1
|
Galas L, Donovan I, Dugué L. Attention Rhythmically Shapes Sensory Tuning. J Neurosci 2025; 45:e1616242024. [PMID: 39824635 PMCID: PMC11823332 DOI: 10.1523/jneurosci.1616-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 01/20/2025] Open
Abstract
Attention is key to perception and human behavior, and evidence shows that it periodically samples sensory information (<20 Hz). However, this view has been recently challenged due to methodological concerns and gaps in our understanding of the function and mechanism of rhythmic attention. Here we used an intensive ∼22 h psychophysical protocol combined with reverse correlation analyses to infer the neural representation underlying these rhythms. Participants (male/female) performed a task in which covert spatial (sustained and exploratory) attention was manipulated and then probed at various delays. Our results show that sustained and exploratory attention periodically modulate perception via different neural computations. While sustained attention suppresses distracting stimulus features at the alpha (∼12 Hz) frequency, exploratory attention increases the gain around task-relevant stimulus feature at the theta (∼6 Hz) frequency. These findings reveal that both modes of rhythmic attention differentially shape sensory tuning, expanding the current understanding of the rhythmic sampling theory of attention.
Collapse
Affiliation(s)
- Laurie Galas
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris F-75006, France
| | - Ian Donovan
- Department of Psychology and Center for Neural Science, New York University, New York, New York 10003
| | - Laura Dugué
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris F-75006, France
- Institut Universitaire de France (IUF), Paris F-75005, France
| |
Collapse
|
2
|
Haarlem CS, Mitchell KJ, Jackson AL, O'Connell RG. Individual peak alpha frequency correlates with visual temporal resolution, but only under specific task conditions. Eur J Neurosci 2024; 60:5591-5604. [PMID: 39180268 DOI: 10.1111/ejn.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
The study of alpha band oscillations in the brain is a popular topic in cognitive neuroscience. A fair amount of research in recent years has focused on the potential role these oscillations may play in the discrete sampling of continuous sensory information. In particular, the question of whether or not peak frequency in the alpha band is linked with the temporal resolution of visual perception is a topic of ongoing debate. Some studies have reported a correlation between the two, whereas others were unable to observe a link. It is unclear whether these conflicting findings are due to differing methodologies and/or low statistical power, or due to the absence of a true relationship. Replication studies are needed to gain better insight into this matter. In the current study, we replicated an experiment published in a 2015 paper by Samaha and Postle. Additionally, we expanded on this study by adding an extra behavioural task, the critical flicker fusion task, to investigate if any links with peak alpha frequency are generalizable across multiple measures for visual temporal resolution. We succeeded in replicating some, but not all of Samaha and Postle's findings. Our partial replication suggests that there may be a link between visual temporal resolution and peak alpha frequency. However, this relationship may be very small and only apparent for specific stimulus parameters. The correlations found in our study did not generalize to other behavioural measures for visual temporal resolution.
Collapse
Affiliation(s)
- Clinton S Haarlem
- Department of Zoology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Kevin J Mitchell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Redmond G O'Connell
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
Johannknecht M, Schnitzler A, Lange J. Prestimulus Alpha Phase Modulates Visual Temporal Integration. eNeuro 2024; 11:ENEURO.0471-23.2024. [PMID: 39134415 PMCID: PMC11397504 DOI: 10.1523/eneuro.0471-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 09/14/2024] Open
Abstract
When presented shortly after another, discrete pictures are naturally perceived as continuous. The neuronal mechanism underlying such continuous or discrete perception is not well understood. While continuous alpha oscillations are a candidate for orchestrating such neuronal mechanisms, recent evidence is mixed. In this study, we investigated the influence of prestimulus alpha oscillation on visual temporal perception. Specifically, we were interested in whether prestimulus alpha phase modulates neuronal and perceptual processes underlying discrete or continuous perception. Participants had to report the location of a missing object in a visual temporal integration task, while simultaneously MEG data were recorded. Using source reconstruction, we evaluated local phase effects by contrasting phase angle values between correctly and incorrectly integrated trials. Our results show a phase opposition cluster between -0.8 and -0.5 s (relative to stimulus presentation) and between 6 and 20 Hz. These momentary phase angle values were correlated with behavioral performance and event-related potential amplitude. There was no evidence that frequency defined a window of temporal integration.
Collapse
Affiliation(s)
- Michelle Johannknecht
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Joachim Lange
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| |
Collapse
|
4
|
Williams JG, Harrison WJ, Beale HA, Mattingley JB, Harris AM. Effects of neural oscillation power and phase on discrimination performance in a visual tilt illusion. Curr Biol 2024; 34:1801-1809.e4. [PMID: 38569544 DOI: 10.1016/j.cub.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/25/2024] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Neural oscillations reflect fluctuations in the relative excitation/inhibition of neural systems1,2,3,4,5 and are theorized to play a critical role in canonical neural computations6,7,8,9 and cognitive processes.10,11,12,13,14 These theories have been supported by findings that detection of visual stimuli fluctuates with the phase of oscillations prior to stimulus onset.15,16,17,18,19,20,21,22,23 However, null results have emerged in studies seeking to demonstrate these effects in visual discrimination tasks,24,25,26,27 raising questions about the generalizability of these phenomena to wider neural processes. Recently, we suggested that methodological limitations may mask effects of phase in higher-level sensory processing.28 To test the generality of phasic influences on perception requires a task that involves stimulus discrimination while also depending on early sensory processing. Here, we examined the influence of oscillation phase on the visual tilt illusion, in which a center grating has its perceived orientation biased away from the orientation of a surround grating29 due to lateral inhibitory interactions in early visual processing.30,31,32 We presented center gratings at participants' subjective vertical angle and had participants report whether the grating appeared tilted clockwise or counterclockwise from vertical on each trial while measuring their brain activity with electroencephalography (EEG). In addition to effects of alpha power and aperiodic slope, we observed robust associations between orientation perception and alpha and theta phase, consistent with fluctuating illusion magnitude across the oscillatory cycle. These results confirm that oscillation phase affects the complex processing involved in stimulus discrimination, consistent with its purported role in canonical computations that underpin cognition.
Collapse
Affiliation(s)
- Jessica G Williams
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia
| | - William J Harrison
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; School of Health, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, QLD 4556, Australia
| | - Henry A Beale
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia
| | - Jason B Mattingley
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia; School of Psychology, The University of Queensland, McElwain Building, Campbell Road, St Lucia, Brisbane, QLD 4072, Australia; Canadian Institute for Advanced Research (CIFAR), MaRS Centre, West Tower, 661 University Ave., Suite 505, Toronto, ON M5G 1M1, Canada
| | - Anthony M Harris
- Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, St Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
5
|
Kawashima T, Nakayama R, Amano K. Theoretical and Technical Issues Concerning the Measurement of Alpha Frequency and the Application of Signal Detection Theory: Comment on Buergers and Noppeney (2022). J Cogn Neurosci 2024; 36:691-699. [PMID: 37255466 DOI: 10.1162/jocn_a_02010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Classical and recent evidence has suggested that alpha oscillations play a critical role in temporally discriminating or binding successively presented items. Challenging this view, Buergers and Noppeney [Buergers, S., & Noppeney, U. The role of alpha oscillations in temporal binding within and across the senses. Nature Human Behaviour, 6, 732-742, 2022] found that by combining EEG, psychophysics, and signal detection theory, neither prestimulus nor resting-state alpha frequency influences perceptual sensitivity and bias in the temporal binding task. We propose the following four points that should be considered when interpreting the role of alpha oscillations, and especially their frequency, on perceptual temporal binding: (1) Multiple alpha components can be contaminated in conventional EEG analysis; (2) the effect of alpha frequency on perception will interact with alpha power; (3) prestimulus and resting-state alpha frequency can be different from poststimulus alpha frequency, which is the frequency during temporal binding and should be more directly related to temporal binding; and (4) when applying signal detection theory under the assumption of equal variance, the assumption is often incomplete and can be problematic (e.g., the magnitude relationships between individuals in parametric sensitivity may change when converted into nonparametric sensitivity). Future directions, including solutions to each of the issues, are discussed.
Collapse
|