1
|
Rolls ET. Hippocampal Discoveries: Spatial View Cells, Connectivity, and Computations for Memory and Navigation, in Primates Including Humans. Hippocampus 2025; 35:e23666. [PMID: 39690918 DOI: 10.1002/hipo.23666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/19/2024] [Accepted: 11/26/2024] [Indexed: 12/19/2024]
Abstract
Two key series of discoveries about the hippocampus are described. One is the discovery of hippocampal spatial view cells in primates. This discovery opens the way to a much better understanding of human episodic memory, for episodic memory prototypically involves a memory of where people or objects or rewards have been seen in locations "out there" which could never be implemented by the place cells that encode the location of a rat or mouse. Further, spatial view cells are valuable for navigation using vision and viewed landmarks, and provide for much richer, vision-based, navigation than the place to place self-motion update performed by rats and mice who live in dark underground tunnels. Spatial view cells thus offer a revolution in our understanding of the functions of the hippocampus in memory and navigation in humans and other primates with well-developed foveate vision. The second discovery describes a computational theory of the hippocampal-neocortical memory system that includes the only quantitative theory of how information is recalled from the hippocampus to the neocortex. It is shown how foundations for this research were the discovery of reward neurons for food reward, and non-reward, in the primate orbitofrontal cortex, and representations of value including of monetary value in the human orbitofrontal cortex; and the discovery of face identity and face expression cells in the primate inferior temporal visual cortex and how they represent transform-invariant information. This research illustrates how in order to understand a brain computation, a whole series of integrated interdisciplinary discoveries is needed to build a theory of the operation of each neural system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
| |
Collapse
|
2
|
Rolls ET, Zhang C, Feng J. Hippocampal storage and recall of neocortical "What"-"Where" representations. Hippocampus 2024; 34:608-624. [PMID: 39221708 DOI: 10.1002/hipo.23636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/07/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
A key question for understanding the function of the hippocampus in memory is how information is recalled from the hippocampus to the neocortex. This was investigated in a neuronal network model of the hippocampal system in which "What" and "Where" neuronal firing rate vectors were applied to separate neocortical modules, which then activated entorhinal cortex "What" and "Where" modules, then the dentate gyrus, then CA3, then CA1, then the entorhinal cortex, and then the backprojections to the neocortex. A rate model showed that the whole system could be trained to recall "Where" in the neocortex from "What" applied as a retrieval cue to the neocortex, and could in principle be trained up towards the theoretical capacity determined largely by the number of synapses onto any one neuron divided by the sparseness of the representation. The trained synaptic weights were then imported into an integrate-and-fire simulation of the same architecture, which showed that the time from presenting a retrieval cue to a neocortex module to recall the whole memory in the neocortex is approximately 100 ms. This is sufficiently fast for the backprojection synapses to be trained onto the still active neocortical neurons during storage of the episodic memory, and this is needed for recall to operate correctly to the neocortex. These simulations also showed that the long loop neocortex-hippocampus-neocortex that operates continuously in time may contribute to complete recall in the neocortex; but that this positive feedback long loop makes the whole dynamical system inherently liable to a pathological increase in neuronal activity. Important factors that contributed to stability included increased inhibition in CA3 and CA1 to keep the firing rates low; and temporal adaptation of the neuronal firing and of active synapses, which are proposed to make an important contribution to stabilizing runaway excitation in cortical circuits in the brain.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Chenfei Zhang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Rolls ET, Treves A. A theory of hippocampal function: New developments. Prog Neurobiol 2024; 238:102636. [PMID: 38834132 DOI: 10.1016/j.pneurobio.2024.102636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
We develop further here the only quantitative theory of the storage of information in the hippocampal episodic memory system and its recall back to the neocortex. The theory is upgraded to account for a revolution in understanding of spatial representations in the primate, including human, hippocampus, that go beyond the place where the individual is located, to the location being viewed in a scene. This is fundamental to much primate episodic memory and navigation: functions supported in humans by pathways that build 'where' spatial view representations by feature combinations in a ventromedial visual cortical stream, separate from those for 'what' object and face information to the inferior temporal visual cortex, and for reward information from the orbitofrontal cortex. Key new computational developments include the capacity of the CA3 attractor network for storing whole charts of space; how the correlations inherent in self-organizing continuous spatial representations impact the storage capacity; how the CA3 network can combine continuous spatial and discrete object and reward representations; the roles of the rewards that reach the hippocampus in the later consolidation into long-term memory in part via cholinergic pathways from the orbitofrontal cortex; and new ways of analysing neocortical information storage using Potts networks.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
4
|
Rolls ET. The memory systems of the human brain and generative artificial intelligence. Heliyon 2024; 10:e31965. [PMID: 38841455 PMCID: PMC11152951 DOI: 10.1016/j.heliyon.2024.e31965] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/11/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024] Open
Abstract
Generative Artificial Intelligence foundation models (for example Generative Pre-trained Transformer - GPT - models) can generate the next token given a sequence of tokens. How can this 'generative AI' be compared with the 'real' intelligence of the human brain, when for example a human generates a whole memory in response to an incomplete retrieval cue, and then generates further prospective thoughts? Here these two types of generative intelligence, artificial in machines and real in the human brain are compared, and it is shown how when whole memories are generated by hippocampal recall in response to an incomplete retrieval cue, what the human brain computes, and how it computes it, are very different from generative AI. Key differences are the use of local associative learning rules in the hippocampal memory system, and of non-local backpropagation of error learning in AI. Indeed, it is argued that the whole operation of the human brain is performed computationally very differently to what is implemented in generative AI. Moreover, it is emphasized that the primate including human hippocampal system includes computations about spatial view and where objects and people are in scenes, whereas in rodents the emphasis is on place cells and path integration by movements between places. This comparison with generative memory and processing in the human brain has interesting implications for the further development of generative AI and for neuroscience research.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai, 200403, China
| |
Collapse
|
5
|
Zhu YH, Hu P, Luo YX, Yao XQ. Knowledge mapping of trends and hotspots in the field of exercise and cognition research over the past decade. Aging Clin Exp Res 2024; 36:19. [PMID: 38308660 PMCID: PMC10838253 DOI: 10.1007/s40520-023-02661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 02/05/2024]
Abstract
Exercise elicits a wide range of physiological responses in mammalian tissues that enhance a broad range of functions, particularly in improving cognitive performance. However, the field lacks a comprehensive bibliometric analysis that clarifies its knowledge structure and research hotspots. This study aims to address this gap and map the research landscape regarding the role of exercise in cognitive function enhancement. Firstly, the frequencies and co-occurrence of keywords were analysed to identify six main clusters: aging, cognitive impairment, rehabilitation, obesity, fatigue, and hippocampus. Secondly, reference timeline co-citation analysis revealed that hippocampus and aging were the major bursts with high intensity and long attention span while children had recently emerged as a topical subject. Finally, the evolution of themes from 2012 to 2022 was analysed, and found that older adults had been the leading research theme for exercise affecting cognition. Childhood obesity was an emerging theme that attracted increasing research attention in recent years while the hippocampus research theme expanded rapidly during the decade but remained a niche topic with less relevance to others. This research identified and summarised research priorities and evolutionary trends in exercise to improve cognition by constructing knowledge networks through visual analysis. It provides researchers with a comprehensive insight into the current state of the field to facilitate further research.
Collapse
Affiliation(s)
- Ying-Hai Zhu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ya-Xi Luo
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiu-Qing Yao
- Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Municipality Clinical Research Center for Geriatric Medicine, Chongqing, China.
| |
Collapse
|
6
|
Jensen A, Karpov G, Collin CA, Davidson PSR. Executive Function Predicts Older Adults' Lure Discrimination Difficulties on the Mnemonic Similarity Task. J Gerontol B Psychol Sci Soc Sci 2023; 78:1642-1650. [PMID: 37330622 DOI: 10.1093/geronb/gbad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Indexed: 06/19/2023] Open
Abstract
OBJECTIVES Older adults often have difficulty remembering the details of recently encountered objects. We previously found this with the Mnemonic Similarity Task (MST). Surprisingly, the older adults' MST Lure Discrimination Index (LDI) was significantly correlated with visual acuity but not with memory or executive function. Here we ran a replication with new, larger samples of young (N = 45) and older adults (N = 70). We then combined the original and replication older adult samples (N = 108) to critically examine the relative contributions of visual acuity, memory, and executive function composite scores to LDI performance using dominance analysis. This provided, to our knowledge, the first direct statistical comparison of all 3 of these factors and their interactions on LDI. METHODS Participants completed the MST and a battery assessing visual acuity, memory, and executive function. We examined age group differences on MST performance in the new (i.e., replication) young and older adult samples and performed multiple regression and dominance analysis on the combined older adult sample. RESULTS Consistent with previous findings, the older adults showed significantly poorer LDI but preserved item recognition. LDI was significantly correlated with both memory and executive function but not with visual acuity. In the combined older adult sample, all 3 composites predicted LDI, but dominance analysis indicated that executive function was the most important predictor. DISCUSSION Older adults' MST LDI difficulty may be predicted by their executive function and visual acuity. These factors should be considered when interpreting older adults' MST performance.
Collapse
Affiliation(s)
- Adelaide Jensen
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | - Galit Karpov
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, USA
| | - Charles A Collin
- School of Psychology, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
7
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
8
|
Abstract
A schema refers to a structured body of prior knowledge that captures common patterns across related experiences. Schemas have been studied separately in the realms of episodic memory and spatial navigation across different species and have been grounded in theories of memory consolidation, but there has been little attempt to integrate our understanding across domains, particularly in humans. We propose that experiences during navigation with many similarly structured environments give rise to the formation of spatial schemas (for example, the expected layout of modern cities) that share properties with but are distinct from cognitive maps (for example, the memory of a modern city) and event schemas (such as expected events in a modern city) at both cognitive and neural levels. We describe earlier theoretical frameworks and empirical findings relevant to spatial schemas, along with more targeted investigations of spatial schemas in human and non-human animals. Consideration of architecture and urban analytics, including the influence of scale and regionalization, on different properties of spatial schemas may provide a powerful approach to advance our understanding of spatial schemas.
Collapse
|
9
|
Rolls ET. The hippocampus, ventromedial prefrontal cortex, and episodic and semantic memory. Prog Neurobiol 2022; 217:102334. [PMID: 35870682 DOI: 10.1016/j.pneurobio.2022.102334] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/07/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022]
Abstract
The human ventromedial prefrontal cortex (vmPFC)/anterior cingulate cortex is implicated in reward and emotion, but also in memory. It is shown how the human orbitofrontal cortex connecting with the vmPFC and anterior cingulate cortex provide a route to the hippocampus for reward and emotional value to be incorporated into episodic memory, enabling memory of where a reward was seen. It is proposed that this value component results in primarily episodic memories with some value component to be repeatedly recalled from the hippocampus so that they are more likely to become incorporated into neocortical semantic and autobiographical memories. The same orbitofrontal and anterior cingulate regions also connect in humans to the septal and basal forebrain cholinergic nuclei, thereby helping to consolidate memory, and helping to account for why damage to the vMPFC impairs memory. The human hippocampus and vmPFC thus contribute in complementary ways to forming episodic and semantic memories.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; University of Warwick, Department of Computer Science, Coventry, UK.
| |
Collapse
|
10
|
Abstract
SignificanceEpisodic memories represent the "what," "when," and "where" of specific episodes. In epilepsy patients, we detected single-unit activity reflecting episodic memory only in the hippocampus. This neural signal is sparsely coded and pattern-separated, consistent with predictions from neurocomputational models. We also detected single-unit activity reflecting a generic memory signal, coding whether an item is old or new without item-specific episodic information. Similar to concept cells, this generic repetition/novelty neural signal was found in multiple brain regions, including the hippocampus. In contrast, the item-specific signal was found only in the hippocampus. Our results indicate the coexistence of two memory signals in the human brain and suggest that the sparsely coded, hippocampus-specific signal is fundamental, whereas the often-studied generic signal is derivative.
Collapse
|
11
|
Löffler H, Gupta DS. A Model of Pattern Separation by Single Neurons. Front Comput Neurosci 2022; 16:858353. [PMID: 35573263 PMCID: PMC9103200 DOI: 10.3389/fncom.2022.858353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
For efficient processing, spatiotemporal spike patterns representing similar input must be able to transform into a less similar output. A new computational model with physiologically plausible parameters shows how the neuronal process referred to as “pattern separation” can be very well achieved by single neurons if the temporal qualities of the output patterns are considered. Spike patterns generated by a varying number of neurons firing with fixed different frequencies within a gamma range are used as input. The temporal and spatial summation of dendritic input combined with theta-oscillating excitability in the output neuron by subthreshold membrane potential oscillations (SMOs) lead to high temporal separation by different delays of output spikes of similar input patterns. A Winner Takes All (WTA) mechanism with backward inhibition suffices to transform the spatial overlap of input patterns to much less temporal overlap of the output patterns. The conversion of spatial patterns input into an output with differently delayed spikes enables high separation effects. Incomplete random connectivity spreads the times up to the first spike across a spatially expanded ensemble of output neurons. With the expansion, random connectivity becomes the spatial distribution mechanism of temporal features. Additionally, a “synfire chain” circuit is proposed to reconvert temporal differences into spatial ones.
Collapse
Affiliation(s)
- Hubert Löffler
- Independent Scholar, Bregenz, Austria
- *Correspondence: Hubert Löffler,
| | - Daya Shankar Gupta
- College of Science and Humanities, Camden County College, Husson University, Bangor, ME, United States
- Department of Biology, Camden County College, Blackwood, NJ, United States
| |
Collapse
|
12
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
13
|
Rolls ET, Deco G, Huang CC, Feng J. The Effective Connectivity of the Human Hippocampal Memory System. Cereb Cortex 2022; 32:3706-3725. [PMID: 35034120 DOI: 10.1093/cercor/bhab442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 02/04/2023] Open
Abstract
Effective connectivity measurements in the human hippocampal memory system based on the resting-state blood oxygenation-level dependent signal were made in 172 participants in the Human Connectome Project to reveal the directionality and strength of the connectivity. A ventral "what" hippocampal stream involves the temporal lobe cortex, perirhinal and parahippocampal TF cortex, and entorhinal cortex. A dorsal "where" hippocampal stream connects parietal cortex with posterior and retrosplenial cingulate cortex, and with parahippocampal TH cortex, which, in turn, project to the presubiculum, which connects to the hippocampus. A third stream involves the orbitofrontal and ventromedial-prefrontal cortex with effective connectivity with the hippocampal, entorhinal, and perirhinal cortex. There is generally stronger forward connectivity to the hippocampus than backward. Thus separate "what," "where," and "reward" streams can converge in the hippocampus, from which back projections return to the sources. However, unlike the simple dual stream hippocampal model, there is a third stream related to reward value; there is some cross-connectivity between these systems before the hippocampus is reached; and the hippocampus has some effective connectivity with earlier stages of processing than the entorhinal cortex and presubiculum. These findings complement diffusion tractography and provide a foundation for new concepts on the operation of the human hippocampal memory system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Gustavo Deco
- Department of Information and Communication Technologies, Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona 08018, Spain
- Brain and Cognition, Pompeu Fabra University, Barcelona 08018, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Universitat Pompeu Fabra, Barcelona 08010, Spain
| | - Chu-Chung Huang
- Shanghai Key Laboratory of Brain Functional Genomics (Ministry of Education), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| |
Collapse
|
14
|
Quian Quiroga R. Still challenging the pattern separation dogma: 'quiero retruco'. Trends Cogn Sci 2021; 25:923-924. [PMID: 34598878 DOI: 10.1016/j.tics.2021.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 11/25/2022]
|