a central cue indicated to which one to saccade. During the saccade, the target orientation either remained or slightly changed (valid/invalid preview). After saccade landing, participants discriminated the orientation of the (briefly presented) second grating. Stimulus contrast was titrated with adaptive staircases to assess visual performance. Expectedly, valid previews increased participants' post-saccadic contrast sensitivity. This preview benefit, however, was inversely related to polar angle perceptual asymmetries; largest at the upper, and smallest at the horizontal meridian. This finding reveals that the visual system compensates for peripheral asymmetries when integrating information across saccades, by selectively assigning higher weights to the less-well perceived preview information. Our study supports the recent line of evidence showing that perceptual dynamics around saccades vary with eye movement direction.
Collapse
|
12
|
White PA. The perceptual timescape: Perceptual history on the sub-second scale. Cogn Psychol 2024; 149:101643. [PMID: 38452720 DOI: 10.1016/j.cogpsych.2024.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024]
Abstract
There is a high-capacity store of brief time span (∼1000 ms) which information enters from perceptual processing, often called iconic memory or sensory memory. It is proposed that a main function of this store is to hold recent perceptual information in a temporally segregated representation, named the perceptual timescape. The perceptual timescape is a continually active representation of change and continuity over time that endows the perceived present with a perceived history. This is accomplished primarily by two kinds of time marking information: time distance information, which marks all items of information in the perceptual timescape according to how far in the past they occurred, and ordinal temporal information, which organises items of information in terms of their temporal order. Added to that is information about connectivity of perceptual objects over time. These kinds of information connect individual items over a brief span of time so as to represent change, persistence, and continuity over time. It is argued that there is a one-way street of information flow from perceptual processing either to the perceived present or directly into the perceptual timescape, and thence to working memory. Consistent with that, the information structure of the perceptual timescape supports postdictive reinterpretations of recent perceptual information. Temporal integration on a time scale of hundreds of milliseconds takes place in perceptual processing and does not draw on information in the perceptual timescape, which is concerned with temporal segregation, not integration.
Collapse
Affiliation(s)
- Peter A White
- School of Psychology, Cardiff University, Tower Building, Park Place, Cardiff, Wales CF10 3YG, United Kingdom.
| |
Collapse
|
13
|
Samonds JM, Szinte M, Barr C, Montagnini A, Masson GS, Priebe NJ. Mammals Achieve Common Neural Coverage of Visual Scenes Using Distinct Sampling Behaviors. eNeuro 2024; 11:ENEURO.0287-23.2023. [PMID: 38164577 PMCID: PMC10860624 DOI: 10.1523/eneuro.0287-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Most vertebrates use head and eye movements to quickly change gaze orientation and sample different portions of the environment with periods of stable fixation. Visual information must be integrated across fixations to construct a complete perspective of the visual environment. In concert with this sampling strategy, neurons adapt to unchanging input to conserve energy and ensure that only novel information from each fixation is processed. We demonstrate how adaptation recovery times and saccade properties interact and thus shape spatiotemporal tradeoffs observed in the motor and visual systems of mice, cats, marmosets, macaques, and humans. These tradeoffs predict that in order to achieve similar visual coverage over time, animals with smaller receptive field sizes require faster saccade rates. Indeed, we find comparable sampling of the visual environment by neuronal populations across mammals when integrating measurements of saccadic behavior with receptive field sizes and V1 neuronal density. We propose that these mammals share a common statistically driven strategy of maintaining coverage of their visual environment over time calibrated to their respective visual system characteristics.
Collapse
Affiliation(s)
- Jason M Samonds
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Martin Szinte
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Carrie Barr
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| | - Anna Montagnini
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Guillaume S Masson
- Institut de Neurosciences de la Timone (UMR 7289), Centre National de la Recherche Scientifique and Aix-Marseille Université, 13385 Marseille, France
| | - Nicholas J Priebe
- Center for Learning and Memory and the Institute for Neuroscience, The University of Texas at Austin, Austin 78712, Texas
| |
Collapse
|
14
|
Abstract
Much evidence has shown that perception is biased towards previously presented similar stimuli, an effect recently termed serial dependence. Serial dependence affects nearly every aspect of perception, often causing gross perceptual distortions, especially for weak and ambiguous stimuli. Despite unwanted side-effects, empirical evidence and Bayesian modeling show that serial dependence acts to improve efficiency and is generally beneficial to the system. Consistent with models of predictive coding, the Bayesian priors of serial dependence are generated at high levels of cortical analysis, incorporating much perceptual experience, but feed back to lower sensory areas. These feedback loops may drive oscillations in the alpha range, linked strongly with serial dependence. The discovery of top-down predictive perceptual processes is not new, but the new, more quantitative approach characterizing serial dependence promises to lead to a deeper understanding of predictive perceptual processes and their underlying neural mechanisms.
Collapse
Affiliation(s)
| | - Kyriaki Mikellidou
- Department of Management, University of Limassol, Nicosia, Cyprus;
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy;
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - David Charles Burr
- Department of Neurosciences, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy;
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Smith DT, Beierholm U, Avery M. A presaccadic perceptual impairment at the postsaccadic location of the blindspot. PLoS One 2023; 18:e0291582. [PMID: 37708131 PMCID: PMC10501568 DOI: 10.1371/journal.pone.0291582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
Saccadic eye movements are preceded by profound changes in visual perception. These changes have been linked to the phenomenon of 'forward remapping', in which cells begin to respond to stimuli that appear in their post-saccadic receptive field before the eye has moved. Few studies have examined the perceptual consequences of remapping of areas of impaired sensory acuity, such as the blindspot. Understanding the perceptual consequences of remapping of scotomas may produce important insights into why some neurovisual deficits, such as hemianopia are so intractable for rehabilitation. The current study took advantage of a naturally occurring scotoma in healthy participants (the blindspot) to examine pre-saccadic perception at the upcoming location of the blindspot. Participants viewed stimuli monocularly and were required to make stimulus-driven vertical eye-movements. At a variable latency between the onset of saccade target (ST) and saccade execution a discrimination target (DT) was presented at one of 4 possible locations; within the blindspot, contralateral to the blindspot, in post-saccadic location of the blindspot and contralateral to the post-saccadic location of the blindspot. There was a significant perceptual impairment at the post-saccadic location of the blindspot relative to the contralateral post-saccadic location of the blindspot and the post-saccadic location of the blindspot in a no-saccade control condition. These data are consistent with the idea that the visual system includes a representation of the blindspot which is remapped prior to saccade onset.
Collapse
Affiliation(s)
- Daniel T. Smith
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Ulrik Beierholm
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Mark Avery
- Department of Psychology, Durham University, Durham, United Kingdom
| |
Collapse
|
16
|
Baltaretu BR, Stevens WD, Freud E, Crawford JD. Occipital and parietal cortex participate in a cortical network for transsaccadic discrimination of object shape and orientation. Sci Rep 2023; 13:11628. [PMID: 37468709 DOI: 10.1038/s41598-023-38554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023] Open
Abstract
Saccades change eye position and interrupt vision several times per second, necessitating neural mechanisms for continuous perception of object identity, orientation, and location. Neuroimaging studies suggest that occipital and parietal cortex play complementary roles for transsaccadic perception of intrinsic versus extrinsic spatial properties, e.g., dorsomedial occipital cortex (cuneus) is sensitive to changes in spatial frequency, whereas the supramarginal gyrus (SMG) is modulated by changes in object orientation. Based on this, we hypothesized that both structures would be recruited to simultaneously monitor object identity and orientation across saccades. To test this, we merged two previous neuroimaging protocols: 21 participants viewed a 2D object and then, after sustained fixation or a saccade, judged whether the shape or orientation of the re-presented object changed. We, then, performed a bilateral region-of-interest analysis on identified cuneus and SMG sites. As hypothesized, cuneus showed both saccade and feature (i.e., object orientation vs. shape change) modulations, and right SMG showed saccade-feature interactions. Further, the cuneus activity time course correlated with several other cortical saccade/visual areas, suggesting a 'functional network' for feature discrimination. These results confirm the involvement of occipital/parietal cortex in transsaccadic vision and support complementary roles in spatial versus identity updating.
Collapse
Affiliation(s)
- B R Baltaretu
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Department of Psychology, Justus-Liebig University Giessen, Otto-Behaghel-Strasse 10F, 35394, Giessen, Hesse, Germany.
| | - W Dale Stevens
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - E Freud
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
| | - J D Crawford
- Centre for Vision Research and Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, M3J 1P3, Canada
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Department of Psychology and Neuroscience Graduate Diploma Program, York University, Toronto, ON, M3J 1P3, Canada
- School of Kinesiology and Health Sciences, York University, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
17
|
Adhanom IB, MacNeilage P, Folmer E. Eye Tracking in Virtual Reality: a Broad Review of Applications and Challenges. VIRTUAL REALITY 2023; 27:1481-1505. [PMID: 37621305 PMCID: PMC10449001 DOI: 10.1007/s10055-022-00738-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/30/2022] [Indexed: 08/26/2023]
Abstract
Eye tracking is becoming increasingly available in head-mounted virtual reality displays with various headsets with integrated eye trackers already commercially available. The applications of eye tracking in virtual reality are highly diversified and span multiple disciplines. As a result, the number of peer-reviewed publications that study eye tracking applications has surged in recent years. We performed a broad review to comprehensively search academic literature databases with the aim of assessing the extent of published research dealing with applications of eye tracking in virtual reality, and highlighting challenges, limitations and areas for future research.
Collapse
Affiliation(s)
| | - Paul MacNeilage
- University of Nevada Reno, 1664 N Virginia St, Reno, NV 89557, USA
| | - Eelke Folmer
- University of Nevada Reno, 1664 N Virginia St, Reno, NV 89557, USA
| |
Collapse
|
18
|
Fabius JH, Fracasso A, Deodato M, Melcher D, Van der Stigchel S. Bilateral increase in MEG planar gradients prior to saccade onset. Sci Rep 2023; 13:5830. [PMID: 37037892 PMCID: PMC10086038 DOI: 10.1038/s41598-023-32980-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 04/05/2023] [Indexed: 04/12/2023] Open
Abstract
Every time we move our eyes, the retinal locations of objects change. To distinguish the changes caused by eye movements from actual external motion of the objects, the visual system is thought to anticipate the consequences of eye movements (saccades). Single neuron recordings have indeed demonstrated changes in receptive fields before saccade onset. Although some EEG studies with human participants have also demonstrated a pre-saccadic increased potential over the hemisphere that will process a stimulus after a saccade, results have been mixed. Here, we used magnetoencephalography to investigate the timing and lateralization of visually evoked planar gradients before saccade onset. We modelled the gradients from trials with both a saccade and a stimulus as the linear combination of the gradients from two conditions with either only a saccade or only a stimulus. We reasoned that any residual gradients in the condition with both a saccade and a stimulus must be uniquely linked to visually-evoked neural activity before a saccade. We observed a widespread increase in residual planar gradients. Interestingly, this increase was bilateral, showing activity both contralateral and ipsilateral to the stimulus, i.e. over the hemisphere that would process the stimulus after saccade offset. This pattern of results is consistent with predictive pre-saccadic changes involving both the current and the future receptive fields involved in processing an attended object, well before the start of the eye movement. The active, sensorimotor coupling of vision and the oculomotor system may underlie the seamless subjective experience of stable and continuous perception.
Collapse
Affiliation(s)
- Jasper H Fabius
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - Alessio Fracasso
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Michele Deodato
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - David Melcher
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands.
| |
Collapse
|
19
|
Russ BE, Koyano KW, Day-Cooney J, Perwez N, Leopold DA. Temporal continuity shapes visual responses of macaque face patch neurons. Neuron 2023; 111:903-914.e3. [PMID: 36630962 PMCID: PMC10023462 DOI: 10.1016/j.neuron.2022.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/09/2022] [Accepted: 12/13/2022] [Indexed: 01/12/2023]
Abstract
Macaque inferior temporal cortex neurons respond selectively to complex visual images, with recent work showing that they are also entrained reliably by the evolving content of natural movies. To what extent does temporal continuity itself shape the responses of high-level visual neurons? We addressed this question by measuring how cells in face-selective regions of the macaque visual cortex were affected by the manipulation of a movie's temporal structure. Sampling a 5-min movie at 1 s intervals, we measured neural responses to randomized, brief stimuli of different lengths, ranging from 800 ms dynamic movie snippets to 100 ms static frames. We found that the disruption of temporal continuity strongly altered neural response profiles, particularly in the early response period after stimulus onset. The results suggest that models of visual system function based on discrete and randomized visual presentations may not translate well to the brain's natural modes of operation.
Collapse
Affiliation(s)
- Brian E Russ
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA; Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY 10962, USA; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Psychiatry, New York University at Langone, New York City, NY 10016, USA.
| | - Kenji W Koyano
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Julian Day-Cooney
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - Neda Perwez
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA
| | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, National Institute of Mental Health, Bethesda, MD 20814, USA; Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, Bethesda, MD 20814, USA
| |
Collapse
|
20
|
Ghaderi A, Niemeier M, Crawford JD. Saccades and presaccadic stimulus repetition alter cortical network topology and dynamics: evidence from EEG and graph theoretical analysis. Cereb Cortex 2023; 33:2075-2100. [PMID: 35639544 DOI: 10.1093/cercor/bhac194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/13/2022] Open
Abstract
Parietal and frontal cortex are involved in saccade generation, and their output signals modify visual signals throughout cortex. Local signals associated with these interactions are well described, but their large-scale progression and network dynamics are unknown. Here, we combined source localized electroencephalography (EEG) and graph theory analysis (GTA) to understand how saccades and presaccadic visual stimuli interactively alter cortical network dynamics in humans. Twenty-one participants viewed 1-3 vertical/horizontal grids, followed by grid with the opposite orientation just before a horizontal saccade or continued fixation. EEG signals from the presaccadic interval (or equivalent fixation period) were used for analysis. Source localization-through-time revealed a rapid frontoparietal progression of presaccadic motor signals and stimulus-motor interactions, with additional band-specific modulations in several frontoparietal regions. GTA analysis revealed a saccade-specific functional network with major hubs in inferior parietal cortex (alpha) and the frontal eye fields (beta), and major saccade-repetition interactions in left prefrontal (theta) and supramarginal gyrus (gamma). This network showed enhanced segregation, integration, synchronization, and complexity (compared with fixation), whereas stimulus repetition interactions reduced synchronization and complexity. These cortical results demonstrate a widespread influence of saccades on both regional and network dynamics, likely responsible for both the motor and perceptual aspects of saccades.
Collapse
Affiliation(s)
- Amirhossein Ghaderi
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada
| | - Matthias Niemeier
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Psychology, University of Toronto Scarborough, 1265 Military Trail, Scarborough, ON M1C 1A4, Canada
| | - John Douglas Crawford
- Centre for Vision Research, York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Vision Science to Applications (VISTA) Program York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada.,Department of Biology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Psychology, York University, 4700 Keele St,, Toronto, ON M3J 1P3, Canada.,Department of Kinesiology and Health Sciences, York University, 4700 Keele St., Toronto, ON M3J 1P3, Canada
| |
Collapse
|
21
|
Draschkow D, Nobre AC, van Ede F. Multiple spatial frames for immersive working memory. Nat Hum Behav 2022; 6:536-544. [PMID: 35058640 PMCID: PMC7612679 DOI: 10.1038/s41562-021-01245-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
As we move around, relevant information that disappears from sight can still be held in working memory to serve upcoming behaviour. How we maintain and select visual information as we move through the environment remains poorly understood because most laboratory tasks of working memory rely on removing visual material while participants remain still. We used virtual reality to study visual working memory following self-movement in immersive environments. Directional biases in gaze revealed the recruitment of more than one spatial frame for maintaining and selecting memoranda following self-movement. The findings bring the important realization that multiple spatial frames support working memory in natural behaviour. The results also illustrate how virtual reality can be a critical experimental tool to characterize this core memory system.
Collapse
Affiliation(s)
- Dejan Draschkow
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK.
- Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Anna C Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Microsaccades, Drifts, Hopf Bundle and Neurogeometry. J Imaging 2022; 8:jimaging8030076. [PMID: 35324631 PMCID: PMC8953095 DOI: 10.3390/jimaging8030076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 02/01/2023] Open
Abstract
The first part of the paper contains a short review of the image processing in early vision is static, when the eyes and the stimulus are stable, and in dynamics, when the eyes participate in fixation eye movements. In the second part, we give an interpretation of Donders’ and Listing’s law in terms of the Hopf fibration of the 3-sphere over the 2-sphere. In particular, it is shown that the configuration space of the eye ball (when the head is fixed) is the 2-dimensional hemisphere SL+, called Listing hemisphere, and saccades are described as geodesic segments of SL+ with respect to the standard round metric. We study fixation eye movements (drift and microsaccades) in terms of this model and discuss the role of fixation eye movements in vision. A model of fixation eye movements is proposed that gives an explanation of presaccadic shift of receptive fields.
Collapse
|
23
|
Steinberg NJ, Roth ZN, Merriam EP. Spatiotopic and retinotopic memory in the context of natural images. J Vis 2022; 22:11. [PMID: 35323869 PMCID: PMC8963666 DOI: 10.1167/jov.22.4.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Neural responses throughout the visual cortex encode stimulus location in a retinotopic (i.e., eye-centered) reference frame, and memory for stimulus position is most precise in retinal coordinates. Yet visual perception is spatiotopic: objects are perceived as stationary, even though eye movements cause frequent displacement of their location on the retina. Previous studies found that, after a single saccade, memory of retinotopic locations is more accurate than memory of spatiotopic locations. However, it is not known whether various aspects of natural viewing affect the retinotopic reference frame advantage. We found that the retinotopic advantage may in part depend on a retinal afterimage, which can be effectively nullified through backwards masking. Moreover, in the presence of natural scenes, spatiotopic memory is more accurate than retinotopic memory, but only when subjects are provided sufficient time to process the scene before the eye movement. Our results demonstrate that retinotopic memory is not always more accurate than spatiotopic memory and that the fidelity of memory traces in both reference frames are sensitive to the presence of contextual cues.
Collapse
Affiliation(s)
- Noah J Steinberg
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA.,
| | - Zvi N Roth
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA.,
| | - Elisha P Merriam
- Laboratory of Brain and Cognition, National Institute of Mental Health, NIH, Bethesda, MD, USA.,
| |
Collapse
|
24
|
Akbarian A, Clark K, Noudoost B, Nategh N. A sensory memory to preserve visual representations across eye movements. Nat Commun 2021; 12:6449. [PMID: 34750376 PMCID: PMC8575989 DOI: 10.1038/s41467-021-26756-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 10/13/2021] [Indexed: 11/09/2022] Open
Abstract
Saccadic eye movements (saccades) disrupt the continuous flow of visual information, yet our perception of the visual world remains uninterrupted. Here we assess the representation of the visual scene across saccades from single-trial spike trains of extrastriate visual areas, using a combined electrophysiology and statistical modeling approach. Using a model-based decoder we generate a high temporal resolution readout of visual information, and identify the specific changes in neurons' spatiotemporal sensitivity that underly an integrated perisaccadic representation of visual space. Our results show that by maintaining a memory of the visual scene, extrastriate neurons produce an uninterrupted representation of the visual world. Extrastriate neurons exhibit a late response enhancement close to the time of saccade onset, which preserves the latest pre-saccadic information until the post-saccadic flow of retinal information resumes. These results show how our brain exploits available information to maintain a representation of the scene while visual inputs are disrupted.
Collapse
Affiliation(s)
- Amir Akbarian
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Kelsey Clark
- grid.223827.e0000 0001 2193 0096Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT USA
| | - Behrad Noudoost
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Neda Nategh
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT, USA. .,Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
25
|
Bai S, Liu W, Guan Y. The Visuospatial and Sensorimotor Functions of Posterior Parietal Cortex in Drawing Tasks: A Review. Front Aging Neurosci 2021; 13:717002. [PMID: 34720989 PMCID: PMC8551751 DOI: 10.3389/fnagi.2021.717002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/23/2021] [Indexed: 02/04/2023] Open
Abstract
Drawing is a comprehensive skill that primarily involves visuospatial processing, eye-hand coordination, and other higher-order cognitive functions. Various drawing tasks are widely used to assess brain function. The neuropsychological basis of drawing is extremely sophisticated. Previous work has addressed the critical role of the posterior parietal cortex (PPC) in drawing, but the specific functions of the PPC in drawing remain unclear. Functional magnetic resonance imaging and electrophysiological studies found that drawing activates the PPC. Lesion-symptom mapping studies have shown an association between PPC injury and drawing deficits in patients with global and focal cerebral pathology. These findings depicted a core framework of the fronto-parietal network in drawing tasks. Here, we review neuroimaging and electrophysiological studies applying drawing paradigms and discuss the specific functions of the PPC in visuospatial and sensorimotor aspects. Ultimately, we proposed a hypothetical model based on the dorsal stream. It demonstrates the organization of a PPC-centered network for drawing and provides systematic insights into drawing for future neuropsychological research.
Collapse
Affiliation(s)
- Shuwei Bai
- Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.,Department of Neurology, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Wenyan Liu
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University Medical School, Shanghai, China
| |
Collapse
|
26
|
Pandey P, Ray S. Pupil dynamics: A potential proxy of neural preparation for goal-directed eye movement. Eur J Neurosci 2021; 54:6587-6607. [PMID: 34510602 DOI: 10.1111/ejn.15453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 01/10/2023]
Abstract
The pupils reflexively constrict or dilate to regulate the influx of light on the retinae. Pupillary light reflex (PLR) is susceptible to many non-visual cognitive processes including covert orientation of attention and planning rapid saccadic eye movement. The frontal eye field (FEF) and superior colliculus (SC), which also send projections to the PLR pathway, are two important areas in primate's brain for planning saccade and orientation of attention. The saccadic reaction time (SRT) and the rate of increase in activity of movement neurons in these areas are inversely correlated. This study addressed how pupil dynamics, activity in the FEF and SC and SRT are related in a saccadic decision-making task. The rate of visually evoked pupil constriction was found inversely related to SRT. This was further verified by simulating a homeomorphic biomechanical model of pupillary muscle plants, wherein we projected signals similar to build-up activity in the FEF and SC to the parasympathetic (constriction) and sympathetic (dilation) division of the PLR pathway, respectively. A striking similarity between simulated and observed dynamics of pupil constriction suggests that PLR is a potential proxy of saccade planning by movement neurons in the FEF and SC. Indistinguishable pupil dynamics when planned saccades were elicited versus when they were cancelled eliminated the possibility that the obligatory pre-saccadic shift of attention alone influenced the rate of pupil constriction. Our study envisages a mechanism of how the oculomotor system influences the autonomic activity in an attempt to timely minimize saccadic visual transients by regulating the influx of light.
Collapse
Affiliation(s)
- Pragya Pandey
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| | - Supriya Ray
- Centre of Behavioural and Cognitive Sciences, University of Allahabad, Prayagraj, India
| |
Collapse
|
27
|
Abekawa N, Gomi H, Diedrichsen J. Gaze control during reaching is flexibly modulated to optimize task outcome. J Neurophysiol 2021; 126:816-826. [PMID: 34320845 DOI: 10.1152/jn.00134.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
When reaching for an object with the hand, the gaze is usually directed at the target. In a laboratory setting, fixation is strongly maintained at the reach target until the reaching is completed, a phenomenon known as "gaze anchoring." While conventional accounts of such tight eye-hand coordination have often emphasized the internal synergetic linkage between both motor systems, more recent optimal control theories regard motor coordination as the adaptive solution to task requirements. We here investigated to what degree gaze control during reaching is modulated by task demands. We adopted a gaze-anchoring paradigm in which participants had to reach for a target location. During the reach, they additionally had to make a saccadic eye movement to a salient visual cue presented at locations other than the target. We manipulated the task demands by independently changing reward contingencies for saccade reaction time (RT) and reaching accuracy. On average, both saccade RTs and reach error varied systematically with reward condition, with reach accuracy improving when the saccade was delayed. The distribution of the saccade RTs showed two types of eye movements: fast saccades with short RTs, and voluntary saccade with longer RTs. Increased reward for high reach accuracy reduced the probability of fast saccades but left their latency unchanged. The results suggest that gaze anchoring acts through a suppression of fast saccades, a mechanism that can be adaptively adjusted to the current task demands.NEW & NOTEWORTHY During visually guided reaching, our eyes usually fixate the target and saccades elsewhere are delayed ("gaze anchoring"). We here show that the degree of gaze anchoring is flexibly modulated by the reward contingencies of saccade latency and reach accuracy. Reach error became larger when saccades occurred earlier. These results suggest that early saccades are costly for reaching and the brain modulates inhibitory online coordination from the hand to the eye system depending on task requirements.
Collapse
Affiliation(s)
- Naotoshi Abekawa
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Hiroaki Gomi
- NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation, Atsugi, Kanagawa, Japan
| | - Jörn Diedrichsen
- The Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.,Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
28
|
Huber-Huber C, Buonocore A, Melcher D. The extrafoveal preview paradigm as a measure of predictive, active sampling in visual perception. J Vis 2021; 21:12. [PMID: 34283203 PMCID: PMC8300052 DOI: 10.1167/jov.21.7.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/18/2021] [Indexed: 01/02/2023] Open
Abstract
A key feature of visual processing in humans is the use of saccadic eye movements to look around the environment. Saccades are typically used to bring relevant information, which is glimpsed with extrafoveal vision, into the high-resolution fovea for further processing. With the exception of some unusual circumstances, such as the first fixation when walking into a room, our saccades are mainly guided based on this extrafoveal preview. In contrast, the majority of experimental studies in vision science have investigated "passive" behavioral and neural responses to suddenly appearing and often temporally or spatially unpredictable stimuli. As reviewed here, a growing number of studies have investigated visual processing of objects under more natural viewing conditions in which observers move their eyes to a stationary stimulus, visible previously in extrafoveal vision, during each trial. These studies demonstrate that the extrafoveal preview has a profound influence on visual processing of objects, both for behavior and neural activity. Starting from the preview effect in reading research we follow subsequent developments in vision research more generally and finally argue that taking such evidence seriously leads to a reconceptualization of the nature of human visual perception that incorporates the strong influence of prediction and action on sensory processing. We review theoretical perspectives on visual perception under naturalistic viewing conditions, including theories of active vision, active sensing, and sampling. Although the extrafoveal preview paradigm has already provided useful information about the timing of, and potential mechanisms for, the close interaction of the oculomotor and visual systems while reading and in natural scenes, the findings thus far also raise many new questions for future research.
Collapse
Affiliation(s)
- Christoph Huber-Huber
- Radboud University, Donders Institute for Brain, Cognition and Behaviour, The Netherlands
- CIMeC, University of Trento, Italy
| | - Antimo Buonocore
- Werner Reichardt Centre for Integrative Neuroscience, Tübingen University, Tübingen, BW, Germany
- Hertie Institute for Clinical Brain Research, Tübingen University, Tübingen, BW, Germany
| | - David Melcher
- CIMeC, University of Trento, Italy
- Division of Science, New York University Abu Dhabi, UAE
| |
Collapse
|
29
|
Bansal S, Joiner WM. Transsaccadic visual perception of foveal compared to peripheral environmental changes. J Vis 2021; 21:12. [PMID: 34160578 PMCID: PMC8237106 DOI: 10.1167/jov.21.6.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The maintenance of stable visual perception across eye movements is hypothesized to be aided by extraretinal information (e.g., corollary discharge [CD]). Previous studies have focused on the benefits of this information for perception at the fovea. However, there is little information on the extent that CD benefits peripheral visual perception. Here we systematically examined the extent that CD supports the ability to perceive transsaccadic changes at the fovea compared to peripheral changes. Human subjects made saccades to targets positioned at different amplitudes (4° or 8°) and directions (rightward or upward). On each trial there was a reference point located either at (fovea) or 4° away (periphery) from the target. During the saccade the target and reference disappeared and, after a blank period, the reference reappeared at a shifted location. Subjects reported the perceived shift direction, and we determined the perceptual threshold for detection and estimate of the reference location. We also simulated the detection and location if subjects solely relied on the visual error of the shifted reference experienced after the saccade. The comparison of the reference location under these two conditions showed that overall the perceptual estimate was approximately 53% more accurate and 30% less variable than estimates based solely on visual information at the fovea. These values for peripheral shifts were consistently lower than that at the fovea: 34% more accurate and 9% less variable. Overall, the results suggest that CD information does support stable visual perception in the periphery, but is consistently less beneficial compared to the fovea.
Collapse
Affiliation(s)
- Sonia Bansal
- Department of Neuroscience, George Mason University, Fairfax, VA, USA.,Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.,
| | - Wilsaan M Joiner
- Department of Bioengineering, George Mason University, Fairfax, VA, USA.,Department of Neurobiology, Physiology and Behavior, University of California Davis, Davis, CA, USA.,Department of Neurology, University of California Davis, Davis, CA, USA.,
| |
Collapse
|
30
|
Van der Stigchel S, Schut MJ, Fabius J, Van der Stoep N. Transsaccadic perception is affected by saccade landing point deviations after saccadic adaptation. J Vis 2021; 20:8. [PMID: 32915955 PMCID: PMC7488614 DOI: 10.1167/jov.20.9.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Whenever we move our eyes, some visual information obtained before a saccade is combined with the visual information obtained after a saccade. Interestingly, saccades rarely land exactly on the saccade target, which may pose a problem for transsaccadic perception as it could affect the quality of postsaccadic input. Recently, however, we showed that transsaccadic feature integration is actually unaffected by deviations of saccade landing points. Possibly, transsaccadic integration remains unaffected because the presaccadic shift of attention follows the intended saccade target and not the actual saccade landing point during regular saccades. Here, we investigated whether saccade landing point errors can in fact alter transsaccadic perception when the presaccadic shift of attention follows the saccade landing point deviation. Given that saccadic adaptation not only changes the saccade vector, but also the presaccadic shift of attention, we combined a feature report paradigm with saccadic adaptation. Observers reported the color of the saccade target, which occasionally changed slightly during a saccade to the target. This task was performed before and after saccadic adaptation. The results showed that, after adaptation, presaccadic color information became less precise and transsaccadic perception had a stronger reliance on the postsaccadic color estimate. Therefore, although previous studies have shown that transsaccadic perception is generally unaffected by saccade landing point deviations, our results reveal that this cannot be considered a general property of the visual system. When presaccadic shifts of attention follow altered saccade landing points, transsaccadic perception is affected, suggesting that transsaccadic feature perception might be dependent on visual spatial attention.
Collapse
Affiliation(s)
| | - Martijn J Schut
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Jasper Fabius
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Nathan Van der Stoep
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
31
|
Ge Y, Sun Z, Qian C, He S. Spatiotopic updating across saccades in the absence of awareness. J Vis 2021; 21:7. [PMID: 33961004 PMCID: PMC8114003 DOI: 10.1167/jov.21.5.7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the continuously changing visual inputs caused by eye movements, our perceptual representation of the visual world remains remarkably stable. Visual stability has been a major area of interest within the field of visual neuroscience. The early visual cortical areas are retinotopic-organized, and presumably there is a retinotopic to spatiotopic transformation process that supports the stable representation of the visual world. In this study, we used a cross-saccadic adaptation paradigm to show that both the orientation adaptation and face gender adaptation could still be observed at the same spatiotopic (but different retinotopic) locations even when the adapting stimuli were rendered invisible. These results suggest that awareness of a visual object is not required for its transformation from the retinotopic to the spatiotopic reference frame.
Collapse
Affiliation(s)
- Yijun Ge
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Vision and Attention Lab, Department of Psychology, University of Minnesota, MN, USA
| | - Zhouyuan Sun
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Neurosurgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Chencan Qian
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sheng He
- State Key Lab of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Vision and Attention Lab, Department of Psychology, University of Minnesota, MN, USA
- Chinese Academy of Sciences, Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
32
|
Melcher D, Huber-Huber C, Wutz A. Enumerating the forest before the trees: The time courses of estimation-based and individuation-based numerical processing. Atten Percept Psychophys 2021; 83:1215-1229. [PMID: 33000437 PMCID: PMC8049909 DOI: 10.3758/s13414-020-02137-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 11/23/2022]
Abstract
Ensemble perception refers to the ability to report attributes of a group of objects, rather than focusing on only one or a few individuals. An everyday example of ensemble perception is the ability to estimate the numerosity of a large number of items. The time course of ensemble processing, including that of numerical estimation, remains a matter of debate, with some studies arguing for rapid, "preattentive" processing and other studies suggesting that ensemble perception improves with longer presentation durations. We used a forward-simultaneous masking procedure that effectively controls stimulus durations to directly measure the temporal dynamics of ensemble estimation and compared it with more precise enumeration of individual objects. Our main finding was that object individuation within the subitizing range (one to four items) took about 100-150 ms to reach its typical capacity limits, whereas estimation (six or more items) showed a temporal resolution of 50 ms or less. Estimation accuracy did not improve over time. Instead, there was an increasing tendency, with longer effective durations, to underestimate the number of targets for larger set sizes (11-35 items). Overall, the time course of enumeration for one or a few single items was dramatically different from that of estimating numerosity of six or more items. These results are consistent with the idea that the temporal resolution of ensemble processing may be as rapid as, or even faster than, individuation of individual items, and support a basic distinction between the mechanisms underlying exact enumeration of small sets (one to four items) from estimation.
Collapse
Affiliation(s)
- David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| | - Christoph Huber-Huber
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, Netherlands
| | - Andreas Wutz
- Center for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA
| |
Collapse
|
33
|
Masselink J, Lappe M. Visuomotor learning from postdictive motor error. eLife 2021; 10:64278. [PMID: 33687328 PMCID: PMC8057815 DOI: 10.7554/elife.64278] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/04/2021] [Indexed: 01/02/2023] Open
Abstract
Sensorimotor learning adapts motor output to maintain movement accuracy. For saccadic eye movements, learning also alters space perception, suggesting a dissociation between the performed saccade and its internal representation derived from corollary discharge (CD). This is critical since learning is commonly believed to be driven by CD-based visual prediction error. We estimate the internal saccade representation through pre- and trans-saccadic target localization, showing that it decouples from the actual saccade during learning. We present a model that explains motor and perceptual changes by collective plasticity of spatial target percept, motor command, and a forward dynamics model that transforms CD from motor into visuospatial coordinates. We show that learning does not follow visual prediction error but instead a postdictive update of space after saccade landing. We conclude that trans-saccadic space perception guides motor learning via CD-based postdiction of motor error under the assumption of a stable world.
Collapse
Affiliation(s)
- Jana Masselink
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| | - Markus Lappe
- Institute for Psychology and Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Münster, Germany
| |
Collapse
|
34
|
The behavioural preview effect with faces is susceptible to statistical regularities: Evidence for predictive processing across the saccade. Sci Rep 2021; 11:942. [PMID: 33441804 PMCID: PMC7806959 DOI: 10.1038/s41598-020-79957-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023] Open
Abstract
The world around us appears stable and continuous despite saccadic eye movements. This apparent visual stability is achieved by trans-saccadic perception leading at the behavioural level to preview effects: performance in processing a foveal stimulus is better if the stimulus remained unchanged (valid) compared to when it changed (invalid) during the saccade that brought it into focus. Trans-saccadic perception is known to predictively adapt to the statistics of the environment. Here, we asked whether the behavioural preview effect shows the same characteristics, employing a between-participants training design. Participants made saccades to faces which could change their orientation (upright/inverted) during the saccade. In addition, the post-saccadic face was slightly tilted and participants reported this tilt upon fixation. In a training phase, one group of participants conducted only invalid trials whereas another group conducted only valid trials. In a subsequent test phase with 50% valid and 50% invalid trials, we measured the preview effect. Invalid training reduced the preview effect. With a mixed-model analysis, we could show how this training effect gradually declines in the course of the test phase. These results show that the behavioural preview effect adapts to the statistics of the environment suggesting that it results from predictive processes.
Collapse
|
35
|
Abstract
To investigate visual perception around the time of eye movements, vision scientists manipulate stimuli contingent upon the onset of a saccade. For these experimental paradigms, timing is especially crucial, because saccade offset imposes a deadline on the display change. Although efficient online saccade detection can greatly improve timing, most algorithms rely on spatial-boundary techniques or absolute-velocity thresholds, which both suffer from weaknesses: late detections and false alarms, respectively. We propose an adaptive, velocity-based algorithm for online saccade detection that surpasses both standard techniques in speed and accuracy and allows the user to freely define the detection criteria. Inspired by the Engbert-Kliegl algorithm for microsaccade detection, our algorithm computes two-dimensional velocity thresholds from variance in the preceding fixation samples, while compensating for noisy or missing data samples. An optional direction criterion limits detection to the instructed saccade direction, further increasing robustness. We validated the algorithm by simulating its performance on a large saccade dataset and found that high detection accuracy (false-alarm rates of < 1%) could be achieved with detection latencies of only 3 ms. High accuracy was maintained even under simulated high-noise conditions. To demonstrate that purely intrasaccadic presentations are technically feasible, we devised an experimental test in which a Gabor patch drifted at saccadic peak velocities. Whereas this stimulus was invisible when presented during fixation, observers reliably detected it during saccades. Photodiode measurements verified that-including all system delays-the stimuli were physically displayed on average 20 ms after saccade onset. Thus, the proposed algorithm provides a valuable tool for gaze-contingent paradigms.
Collapse
|
36
|
Abstract
To achieve visual space constancy, our brain remaps eye-centered projections of visual objects across saccades. Here, we measured saccade trajectory curvature following the presentation of visual, auditory, and audiovisual distractors in a double-step saccade task to investigate if this stability mechanism also accounts for localized sounds. We found that saccade trajectories systematically curved away from the position at which either a light or a sound was presented, suggesting that both modalities are represented in eye-centered oculomotor centers. Importantly, the same effect was observed when the distractor preceded the execution of the first saccade. These results suggest that oculomotor centers keep track of visual, auditory and audiovisual objects by remapping their eye-centered representations across saccades. Furthermore, they argue for the existence of a supra-modal map which keeps track of multi-sensory object locations across our movements to create an impression of space constancy.
Collapse
|
37
|
Fabius JH, Fracasso A, Acunzo DJ, Van der Stigchel S, Melcher D. Low-Level Visual Information Is Maintained across Saccades, Allowing for a Postsaccadic Handoff between Visual Areas. J Neurosci 2020; 40:9476-9486. [PMID: 33115930 PMCID: PMC7724139 DOI: 10.1523/jneurosci.1169-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 09/17/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Experience seems continuous and detailed despite saccadic eye movements changing retinal input several times per second. There is debate whether neural signals related to updating across saccades contain information about stimulus features, or only location pointers without visual details. We investigated the time course of low-level visual information processing across saccades by decoding the spatial frequency of a stationary stimulus that changed from one visual hemifield to the other because of a horizontal saccadic eye movement. We recorded magnetoencephalography while human subjects (both sexes) monitored the orientation of a grating stimulus, making spatial frequency task irrelevant. Separate trials, in which subjects maintained fixation, were used to train a classifier, whose performance was then tested on saccade trials. Decoding performance showed that spatial frequency information of the presaccadic stimulus remained present for ∼200 ms after the saccade, transcending retinotopic specificity. Postsaccadic information ramped up rapidly after saccade offset. There was an overlap of over 100 ms during which decoding was significant from both presaccadic and postsaccadic processing areas. This suggests that the apparent richness of perception across saccades may be supported by the continuous availability of low-level information with a "soft handoff" of information during the initial processing sweep of the new fixation.SIGNIFICANCE STATEMENT Saccades create frequent discontinuities in visual input, yet perception appears stable and continuous. How is this discontinuous input processed resulting in visual stability? Previous studies have focused on presaccadic remapping. Here we examined the time course of processing of low-level visual information (spatial frequency) across saccades with magnetoencephalography. The results suggest that spatial frequency information is not predictively remapped but also is not discarded. Instead, they suggest a soft handoff over time between different visual areas, making this information continuously available across the saccade. Information about the presaccadic stimulus remains available, while the information about the postsaccadic stimulus has also become available. The simultaneous availability of both the presaccadic and postsaccadic information could enable rich and continuous perception across saccades.
Collapse
Affiliation(s)
- Jasper H Fabius
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Alessio Fracasso
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - David J Acunzo
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, I-38122 Trento, Italy
| | - Stefan Van der Stigchel
- Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS, Utrecht, The Netherlands
| | - David Melcher
- Center for Mind/Brain Sciences and Department of Psychology and Cognitive Sciences, University of Trento, I-38122 Trento, Italy
- Psychology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
38
|
Grzeczkowski L, Deubel H, Szinte M. Stimulus blanking reveals contrast-dependent transsaccadic feature transfer. Sci Rep 2020; 10:18656. [PMID: 33122762 PMCID: PMC7596086 DOI: 10.1038/s41598-020-75717-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/15/2020] [Indexed: 11/20/2022] Open
Abstract
Across saccadic eye movements, the visual system receives two successive static images corresponding to the pre- and the postsaccadic projections of the visual field on the retina. The existence of a mechanism integrating the content of these images is today still a matter of debate. Here, we studied the transfer of a visual feature across saccades using a blanking paradigm. Participants moved their eyes to a peripheral grating and discriminated a change in its orientation occurring during the eye movement. The grating was either constantly on the screen or briefly blanked during and after the saccade. Moreover, it either was of the same luminance as the background (i.e., isoluminant) or anisoluminant with respect to it. We found that for anisoluminant gratings, the orientation discrimination across saccades was improved when a blank followed the onset of the eye movement. Such effect was however abolished with isoluminant gratings. Additionally, performance was also improved when an anisoluminant grating presented before the saccade was followed by an isoluminant one. These results demonstrate that a detailed representation of the presaccadic image was transferred across saccades allowing participants to perform better on the transsaccadic orientation task. While such a transfer of visual orientation across saccade is masked in real-life anisoluminant conditions, the use of a blank and of an isoluminant postsaccadic grating allowed to reveal its existence.
Collapse
Affiliation(s)
- Lukasz Grzeczkowski
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, Leopoldstrasse 13, 80802, Munich, Germany.
| | - Heiner Deubel
- Allgemeine und Experimentelle Psychologie, Ludwig-Maximilians-Universität München, Leopoldstrasse 13, 80802, Munich, Germany
| | - Martin Szinte
- Institut de Neurosciences de la Timone, UMR 7289, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
- Spinoza Centre for Neuroimaging, Royal Dutch Academy of Sciences, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Cohen MA, Rubenstein J. How much color do we see in the blink of an eye? Cognition 2020; 200:104268. [DOI: 10.1016/j.cognition.2020.104268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/10/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
40
|
Abstract
It is known that attention shifts prior to a saccade to start processing the saccade target before it lands in the foveola, the high-resolution region of the retina. Yet, once the target is foveated, microsaccades, tiny saccades maintaining the fixated object within the fovea, continue to occur. What is the link between these eye movements and attention? There is growing evidence that these eye movements are associated with covert shifts of attention in the visual periphery, when the attended stimuli are presented far from the center of gaze. Yet, microsaccades are primarily used to explore complex foveal stimuli and to optimize fine spatial vision in the foveola, suggesting that the influences of microsaccades on attention may predominantly impact vision at this scale. To address this question we tracked gaze position with high precision and briefly presented high-acuity stimuli at predefined foveal locations right before microsaccade execution. Our results show that visual discrimination changes prior to microsaccade onset. An enhancement occurs at the microsaccade target location. This modulation is highly selective and it is coupled with a drastic impairment at the opposite foveal location, just a few arcminutes away. This effect is strongest when stimuli are presented closer to the eye movement onset time. These findings reveal that the link between attention and microsaccades is deeper than previously thought, exerting its strongest effects within the foveola. As a result, during fixation, foveal vision is constantly being reshaped both in space and in time with the occurrence of microsaccades.
Collapse
|
41
|
Parietal Cortex Integrates Saccade and Object Orientation Signals to Update Grasp Plans. J Neurosci 2020; 40:4525-4535. [PMID: 32354854 DOI: 10.1523/jneurosci.0300-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 11/21/2022] Open
Abstract
Coordinated reach-to-grasp movements are often accompanied by rapid eye movements (saccades) that displace the desired object image relative to the retina. Parietal cortex compensates for this by updating reach goals relative to current gaze direction, but its role in the integration of oculomotor and visual orientation signals for updating grasp plans is unknown. Based on a recent perceptual experiment, we hypothesized that inferior parietal cortex (specifically supramarginal gyrus [SMG]) integrates saccade and visual signals to update grasp plans in additional intraparietal/superior parietal regions. To test this hypothesis in humans (7 females, 6 males), we used a functional magnetic resonance paradigm, where saccades sometimes interrupted grasp preparation toward a briefly presented object that later reappeared (with the same/different orientation) just before movement. Right SMG and several parietal grasp regions, namely, left anterior intraparietal sulcus and bilateral superior parietal lobule, met our criteria for transsaccadic orientation integration: they showed task-dependent saccade modulations and, during grasp execution, they were specifically sensitive to changes in object orientation that followed saccades. Finally, SMG showed enhanced functional connectivity with both prefrontal saccade regions (consistent with oculomotor input) and anterior intraparietal sulcus/superior parietal lobule (consistent with sensorimotor output). These results support the general role of parietal cortex for the integration of visuospatial perturbations, and provide specific cortical modules for the integration of oculomotor and visual signals for grasp updating.SIGNIFICANCE STATEMENT How does the brain simultaneously compensate for both external and internally driven changes in visual input? For example, how do we grasp an unstable object while eye movements are simultaneously changing its retinal location? Here, we used fMRI to identify a group of inferior parietal (supramarginal gyrus) and superior parietal (intraparietal and superior parietal) regions that show saccade-specific modulations during unexpected changes in object/grasp orientation, and functional connectivity with frontal cortex saccade centers. This provides a network, complementary to the reach goal updater, that integrates visuospatial updating into grasp plans, and may help to explain some of the more complex symptoms associated with parietal damage, such as constructional ataxia.
Collapse
|
42
|
Auerbach-Asch CR, Bein O, Deouell LY. Face Selective Neural Activity: Comparisons Between Fixed and Free Viewing. Brain Topogr 2020; 33:336-354. [PMID: 32236786 DOI: 10.1007/s10548-020-00764-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 03/14/2020] [Indexed: 10/24/2022]
Abstract
Event Related Potentials (ERPs) are widely used to study category-selective EEG responses to visual stimuli, such as the face-selective N170 component. Typically, this is done by flashing stimuli at the point of static gaze fixation. While allowing for good experimental control, these paradigms ignore the dynamic role of eye-movements in natural vision. Fixation-related potentials (FRPs), obtained using simultaneous EEG and eye-tracking, overcome this limitation. Various studies have used FRPs to study processes such as lexical processing, target detection and attention allocation. The goal of this study was to carefully compare face-sensitive activity time-locked to an abrupt stimulus onset at fixation, with that time-locked to a self-generated fixation on a stimulus. Twelve participants participated in three experimental conditions: Free-viewing (FRPs), Cued-viewing (FRPs) and Control (ERPs). We used a multiple regression approach to disentangle overlapping activity components. Our results show that the N170 face-effect is evident for the first fixation on a stimulus, whether it follows a self-generated saccade or stimulus appearance at fixation point. The N170 face-effect has similar topography across viewing conditions, but there were major differences within each stimulus category. We ascribe these differences to an overlap of the fixation-related lambda response and the N170. We tested the plausibility of this account using dipole simulations. Finally, the N170 exhibits category-specific adaptation in free viewing. This study establishes the comparability of the free-viewing N170 face-effect with the classic event-related effect, while highlighting the importance of accounting for eye-movement related effects.
Collapse
Affiliation(s)
- Carmel R Auerbach-Asch
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, 91904, Jerusalem, Israel.
| | - Oded Bein
- The Department of Psychology, New York University, 6 Washington Pl, New York, NY, 10003, USA
| | - Leon Y Deouell
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, 91904, Jerusalem, Israel
- The Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, 91905, Jerusalem, Israel
| |
Collapse
|
43
|
Abstract
Most people easily learn to recognize new faces and places, and with more extensive practice they can become experts at visual tasks as complex as radiological diagnosis and action video games. Such perceptual plasticity has been thoroughly studied in the context of training paradigms that require constant fixation. In contrast, when observers learn under more natural conditions, they make frequent saccadic eye movements. Here we show that such eye movements can play an important role in visual learning. Observers performed a task in which they executed a saccade while discriminating the motion of a cued visual stimulus. Additional stimuli, presented simultaneously with the cued one, permitted an assessment of the perceptual integration of information across visual space. Consistent with previous results on perisaccadic remapping [M. Szinte, D. Jonikaitis, M. Rolfs, P. Cavanagh, H. Deubel, J. Neurophysiol. 116, 1592-1602 (2016)], most observers preferentially integrated information from locations representing the presaccadic and postsaccadic retinal positions of the cue. With extensive training on the saccade task, these observers gradually acquired the ability to perform similar motion integration without making eye movements. Importantly, the newly acquired pattern of spatial integration was determined by the metrics of the saccades made during training. These results suggest that oculomotor influences on visual processing, long thought to subserve the function of perceptual stability, also play a role in visual plasticity.
Collapse
|
44
|
Chota S, McLelland D, Lavergne L, Zimmermann E, Cavanagh P, VanRullen R. Full Field Masking Causes Reversals in Perceived Event Order. Front Neurosci 2020; 14:217. [PMID: 32256310 PMCID: PMC7090228 DOI: 10.3389/fnins.2020.00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/27/2020] [Indexed: 11/25/2022] Open
Abstract
We generally experience a stable visual world in spite of regular disruptions caused by our own movements (saccades, blinks) or by the visual input itself (flashes, occlusions). In trying to understand the mechanisms responsible for this stability, saccades have been particularly well-studied, and a number of peri-saccadic perceptual distortions (spatial and temporal compression, failure to detect target displacement) have been explored. It has been shown that some of these distortions are not saccade specific, but also arise when the visual input is instead abruptly and briefly masked. Here, we demonstrate that another peri-saccadic distortion, the reversal of the temporal order of a pair of brief events, may also be found with masking. Human participants performed a temporal order judgment task, and the timing of stimuli and mask was varied over trials. Perceptual order was reversed on ~25% of the trials at the shortest stimulus to mask intervals. This was not merely a failure of target detection, since participants often reported these reversals with high subjective confidence. These findings update the constraints on models of stability around disruptions.
Collapse
Affiliation(s)
- Samson Chota
- CerCo, Université de Toulouse Paul Sabatier, CNRS, Toulouse, France
- *Correspondence: Samson Chota
| | | | - Louisa Lavergne
- Université de Paris, Laboratoire Vision Action Cognition EA7326, Paris, France
| | - Eckart Zimmermann
- Faculty of Mathematics and Natural Sciences, Institute for Experimental Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Patrick Cavanagh
- Université de Paris, Laboratoire Vision Action Cognition EA7326, Paris, France
| | - Rufin VanRullen
- CerCo, Université de Toulouse Paul Sabatier, CNRS, Toulouse, France
| |
Collapse
|
45
|
Hayhoe M, Fiehler K, Spering M, Brenner E, Gegenfurtner KR. Introduction to special issue on "Prediction in Perception and Action". J Vis 2020; 20:8. [PMID: 32097487 PMCID: PMC7343433 DOI: 10.1167/jov.20.2.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022] Open
Abstract
The wide diversity of articles in this issue reveals an explosion of evidence for the mechanisms of prediction in the visual system. When thought of as visual priors, predictive mechanisms can be seen as tightly interwoven with incoming sensory data. Prediction is thus a fundamental and essential aspect not only of visual perception but of the actions that are guided by perception.
Collapse
|
46
|
Post-Saccadic Face Processing Is Modulated by Pre-Saccadic Preview: Evidence from Fixation-Related Potentials. J Neurosci 2020; 40:2305-2313. [PMID: 32001610 DOI: 10.1523/jneurosci.0861-19.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/02/2023] Open
Abstract
Humans actively sample their environment with saccadic eye movements to bring relevant information into high-acuity foveal vision. Despite being lower in resolution, peripheral information is also available before each saccade. How the pre-saccadic extrafoveal preview of a visual object influences its post-saccadic processing is still an unanswered question. The current study investigated this question by simultaneously recording behavior and fixation-related brain potentials while human subjects made saccades to face stimuli. We manipulated the relationship between pre-saccadic "previews" and post-saccadic images to explicitly isolate the influences of the former. Subjects performed a gender discrimination task on a newly foveated face under three preview conditions: scrambled face, incongruent face (different identity from the foveated face), and congruent face (same identity). As expected, reaction times were faster after a congruent-face preview compared with a scrambled-face preview. Importantly, intact face previews (either incongruent or congruent) resulted in a massive reduction of post-saccadic neural responses. Specifically, we analyzed the classic face-selective N170 component at occipitotemporal electroencephalogram electrodes, which was still present in our experiments with active looking. However, the post-saccadic N170 was strongly attenuated following intact-face previews compared with the scrambled condition. This large and long-lasting decrease in evoked activity is consistent with a trans-saccadic mechanism of prediction that influences category-specific neural processing at the start of a new fixation. These findings constrain theories of visual stability and show that the extrafoveal preview methodology can be a useful tool to investigate its underlying mechanisms.SIGNIFICANCE STATEMENT Neural correlates of object recognition have traditionally been studied by flashing stimuli to the central visual field. This procedure differs in fundamental ways from natural vision, where viewers actively sample the environment with eye movements and also obtain a low-resolution preview of soon-to-be-fixated objects. Here we show that the N170, a classic electrophysiological marker of the structural encoding of faces, also occurs during a more natural viewing condition but is strongly reduced due to extrafoveal preprocessing (preview benefit). Our results therefore highlight the importance of peripheral vision during trans-saccadic processing in building a coherent and stable representation of the world around us.
Collapse
|
47
|
Tyson-Carr J, Soto V, Kokmotou K, Roberts H, Fallon N, Byrne A, Giesbrecht T, Stancak A. Neural underpinnings of value-guided choice during auction tasks: An eye-fixation related potentials study. Neuroimage 2020; 204:116213. [PMID: 31542511 DOI: 10.1016/j.neuroimage.2019.116213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 10/26/2022] Open
Abstract
Values are attributed to goods during free viewing of objects which entails multi- and trans-saccadic cognitive processes. Using electroencephalographic eye-fixation related potentials, the present study investigated how neural signals related to value-guided choice evolved over time when viewing household and office products during an auction task. Participants completed a Becker-DeGroot-Marschak auction task whereby half of the stimuli were presented in either a free or forced bid protocol to obtain willingness-to-pay. Stimuli were assigned to three value categories of low, medium and high value based on subjective willingness-to-pay. Eye fixations were organised into five 800 ms time-bins spanning the objects total viewing time. Independent component analysis was applied to eye-fixation related potentials. One independent component (IC) was found to represent fixations for high value products with increased activation over the left parietal region of the scalp. An IC with a spatial maximum over a fronto-central region of the scalp coded the intermediate values. Finally, one IC displaying activity that extends over the right frontal scalp region responded to intermediate- and low-value items. Each of these components responded early on during viewing an object and remained active over the entire viewing period, both during free and forced bid trials. Results suggest that the subjective value of goods are encoded using sets of brain activation patterns which are tuned to respond uniquely to either low, medium, or high values. Data indicates that the right frontal region of the brain responds to low and the left frontal region to high values. Values of goods are determined at an early point in the decision making process and carried for the duration of the decision period via trans-saccadic processes.
Collapse
Affiliation(s)
- John Tyson-Carr
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK.
| | - Vicente Soto
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile
| | - Katerina Kokmotou
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Hannah Roberts
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Nicholas Fallon
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | - Adam Byrne
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| | | | - Andrej Stancak
- Department of Psychological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
48
|
Machine Learning: From Expert Systems to Deep Learning. Cogn Sci 2019. [DOI: 10.1017/9781108339216.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
The Prehistory of Cognitive Science. Cogn Sci 2019. [DOI: 10.1017/9781108339216.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Preface. Cogn Sci 2019. [DOI: 10.1017/9781108339216.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|