1
|
Yang H, Lin J, Han X, Bi J, Dong L, Sun J, Shen C, Xu Y. Functional Characterization of Different Fructilactobacillus sanfranciscensis Strains Isolated from Chinese Traditional Sourdoughs. Foods 2024; 13:2670. [PMID: 39272435 PMCID: PMC11393972 DOI: 10.3390/foods13172670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Fructilactobacillus sanfranciscensis, the dominant species of lactic acid bacteria in sourdoughs, impacts the microstructure and flavor of steamed bread through exopolysaccharide production, acidification, proteolysis, and volatile compound generation. The aim of this study is to investigate the phenotypic diversity and technological traits of 28 F. sanfranciscensis strains of different genotypes isolated from Chinese traditional sourdoughs. The results showed that F. sanfranciscensis strains exhibited substantial variation in proteinase and peptidase activities and the amount of acidification and volatiles in fermented sourdoughs. However, we observed no significant differences in exopolysaccharide production among the strains. The strains Sx14 and Ts1 were further chosen for transcriptomics to gain a deep insight into their intraspecies diversity in sourdough fermentation. Significant transcriptome differentiations between these two strains after 12 h fermentation in sourdoughs were revealed. According to the results, the strain Sx14 possessed higher dipeptidase and aminopeptidase activities, galactose utilization, and lactic and acetic acid production abilities, whereas Ts1 showed higher transmembrane transport of substrates and fructose utilization.
Collapse
Affiliation(s)
- Huanyi Yang
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Jiaqi Lin
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Xueyuan Han
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Juguo Bi
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Lijia Dong
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Jianqiu Sun
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Chi Shen
- School of Life and Environmental Science, Shaoxing University, Shaoxing 312000, China
| | - Ying Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
2
|
Hernández-Figueroa RH, Mani-López E, Ramírez-Corona N, López-Malo A. Optimizing Lactic Acid Bacteria Proportions in Sourdough to Enhance Antifungal Activity and Quality of Partially and Fully Baked Bread. Foods 2024; 13:2318. [PMID: 39123510 PMCID: PMC11311496 DOI: 10.3390/foods13152318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The organic acids produced by lactic acid bacteria (LAB) during the fermentation of sourdoughs have the ability to reduce the growth of different molds. However, this ability depends on the LAB used. For this reason, in this study, the proportions of different LAB were optimized to obtain aqueous extracts (AEs) from sourdough to reduce fungal growth in vitro, control the acetic acid concentration, and obtain a specific lactic to acetic acid ratio. In addition, the optimized mixtures were used to formulate partially baked bread (PBB) and evaluate the mold growth and bread quality during refrigerated storage. Using a simplex-lattice mixture design, various combinations of Lactiplantibacillus plantarum, Lacticaseibacillus casei, and Lactobacillus acidophilus were evaluated for their ability to produce organic acids and inhibit mold growth. The mixture containing only Lpb. plantarum significantly reduced the growth rates and extended the lag time of Penicillium chrysogenum and P. corylophilum compared with the control. The AEs' pH values ranged from 3.50 to 3.04. Organic acid analysis revealed that using Lpb. plantarum yielded higher acetic acid concentrations than when using mixed LAB. This suggests that LAB-specific interactions significantly influence organic acid production during fermentation. The reduced radial growth rates and extended lag times for both molds compared to the control confirmed the antifungal properties of the AEs from the sourdoughs. Statistical analyses of the mixture design using polynomial models demonstrated a good fit for the analyzed responses. Two optimized LAB mixtures were identified that maximized mold lag time, targeted the desired acetic acid concentration, and balanced the lactic to acetic acid ratio. The addition of sourdough with optimized LAB mixtures to PBB resulted in a longer shelf life (21 days) and adequately maintained product quality characteristics during storage. PBB was subjected to complete baking and sensory evaluation. The overall acceptability was slightly higher in the control without sourdough (7.50), followed by bread formulated with the optimized sourdoughs (ranging from 6.78 to 7.10), but the difference was not statistically significant (p > 0.05). The sensory analysis results indicated that the optimization was used to successfully formulate a sourdough bread with a sensory profile closely resembling that of a nonsupplemented one. The designed LAB mixtures can effectively enhance sourdough bread's antifungal properties and quality, providing a promising approach for extending bread shelf life while maintaining desirable sensory attributes.
Collapse
Affiliation(s)
| | | | | | - Aurelio López-Malo
- Departamento de Ingeniería Química, Alimentos y Ambiental, Universidad de las Américas Puebla, San Andrés Cholula 72810, Mexico; (R.H.H.-F.); (E.M.-L.); (N.R.-C.)
| |
Collapse
|
3
|
Sabater C, Sáez GD, Suárez N, Garro MS, Margolles A, Zárate G. Fermentation with Lactic Acid Bacteria for Bean Flour Improvement: Experimental Study and Molecular Modeling as Complementary Tools. Foods 2024; 13:2105. [PMID: 38998611 PMCID: PMC11241767 DOI: 10.3390/foods13132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Pulses are considered superfoods for the future world due to their properties, but they require processing to reduce antinutritional factors (ANFs) and increase bioactivity. In this study, bean flour (Phaseolus vulgaris L.) was fermented under different conditions (addition of Lactiplantibacillus plantarum CRL 2211 and/or Weissella paramesenteroides CRL 2182, temperature, time and dough yield) to improve its nutri-functional quality. Fermentation for 24 h at 37 °C with the mixed starter increased the lactic acid bacteria (LAB) population, acidity, polyphenol content (TPC) and ANF removal more than spontaneous fermentation. Statistical and rep-PCR analysis showed that fermentation was mainly conducted by Lp. plantarum CRL 2211. Metabolic modeling revealed potential cross-feeding between Lp. plantarum and W. paramesenteroides, while the molecular docking and dynamic simulation of LAB tannases and proteinases involved in ANF removal revealed their chemical affinity to gallocatechin and trypsin inhibitors. Fermentation was better than soaking, germination and cooking for enhancing bean flour properties: it increased the free amino acids content by 50% by releasing glutamine, glutamic acid, arginine, leucine and lysine and modified TPC by increasing gallic acid and decreasing caffeic, ferulic and vanillic acids and quercetin-3-glucoside. The combination of experimental and simulation data may help us to understand fermentation processes and to design products with desirable features.
Collapse
Affiliation(s)
- Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA), Spanish National Research Council (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Gabriel D Sáez
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
- Department of Food Microbiology, University of San Pablo Tucumán, Av. Solano Vera y Camino a Villa Nougués, San Pablo 4129, Tucumán, Argentina
| | - Nadia Suárez
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Marisa S Garro
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Dairy Research Institute of Asturias (IPLA), Spanish National Research Council (CSIC), Paseo Río Linares S/N, 33300 Villaviciosa, Asturias, Spain
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Asturias, Spain
| | - Gabriela Zárate
- Laboratory of Technological Ecophysiology, Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina
- Department of Food Microbiology, University of San Pablo Tucumán, Av. Solano Vera y Camino a Villa Nougués, San Pablo 4129, Tucumán, Argentina
| |
Collapse
|
4
|
Santos JG, de Souza EL, de Souza Couto MV, Rodrigues TZ, de Medeiros ARS, de Magalhães Cordeiro AMT, Lima MDS, de Oliveira MEG, da Costa Lima M, de Araújo NPR, Gonçalves ICD, Garcia EF. Exploring the Effects of Freeze-Dried Sourdoughs with Lactiplantibacillus pentosus 129 and Limosilactobacillus fermentum 139 on the Quality of Long-Fermentation Bread. Microorganisms 2024; 12:1199. [PMID: 38930581 PMCID: PMC11205311 DOI: 10.3390/microorganisms12061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Sourdough production is a complex fermentation process. Natural sourdough fermentation without standardization causes great variability in microbial communities and derived products. Starter cultures have emerged as alternatives to natural fermentation processes, which could improve bakery quality and produce bioactive compounds. This study aimed to evaluate the impacts of freeze-drying on the production and viability of sourdoughs with Lactiplantibacillus pentosus 129 (Lp) and Limosilactobacillus fermentum 139 (Lf), as well as their effects on the quality of long-fermentation bread. These strains were selected based on their better performance considering acidification and exopolysaccharide production capacity. Sourdough with Lp and Lf were propagated until the 10th day, when physicochemical and microbiological parameters were determined. The produced sourdoughs were freeze-dried, and bread samples were produced. The freeze-drying process resulted in high survival rates and few impacts on the metabolic activity of Lp and Lf until 60 days of storage. Incorporating Lp and Lf improved the microbiological and physicochemical properties of sourdough and long-fermentation breads. Tested freeze-dried sourdoughs led to reduced bread aging (higher specific volume and decreased starch retrogradation) and increased digestibility. The results show the potential of the freeze-dried sourdoughs produced with Lp and Lf as innovative strategies for standardizing production protocols for the bakery industry, especially for producing long-term fermentation bread.
Collapse
Affiliation(s)
- Joanderson Gama Santos
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | - Evandro Leite de Souza
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Marcus Vinícius de Souza Couto
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Tatiana Zanella Rodrigues
- Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.V.d.S.C.); (T.Z.R.)
| | - Ana Regina Simplício de Medeiros
- Graduate Program in Agro-Food Technology, Federal University of Paraíba, Bananeiras 58220-000, PB, Brazil; (J.G.S.); (A.R.S.d.M.)
| | | | - Marcos dos Santos Lima
- Department of Food Technology, Federal Institute of Sertão de Pernambuco, Petrolina 56302-100, PE, Brazil;
| | | | - Maiara da Costa Lima
- Laboratory of Food Microbiology, Department of Nutrition, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | | | | | - Estefânia Fernandes Garcia
- Department of Gastronomy, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (N.P.R.d.A.); (I.C.D.G.); (E.F.G.)
| |
Collapse
|
5
|
Dong Y, Ronholm J, Fliss I, Karboune S. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10270-y. [PMID: 38733464 DOI: 10.1007/s12602-024-10270-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2024] [Indexed: 05/13/2024]
Abstract
Twenty-eight strains of lactic acid bacteria (LAB) were characterized for the ability to express enzymes of interest (including protease, xylanase, α-amylase, laccase, and glucose oxidase) as well as the ability to produce exopolysaccharide (EPS). The screening of enzyme capability for all LAB strains proceeded in a progressive 3-stage manner that helps to profile the efficiency of LAB strains in expressing chosen enzymes (Stage 1), highlights the strains with affinity for flour as the substrate (Stage 2), and discerns strains that can adapt well in a simulated starter environment (Stage 3). The theoretical ability of LAB to express these enzymes was also assessed using Basic Local Alignment Search Tool (BLAST) analysis to identify the underlying genes in the whole genome sequence. By consolidating both experimental data and information obtained from BLAST, three LAB strains were deemed optimal in expressing enzymes, namely, Lb. delbrueckii subsp. bulgaricus (RBL 52), Lb. rhamnosus (RBL 102), and Lb. plantarum (ATCC 10241). Meanwhile, EPS-producing capabilities were observed for 10 out of 28 LAB strains, among which, Lactococcus lactis subsp. diacetylactis (RBL 37) had the highest total EPS yield (274.15 mg polysaccharide/L culture) and produced 46.2% polysaccharide with a molecular mass of more than 100 kDa.
Collapse
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Ismail Fliss
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, QC, Canada.
| |
Collapse
|
6
|
Limbad M, Gutierrez Maddox N, Hamid N, Kantono K, Higgins C. Identification of the Microbiota in Coconut Water, Kefir, Coconut Water Kefir and Coconut Water Kefir-Fermented Sourdough Using Culture-Dependent Techniques and Illumina-MiSeq Sequencing. Microorganisms 2024; 12:919. [PMID: 38792748 PMCID: PMC11124093 DOI: 10.3390/microorganisms12050919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
The principal objective of this study was to isolate and identify the microorganisms present in commercial kefir grains, a novel kefir-fermented coconut water (CWK) and a novel coconut water kefir-fermented sourdough using phenotypic identification and Sanger sequencing and examine the microbial diversity of CWK and CWK-fermented sourdough throughout the fermentation process using the MiSeq Illumina sequencing method. The phenotypic characterisation based on morphology identified ten isolates of LAB, five AAB and seven yeasts from kefir (K), CWK and CWK-fermented sourdough (CWKS). The results confirm the presence of the LAB species Limosilactobacillus fermentum, Lactobacillus. plantarum, L. fusant, L. reuteri and L. kunkeei; the AAB species Acetobacter aceti, A. lovaniensis and A. pasteurianus; and the yeast species Candida kefyr, Rhodotorula mucilaginosa, Saccharomyces cerevisiae, C. guilliermondii and C. colliculosa. To the best of our knowledge, the identification of Rhodotorula from kefir is being reported for the first time. This study provides important insights into the relative abundances of the microorganisms in CWKS. A decrease in pH and an increase in the titratable acidity for CWK- and CWK-fermented sourdough corresponded to the increase in D- and L-lactic acid production after 96 h of fermentation. Significant reductions in the pHs of CWK and CWKS were observed between 48 and 96 h of fermentation, indicating that the kefir microorganisms were able to sustain highly acidic environments. There was also increased production of L-lactic acid with fermentation, which was almost twice that of D-lactic acid in CWK.
Collapse
Affiliation(s)
- Mansi Limbad
- Department of Food Science, Auckland University of Technology, Private Bag 92006, Auckland 1142, New Zealand; (N.G.M.); (N.H.); (K.K.); (C.H.)
| | | | | | | | | |
Collapse
|
7
|
Pradal I, González-Alonso V, Wardhana YR, Cnockaert M, Wieme AD, Vandamme P, De Vuyst L. Various cold storage-backslopping cycles show the robustness of Limosilactobacillus fermentum IMDO 130101 as starter culture for Type 3 sourdough production. Int J Food Microbiol 2024; 411:110522. [PMID: 38160537 DOI: 10.1016/j.ijfoodmicro.2023.110522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 01/03/2024]
Abstract
Type 3 sourdoughs, which are starter culture-initiated and subsequently backslopped, are less studied than other sourdough types. Yet, they can serve as a model to assess how competitive starter culture strains for sourdough production are and how the microbial composition of such sourdoughs may evolve over time. In the present study, Limosilactobacillus fermentum IMDO 130101 was used to produce Type 3 sourdoughs, prepared from wheat and wholemeal wheat flours. Therefore, an initial fermentation of the flour-water mixture was performed at 30 °C for 48 h. This was followed by cold storage-backslopping cycles, consisting of refreshments (50 %, v/v), fermentation steps of 16 h, and storage at 4 °C each week, every three weeks, and every six weeks. The microbial dynamics (culture-dependent and -independent approaches) and metabolite dynamics were measured. In all sourdoughs produced, starter culture strain monitoring, following an amplicon sequence variant approach, showed that Liml. fermentum IMDO 130101 prevailed during one month when the sourdoughs were refreshed each week, during 24 weeks when the sourdoughs were refreshed every three weeks, and during 12 weeks when the sourdoughs were refreshed every six weeks. This suggested the competitiveness and robustness of Liml. fermentum IMDO 130101 for a considerable duration but also showed that the strain is prone to microbial interference. For instance, Levilactobacillus brevis and Pediococcus spp. prevailed upon further cold storage and backslopping. Also, although no yeasts were inoculated into the flour-water mixtures, Kazachstania unispora, Torulaspora delbrueckii, and Wickerhamomyces anomalus were the main yeast species found. They appeared after several weeks of storage and backslopping, which however indicated the importance of an interplay between LAB and yeast species in sourdoughs. The main differences among the mature sourdoughs obtained could be explained by the different flours used, the refreshment conditions applied, and the sampling time (before and after backslopping). Finally, the metabolite quantifications revealed continued metabolite production during the cold storage periods, which may impact the sourdough properties and those of the breads made thereof.
Collapse
Affiliation(s)
- Inés Pradal
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Víctor González-Alonso
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Yohanes Raditya Wardhana
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | - Anneleen D Wieme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium; BCCM/LMG Bacteria Collection, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
8
|
Iztayev A, Kulazhanov T, Iskakova G, Alimardanova M, Zhienbaeva S, Iztayev B, Tursunbayeva S, Yakiyayeva M. The innovative technology of dough preparation for bread by the accelerated ion-ozone cavitation method. Sci Rep 2023; 13:17937. [PMID: 37863943 PMCID: PMC10589250 DOI: 10.1038/s41598-023-44820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/12/2023] [Indexed: 10/22/2023] Open
Abstract
Due to the fact that bakery, pasta and flour confectionery products are produced mainly from premium or first-grade flour, which is poor in the content of nutrients and fiber, the issue of developing technology for new types of flour products based on whole-ground flour of different fineness is very relevant and in demand. In the production of wholemeal flour, all parts of the whole grain are used-germ, grain shells, and endosperm. Also, recently the shortage of quality wheat has been growing. Therefore, the use of whole-milled flour from low-class wheat varieties will solve the problem of meeting the needs of the population. Using ion-ozone technology for preparing bread, high-quality bakery products from third-class flour with high nutritional and biological value were obtained. Using the obtained system of equations and constraints, the optimal modes of ion-ozone cavitation processing of dough were determined by a nonlinear programming method, which, subject to all the constraints (limitations) on the dough quality, provided the maximum dough strength of y2 = 181.0% and the dough parameter values of C × 10-4 = 25 units/mg, P = 1 atm, and τ = 5 min, which, in compliance with all constraints (restrictions) on the bread quality, provided a maximum volume of z11 = 232.1 cm3. A new innovative technology was created to increase productivity, efficiency and shorten the preparation time of bread. The method of making bread with the effect of ion-ozone cavitation of dough is very important for the bread industry, which affects the effectiveness of whole wheat flour obtained from the lower class of wheat, increases the quality of bread, shortens the technological processes of production, and increases labor productivity indicators. This method increases the economic efficiency of bread-making industries and the productivity of bread.
Collapse
Affiliation(s)
- Auyelbek Iztayev
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | - Talgat Kulazhanov
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | - Galiya Iskakova
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | - Mariam Alimardanova
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | - Saule Zhienbaeva
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | - Baurzhan Iztayev
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan
| | | | - Madina Yakiyayeva
- Almaty Technological University, 100 Tole bi Str., 050012, Almaty, Kazakhstan.
| |
Collapse
|
9
|
Calasso M, Marzano M, Caponio GR, Celano G, Fosso B, Calabrese FM, De Palma D, Vacca M, Notario E, Pesole G, De Angelis M, De Leo F. Shelf-life extension of leavened bakery products by using bio-protective cultures and type-III sourdough. Lebensm Wiss Technol 2023; 177:114587. [DOI: 10.1016/j.lwt.2023.114587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
10
|
Naji-Tabasi S, Shahidi-Noghabi M, Davtalab M. Optimization of fermentation conditions in Barbari bread based on mixed whole flour (barley and sprouted wheat) and sourdough. FOOD SCI TECHNOL INT 2023; 29:126-137. [PMID: 34913387 DOI: 10.1177/10820132211063972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to use a mixture of whole wheat-barley flour mixture in the preparation of traditional Iranian bread (Barbari) in the optimum condition of fermentation to benefit from all available nutrients. In this study, bread parameters such as specific volume, porosity, textural characteristics, zinc, iron, phytic acid and organoleptic properties were investigated. In this research, different percentages of sourdough (15-30%) and fermentation time (30 - 120 min) were applied. Results showed that the phytic acid content significantly decreased (p < 0.05) (0.23 - 0.14) by increasing sourdough and fermentation time, which result in increasing in zinc (17.49 - 22.89%) and iron (36.44 - 45.32%) content. Both the sourdough content and fermentation time parameters had a significant effect (p < 0.05) on the better porosity (9.05 - 13.50%) and overall acceptability of bread (2.15 - 3.85). The hardness, gumminess, chewiness, porosity, phytic acid and overall acceptance parameters were used to optimize the fermentation conditions of Barbari bread by response surface methodology using a central composite design. Optimal conditions for the production of Barbari bread were 29.53% sourdough and 120 min fermentation time. Under optimal conditions, the overall acceptance, hardness, porosity, chewability, gumminess and phytic acid were 3.84, 60.81 N, 14.09%, 302.01 N/mm, 41.37 N and 0.15%, respectively.
Collapse
Affiliation(s)
- Sara Naji-Tabasi
- Department of Food Nanotechnology, 243342Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Mostafa Shahidi-Noghabi
- Department of Food Chemistry, 243342Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| | - Maryam Davtalab
- Department of Food Nanotechnology, 243342Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
11
|
Mishra BK, Das S, Nandy SK, Patel M, Hati S. Genomic and probiotic attributes of Lactobacillus strains from rice-based fermented foods of North Eastern India. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:504-516. [PMID: 36712227 PMCID: PMC9873898 DOI: 10.1007/s13197-022-05633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/08/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022]
Abstract
The probiotic attributes and genomic profiles of amylase-producing Lactobacillus strains from rice-based fermented foods of Meghalaya in the North-Eastern India were evaluated in the study. A preliminary screening of 17 lactic acid bacteria strains was performed based on their starch hydrolysis and glucoamylase activities. Out of 17 strains, 5 strains (L. fermentum KGL4, L. rhamnosus RNS4, L. fermentum WTS4, L. fermentum KGL2, and L. rhamnosus KGL3A) were selected for further characterization of different probiotic attributes. Whole-genome sequencing of two of the best strains was carried out using a shotgun sequencing platform based on their rich probiotic attributes. The EPS production was in the range of 2.89-3.92 mg/mL. KGL2 (41.5%) and KGL3A (41%) showed the highest antioxidant activity. The highest antibiotic susceptibility was exhibited by all the five Lactobacillus strains against ampicillin, ranging from 24.66 to 27.33 mm. The lactobacilli isolates used in the study could survive the simulated gastric/intestinal juices. Genomic characterization of KGL4 and KGL3A illustrated their possible adherence to the intestinal wall, specialized metabolic patterns, and possible role in boosting host immunity. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05633-8.
Collapse
Affiliation(s)
- Birendra K. Mishra
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya 794002 India
| | - Sujit Das
- Department of Rural Development and Agricultural Production, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya 794002 India
- Biotechnology Industry Research Assistance Council, New Delhi, Delhi 110003 India
| | - Suman K. Nandy
- BIRAC BioNEST Bioincubator (B3I) Facility, North-Eastern Hill University, Tura Campus, Chasingre, Meghalaya 794002 India
| | - Maulik Patel
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat 388110 India
| | - Subrota Hati
- Dairy Microbiology Department, SMC College of Dairy Science, Kamdhenu University, Anand, Gujarat 388110 India
| |
Collapse
|
12
|
Probiotics in the Sourdough Bread Fermentation: Current Status. FERMENTATION 2023. [DOI: 10.3390/fermentation9020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sourdough fermentation is an ancient technique to ferment cereal flour that improves bread quality, bringing nutritional and health benefits. The fermented dough has a complex microbiome composed mainly of lactic acid bacteria and yeasts. During fermentation, the production of metabolites and chemical reactions occur, giving the product unique characteristics and a high sensory quality. Mastery of fermentation allows adjustment of gluten levels, delaying starch digestibility, and increasing the bio-accessibility of vitamins and minerals. This review focuses on the main steps of sourdough fermentation, the microorganisms involved, and advances in bread production with functional properties. The impact of probiotics on human health, the metabolites produced, and the main microbial enzymes used in the bakery industry are also discussed.
Collapse
|
13
|
Fang L, Wang W, Dou Z, Chen J, Meng Y, Cai L, Li Y. Effects of mixed fermentation of different lactic acid bacteria and yeast on phytic acid degradation and flavor compounds in sourdough. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Wang X, Huangfu X, Zhao M, Zhao R. Chinese traditional sourdough steamed bread made by retarded sponge-dough method: Microbial dynamics, metabolites changes and bread quality during continuous propagation. Food Res Int 2023; 163:112145. [PMID: 36596098 DOI: 10.1016/j.foodres.2022.112145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Continuous propagation of Chinese traditional sourdough (CTS) was adopted to simulate the industrial production of sourdough steamed bread made by retarded sponge-dough method (SSB). Establishment of a stable microbial ecosystem occurred in mature sourdough within four days of continuous propagation, as revealed by both microbial and metabolic analyses. Lactobacillus sanfranciscensis and Kazachstania humilis were the predominant bacterial and fungal species in mature sourdoughs. Their relative abundances changed significantly from the first to third day of continuous propagation while exhibited relatively constant from the fourth day onwards despite the use of flour/water for each back-slopping step. Major changes in the metabolites and fermentative characteristics were observed during the initial three days and dough samples showed little temporal metabolic and fermentative variations from the fourth days onwards. Consequently, volumetric and textural properties as well as the volatile flavor compounds of SSB displayed rather high stability from the fourth day onwards.
Collapse
Affiliation(s)
- Xiangyu Wang
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Xinyan Huangfu
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Mengyuan Zhao
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Lianhua Street, Hi-tech Development Zone, Zhengzhou, Henan Province 450001, China.
| |
Collapse
|
15
|
Lopez CM, Rocchetti G, Fontana A, Lucini L, Rebecchi A. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker’s yeast. Food Res Int 2022; 162:112023. [DOI: 10.1016/j.foodres.2022.112023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/28/2022] [Accepted: 10/01/2022] [Indexed: 11/04/2022]
|
16
|
Ritter SW, Gastl MI, Becker TM. The modification of volatile and nonvolatile compounds in lupines and faba beans by substrate modulation and lactic acid fermentation to facilitate their use for legume-based beverages-A review. Compr Rev Food Sci Food Saf 2022; 21:4018-4055. [PMID: 35876639 DOI: 10.1111/1541-4337.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/01/2022] [Accepted: 06/15/2022] [Indexed: 01/28/2023]
Abstract
Lupines and faba beans are promising ingredients for the beverage industry. They contain high amounts of protein and can be grown in different climate zones and agricultural areas. Therefore, these legumes appear as ideal raw material for vegan, functional, and sustainable beverages. Nevertheless, the sensory characteristic of legumes is generally not accepted in beverages. Therefore, the market contribution of legume-based beverages is currently only marginal. This review highlights known major flavor aspects of lupines and faba beans and the possibilities to improve these by germination, heat treatment, enzymatic treatment, and subsequent lactic acid fermentation. First, the main aroma and taste compounds are described. Thereby, the "beany" aroma is identified as the most relevant off-flavor. Second, the nutrients and antinutrients of these legumes regarding to their use as food and as substrate for lactic acid fermentation are reviewed, and possibilities to modulate the substrate are summarized. Finally, the modification of the sensory profile by lactic acid fermentation is outlined. To conclude, it seems likely that the nutritional and flavor attributes in legume-based beverages can be improved by a combined process of substrate modulation and fermentation. In a first step, antinutrients should be decomposed and proteins solubilized while transforming the solid grains into a liquid substrate. Due to such substrate modulation, a broader variety of strains could be employed and the fermentation could be based exclusively on their impact on the flavor. By applying the concept of combining a substrate modulation with a subsequent fermentation, the use of legumes in beverages could be facilitated and new products like vegan, protein-rich, refreshing beverages could be marketed.
Collapse
Affiliation(s)
- Stefan W Ritter
- Technical University of Munich, Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology, Freising, Germany
| | - Martina I Gastl
- Technical University of Munich, Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology, Freising, Germany
| | - Thomas M Becker
- Technical University of Munich, Institute of Brewing and Beverage Technology, Research Group Raw Material Based Brewing and Beverage Technology, Freising, Germany
| |
Collapse
|
17
|
Relationship between Microbial Composition of Sourdough and Texture, Volatile Compounds of Chinese Steamed Bread. Foods 2022; 11:foods11131908. [PMID: 35804724 PMCID: PMC9265662 DOI: 10.3390/foods11131908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/09/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023] Open
Abstract
The objective of this work was to explore the relationship between the microbial communities of sourdoughs collected from the Xinjiang and Gansu areas of China and the quality of steamed bread. Compared to yeast-based steamed bread, sourdough-based steamed bread is superior in terms of its hardness, adhesiveness, flexibility, and chewiness. It is rich in flavor compounds, but a significant difference in volatile flavor substances was observed between the two sourdoughs. A total of 19 strains of lactic acid bacteria (LAB) were isolated from the Gansu sourdough sample, in which Lactiplantibacillus plantarum and Pediococcus pentosaceus were the dominant species, accounting for 42.11% and 36.84%, respectively. A total of 16 strains of LAB were isolated from the Xinjiang sourdough sample, in which Lactiplantibacillus plantarum was the dominant species, accounting for 75%. High-throughput sequencing further confirmed these results. Clearly, the species diversity of Gansu sourdough was higher. The volatile profiles of the sourdoughs were similar, but differences in the individual volatile compounds were detected between the sourdoughs of the Gansu and Xinjiang regions. These results point out that the differences in the microbiota and the dominant strains lead to differences in the quality of sourdoughs from region to region. This investigation offers promising guidance on improving the quality of traditional steamed bread by adjusting the microorganisms in sourdough.
Collapse
|
18
|
Gómez M. Gluten-free bakery products: Ingredients and processes. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 99:189-238. [PMID: 35595394 DOI: 10.1016/bs.afnr.2021.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is an increasing demand for gluten-free products around the world because certain groups of people, which have increased in the last decades, need to eliminate gluten from their diet. A growing number of people consider gluten-free products to be healthier. However, making gluten-free products such as bread is a technological challenge due to the important role of the gluten network in their development. However, other products, such as cakes and cookies usually made with wheat flour, can easily be made with gluten-free starches or flours since gluten does not play an essential role in their production. To replace wheat flour in these elaborations it is necessary to resort to gluten-free starches and/or flours and to gluten substitutes. Additionally, it can be convenient to incorporate other ingredients such as proteins, fibers, sugars or oils, as well as to modify their quantities in wheat flour formulations. Regarding gluten-free flours, it will also be necessary to know the parameters that influence their functionality in order to obtain regular products. These problems have originated a lower availability of gluten-free products which have a worse texture and are less tasty and more expensive than their homologues with gluten. These problems have been partially solved thanks to research on these types of products, their ingredients and their production methods. In recent years, studies about the nutritional improvement of these products have increased. This chapter delves into the main ingredients used in the production of gluten-free products, the processes for making gluten-free breads, cakes and cookies, and the nutritional quality of these products.
Collapse
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering, University of Valladolid, Palencia, Spain.
| |
Collapse
|
19
|
Ataç F, Ertekin Filiz B, Guzel‐Seydim ZB. The use of yeast‐rich kefir grain as a starter culture in bread making. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.15242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fatma Ataç
- Department of Food Engineering Suleyman Demirel University Isparta Turkey
| | | | | |
Collapse
|
20
|
Ranjith FH, Adhikari B, Muhialdin BJ, Yusof NL, Mohammed NK, Ariffin SH, Meor Hussin AS. Peptide-based edible coatings to control postharvest fungal spoilage of mango (Mangifera indica L.) fruit. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Whole-Genome Transformation of Yeast Promotes Rare Host Mutations with a Single Causative SNP Enhancing Acetic Acid Tolerance. Mol Cell Biol 2022; 42:e0056021. [PMID: 35311587 PMCID: PMC9022575 DOI: 10.1128/mcb.00560-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Whole-genome (WG) transformation (WGT) with DNA from the same or another species has been used to obtain strains with superior traits. Very few examples have been reported in eukaryotes—most apparently involving integration of large fragments of foreign DNA into the host genome. We show that WGT of a haploid acetic acid-sensitive Saccharomyces cerevisiae strain with DNA from a tolerant strain, but not from nontolerant strains, generated many tolerant transformants, some of which were stable upon subculturing under nonselective conditions. The most tolerant stable transformant contained no foreign DNA but only seven nonsynonymous single nucleotide polymorphisms (SNPs), of which none was present in the donor genome. The SNF4 mutation c.[805G→T], generating Snf4E269*, was the main causative SNP. Allele exchange of SNF4E269* or snf4Δ in industrial strains with unrelated genetic backgrounds enhanced acetic acid tolerance during fermentation under industrially relevant conditions. Our work reveals a surprisingly small number of mutations introduced by WGT, which do not bear any sequence relatedness to the genomic DNA (gDNA) of the donor organism, including the causative mutation. Spontaneous mutagenesis under protection of a transient donor gDNA fragment, maintained as extrachromosomal circular DNA (eccDNA), might provide an explanation. Support for this mechanism was obtained by transformation with genomic DNA of a yeast strain containing NatMX and selection on medium with nourseothricin. Seven transformants were obtained that gradually lost their nourseothricin resistance upon subculturing in nonselective medium. Our work shows that WGT is an efficient strategy for rapidly generating and identifying superior alleles capable of improving selectable traits of interest in industrial yeast strains.
Collapse
|
22
|
Effect of sourdough fermented with corn oil and lactic acid bacteria on bread flavor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Pino A, Russo N, Solieri L, Sola L, Caggia C, Randazzo CL. Microbial Consortia Involved in Traditional Sicilian Sourdough: Characterization of Lactic Acid Bacteria and Yeast Populations. Microorganisms 2022; 10:microorganisms10020283. [PMID: 35208738 PMCID: PMC8875953 DOI: 10.3390/microorganisms10020283] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sourdough is one of the oldest starters traditionally used for making baked goods, offering several advantages to the sensory, rheology, and shelf life of final products. The present study investigated, for the first time, the microbiota of spontaneously fermented Maiorca dough samples collected from bakeries located in Sicily (Italy). Four sourdough samples (M1, M2, M3, and M4), were produced using Triticum vulgare Host. var. albidum Koern (Maiorca grain) were subjected to LAB and yeasts isolation and identification at the species level. The in-depth characterization of the lactobacilli population revealed that Lactiplantibacillus plantarum and Levilactobacillus brevis unquestionably dominated the Maiorca sourdough ecosystem. Concerning the yeasts community, high species diversity was found. Saccharomyces cerevisiae and Wickerhamomyces anomalus were the most frequently isolated species. In addition, Torulaspora delbrueckii, Pichia kluyveri, Candida boidinii, and Candida diddensiae were also detected. Investigations on both pro-technological and functional traits of the isolated strains could lead to the selection of starters for the production of baked goods.
Collapse
Affiliation(s)
- Alessandra Pino
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Nunziatina Russo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Lisa Solieri
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (L.S.); (L.S.)
| | - Laura Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, 42122 Reggio Emilia, Italy; (L.S.); (L.S.)
| | - Cinzia Caggia
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
| | - Cinzia Lucia Randazzo
- Department of Agricultural, Food and Environment, University of Catania, 95123 Catania, Italy; (A.P.); (N.R.); (C.C.)
- ProBioEtna srl, Spin-off of University of Catania, 95123 Catania, Italy
- Correspondence:
| |
Collapse
|
24
|
Ziarno M, Cichońska P. Lactic Acid Bacteria-Fermentable Cereal- and Pseudocereal-Based Beverages. Microorganisms 2021; 9:2532. [PMID: 34946135 PMCID: PMC8706850 DOI: 10.3390/microorganisms9122532] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/04/2021] [Accepted: 12/05/2021] [Indexed: 11/26/2022] Open
Abstract
Plant beverages are becoming more popular, and fermented cereal- or pseudocereal-based beverages are increasingly used as alternatives for fermented products made from cow milk. This review aimed to describe the basic components of cereal- or pseudocereal-based beverages and determine the feasibility of fermenting them with lactic acid bacteria (LAB) to obtain products with live and active LAB cells and increased dietary value. The technology used for obtaining cereal- or pseudocereal-based milk substitutes primarily involves the extraction of selected plant material, and the obtained beverages differ in their chemical composition and nutritional value (content of proteins, lipids, and carbohydrates, glycemic index, etc.) due to the chemical diversity of the cereal and pseudocereal raw materials and the operations used for their production. Beverages made from cereals or pseudocereals are an excellent matrix for the growth of LAB, and the lactic acid fermentation not only produces desirable changes in the flavor of fermented beverages and the biological availability of nutrients but also contributes to the formation of functional compounds (e.g., B vitamins).
Collapse
Affiliation(s)
- Małgorzata Ziarno
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW (WULS-SGGW), 02-787 Warsaw, Poland;
| | | |
Collapse
|
25
|
Ferreyra LS, Verdini RA, Soazo M, Piccirilli GN. Impact of whey protein addition on wheat bread fermented with a spontaneous sourdough. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laura S. Ferreyra
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Roxana A. Verdini
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Marina Soazo
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| | - Gisela N. Piccirilli
- Área Bromatología y Nutrición Departamento de Ciencias de los Alimentos y del Medio Ambiente Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
- Instituto de Química Rosario (IQUIR, UNR‐CONICET) & Facultad de Ciencias Bioquímicas y Farmacéuticas Universidad Nacional de Rosario Suipacha 531 Rosario S2002LRK Argentina
| |
Collapse
|
26
|
Li Z, Zhou M, Cui M, Wang Y, Li H. Improvement of whole wheat dough fermentation for steamed bread making using selected phytate-degrading Wickerhamomyces anomalus P4. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Lau SW, Chong AQ, Chin NL, Talib RA, Basha RK. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021; 9:microorganisms9071355. [PMID: 34201420 PMCID: PMC8306212 DOI: 10.3390/microorganisms9071355] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022] Open
Abstract
Sourdough is the oldest form of leavened bread used as early as 2000 BC by the ancient Egyptians. It may have been discovered by accident when wild yeast drifted into dough that had been left out resulting in fermentation of good microorganisms, which made bread with better flavour and texture. The discovery was continued where sourdough was produced as a means of reducing wastage with little known (at that point of time) beneficial effects to health. With the progress and advent of science and technology in nutrition, sourdough fermentation is now known to possess many desirable attributes in terms of health benefits. It has become the focus of attention and practice in modern healthy eating lifestyles when linked to the secret of good health. The sourdough starter is an excellent habitat where natural and wild yeast plus beneficial bacteria grow by ingesting only water and flour. As each sourdough starter is unique, with different activities, populations and interactions of yeast and bacteria due to different ingredients, environment, fermentation time and its carbohydrate fermentation pattern, there is no exact elucidation on the complete make-up of the sourdough microbiome. Some lactic acid bacteria (LAB) strains that are part of the sourdough starter are considered as probiotics which have great potential for improving gastrointestinal health. Hence, from a wide literature surveyed, this paper gives an overview of microbial communities found in different sourdough starters. This review also provides a systematic analysis that identifies, categorises and compares these microbes in the effort of linking them to specific functions, particularly to unlock their health benefits.
Collapse
Affiliation(s)
| | | | - Nyuk Ling Chin
- Correspondence: ; Tel.: +603-9769-6353; Fax: +603-9769-4440
| | | | | |
Collapse
|
28
|
Isolation and Characterization of Lactic Acid Bacteria and Yeasts from Typical Bulgarian Sourdoughs. Microorganisms 2021; 9:microorganisms9071346. [PMID: 34206198 PMCID: PMC8306846 DOI: 10.3390/microorganisms9071346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 11/23/2022] Open
Abstract
Traditional sourdoughs in Bulgaria were almost extinct during the centralized food production system. However, a rapidly developing trend of sourdough revival in the country is setting the demand for increased production and use of commercial starter cultures. The selection of strains for such cultures is based on geographical specificity and beneficial technological properties. In this connection, the aim of this study was to isolate, identify and characterize lactic acid bacteria (LAB) and yeasts from typical Bulgarian sourdoughs for the selection of strains for commercial sourdough starter cultures. Twelve samples of typical Bulgarian sourdoughs were collected from different geographical locations. All samples were analyzed for pH, total titratable acidity and dry matter content. Enumeration of LAB and yeast was also carried out. Molecular identification by 16S rDNA sequence analysis was performed for 167 LAB isolates, and 106 yeast strains were identified by ITS1-5.8S-ITS2 rRNA gene partial sequence analysis. The LAB strains were characterized according to their amylolytic and proteolytic activity and acidification capacity, and 11 strains were selected for further testing of their antimicrobial properties. The strains with the most pronounced antibacterial and antifungal activity are listed as recommended candidates for the development of starter cultures for sourdoughs or other food products.
Collapse
|
29
|
Atanasova J, Dalgalarrondo M, Iliev I, Moncheva P, Todorov SD, Ivanova IV. Formation of Free Amino Acids and Bioactive Peptides During the Ripening of Bulgarian White Brined Cheeses. Probiotics Antimicrob Proteins 2021; 13:261-272. [PMID: 32504283 DOI: 10.1007/s12602-020-09669-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bioactive peptides and free amino acids obtained from Bulgarian goat, sheep and cow white brined cheeses, produced with same starter culture, during ripening were evaluated. The concentration of total free amino acids was increasing in all tested cheeses in the first 30 days of ripening. In the next 30 days in sheep cheeses, the concentration increased as recorded for most of the amino acids. Amino acids with highest levels detected throughout the whole ripening period in goat, sheep and cow cheese types were leucine, phenylalanine, arginine, valine and lysine. MALDI-TOF analysis of evaluated cheeses resulted in detection of production of bioactive peptide derivates from milk proteins: 51 peptides in cow, 31 peptides in sheep and 22 peptides in goat cheeses. Peptide αs1-CN (f35-40) was found only in cow cheese. In cow cheese, higher intensity was detected for αs1-CN (f1-9) and β-CN (f194-203 and f203-219) peptides. In goat cheese was recorded αs1-CN peptides, and there was a tendency to increase the peptides released from β-CN, with the highest intensity of fragments αs1-CN (f1-9 and f24-30) and β-CN (f194-209 and f203-219). In sheep cheese, the recorded primarily peptides were αs1-CN and peptides released from β-CN. Different bioactive peptides, derivate from casein, were detected as follows: 6 peptides were ACE inhibitory peptides, 3 peptides were αS1-casokinins, 1 peptide was caseinophopeptide, 1 peptide was immunopeptide. Twelve bioactive peptides were recorded to be derivates from β-casein: 1 peptide was ACE peptide, 4 peptides were caseino-phosphopeptides, 1 peptide was immunopeptide, 1 peptide β-casokinin, 1 antibacterial peptide and 4 multifunctional peptides. Of peptides released by proteolysis of αS2-CN was found 1 bioactive peptide with antimicrobial activity. On our best knowledge, this paper contributes new data about free amino acids and bioactive peptides in the connection between type of milk and period for cheese ripening in the Bulgarian goat, sheep and cow white brined cheeses.
Collapse
Affiliation(s)
| | - Michele Dalgalarrondo
- Institut National de la Recherche Agronomique, UR 1268 Biopolymeres Interactions Assemblages, BP 71627, 44316, Nantes Cedex 3, France
| | - Ilia Iliev
- Department of Biochemistry and Microbiology, Faculty of Biology, Plovdiv University Paisii Hilendarski, 24 Tzar Asen Str., 4000, Plovdiv, Bulgaria
| | - Penka Moncheva
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Svetoslav D Todorov
- Advanced Green Energy and Environment Institute (AGEE), Handong Global University, Pohang, Gyungbuk, 791-708, Republic of South Korea.
| | - Iskra V Ivanova
- Department of General and Applied Microbiology, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| |
Collapse
|
30
|
Abstract
The utilisation of food production by-products back into food production within a circular food economy is one of the driving examples to improve sustainability within the food industry. Brewers spent grain is the most abundant by-product from the brewing industry, with currently most of it being used as animal feed. In this study, we utilised brewers spent grain as a substrate in a solid-state fermentation in order to produce a Type-3 sourdough culture. Sourdough bread is becoming increasingly popular throughout the western world. The use of fermented brewers spent grain in the production of sourdough bread yielded sourdough bread that was acceptable by consumers. We also investigated the production and presence of the main organic acids in sourdough during the proofing process and the baking process. The baking trials showed that there was a reduction in both lactic and acetic acid content during the actual baking process. The reduction in the concentration of both organic acids appears to be at the heart of the observation that for both organic acids, there is typically a lower concentration in the crust compared to the crumb of the sourdough breads, which was observed in our sourdough breads and those commercially available.
Collapse
|
31
|
Altilia S, Foschino R, Grassi S, Antoniani D, Dal Bello F, Vigentini I. Investigating the growth kinetics in sourdough microbial associations. Food Microbiol 2021; 99:103837. [PMID: 34119121 DOI: 10.1016/j.fm.2021.103837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 09/30/2022]
Abstract
In this study we investigated the effect of the single strain in stabilization of type I sourdough microbial associations by crossing six different Fructilactobacillus sanfranciscensis with five Kazachstania humilis strains. Furthermore, we compared three predictive models, Zwitwering based on Gompertz's equation, Baranyi and Roberts' function and Schiraldi's function to evaluate which one best fitted the experimental data in determining the behaviour of co-cultivated microorganisms. Specific growth rates (μm) and lag time (λ) values for each mixed population were assessed. Results showed that the different F. sanfranciscensis strains significantly steer the growth kinetics within the pair and affect the ratio bacterial/yeast cells, as data analysis confirmed, whereas K. humilis accommodates to the bacterial strain. To compare the growth models, Root Mean Square (RMS) values were calculated for each predicted curve by implementing an algorithm based on an iterative process to minimize the deviation among observed and calculated data. Schiraldi's function performed better than the others, revealing, on average, the smallest RMS values and providing the best fitting for over 70% of co-cultivation experiments. Models prove to be consistent in predicting growth kinetics of microbial consortia too.
Collapse
Affiliation(s)
- Samuele Altilia
- Department of Physics, Università Degli Studi di Milano, Milan, Italy
| | - Roberto Foschino
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milan, Italy.
| | - Silvia Grassi
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Davide Antoniani
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milan, Italy
| | | | - Ileana Vigentini
- Department of Food, Environmental and Nutritional Sciences, Università Degli Studi di Milano, Milan, Italy
| |
Collapse
|
32
|
Functional and Healthy Features of Conventional and Non-Conventional Sourdoughs. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sourdough is a composite ecosystem largely characterized by yeasts and lactic acid bacteria which are the main players in the fermentation process. The specific strains involved are influenced by several factors including the chemical and enzyme composition of the flour and the sourdough production technology. For many decades the scientific community has explored the microbiological, biochemical, technological and nutritional potential of sourdoughs. Traditionally, sourdoughs have been used to improve the organoleptic properties, texture, digestibility, palatability, and safety of bread and other kinds of baked products. Recently, novel sourdough-based biotechnological applications have been proposed to meet the demand of consumers for healthier and more natural food and offer new inputs for the food industry. Many researchers have focused on the beneficial effects of specific enzymatic activities or compounds, such as exopolysaccharides, with both technological and functional roles. Additionally, many studies have explored the ability of sourdough lactic acid bacteria to produce antifungal compounds for use as bio-preservatives. This review provides an overview of the fundamental features of sourdoughs and their exploitation to develop high value-added products with beneficial microorganisms and/or their metabolites, which can positively impact human health.
Collapse
|
33
|
Ofosu FK, Mensah DJF, Daliri EBM, Oh DH. Exploring Molecular Insights of Cereal Peptidic Antioxidants in Metabolic Syndrome Prevention. Antioxidants (Basel) 2021; 10:518. [PMID: 33810450 PMCID: PMC8066008 DOI: 10.3390/antiox10040518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/23/2022] Open
Abstract
The prevalence of metabolic syndrome (MetS) is presently an alarming public health problem globally. Oxidative stress has been postulated to be strongly correlated with MetS, such as type 2 diabetes, obesity, hypertension, cardiovascular diseases, and certain cancers. Cereals are important staple foods which account for a huge proportion of the human diet. However, owing to recent growing demand and the search for natural antioxidants for the prevention and management of MetS, cereal peptides have gained increasing attention for developing functional ingredients or foods with substantial antioxidant properties. This review explores the current production techniques for cereal peptidic antioxidants and their potential mechanism of action in the prevention and management of MetS.
Collapse
Affiliation(s)
- Fred Kwame Ofosu
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Dylis-Judith Fafa Mensah
- Department of Family and Consumer Sciences, College of Applied Science and Technology, Illinois State University, Normal, IL 61761, USA;
| | - Eric Banan-Mwine Daliri
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 24341, Gangwon-do, Korea; (F.K.O.); (E.B.-M.D.)
| |
Collapse
|
34
|
Dong Y, Karboune S. A review of bread qualities and current strategies for bread bioprotection: Flavor, sensory, rheological, and textural attributes. Compr Rev Food Sci Food Saf 2021; 20:1937-1981. [DOI: 10.1111/1541-4337.12717] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/22/2022]
Affiliation(s)
- YiNing Dong
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus McGill University Québec Canada
| |
Collapse
|
35
|
Sofo A, Galluzzi A, Zito F. A Modest Suggestion: Baking Using Sourdough - a Sustainable, Slow-Paced, Traditional and Beneficial Remedy against Stress during the Covid-19 Lockdown. HUMAN ECOLOGY: AN INTERDISCIPLINARY JOURNAL 2021; 49:99-105. [PMID: 33612915 PMCID: PMC7880519 DOI: 10.1007/s10745-021-00219-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Adriano Sofo
- Department of European and Mediterranean Cultures: Architecture, Environment and Cultural Heritage (DiCEM), University of Basilicata, Via Lanera, 20, 75100 Matera, Italy
| | | | | |
Collapse
|
36
|
Oshiro M, Zendo T, Nakayama J. Diversity and dynamics of sourdough lactic acid bacteriota created by a slow food fermentation system. J Biosci Bioeng 2021; 131:333-340. [PMID: 33358094 DOI: 10.1016/j.jbiosc.2020.11.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/20/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Sourdough is a naturally fermented dough that is used worldwide to produce a variety of baked foods. Various lactic acid bacteria (LAB), which can determine the quality of sourdough baked foods by producing metabolites, have been found in the sourdough ecosystem. However, spontaneous fermentation of sourdough leads to unpredictable growth of various micro-organisms, which result in unstable product quality. From an ecological perspective, many researchers have recently studied sourdough LAB diversity, particularly the elucidation of LAB community interactions and the dynamic mechanisms during the fermentation process, in response to requests for the control and design of a desired sourdough microbial community. This article reviews recent advances in the study of sourdough LAB diversity and its dynamics in association with unique characteristics of the fermentation system; it also discusses future perspectives for better understanding of the complex sourdough microbial ecosystem, which can be attained efficiently by both in vitro and in situ experimental approaches.
Collapse
Affiliation(s)
- Mugihito Oshiro
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Central Laboratory of Yamazaki Baking Company Limited, 3-23-27 Ichikawa, Ichikawa-shi, Chiba 272-8581, Japan.
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Moghaddam MFT, Jalali H, Nafchi AM, Nouri L. Evaluating the effects of lactic acid bacteria and olive leaf extract on the quality of gluten-free bread. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100771] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Nionelli L, Wang Y, Pontonio E, Immonen M, Rizzello C, Maina H, Katina K, Coda R. Antifungal effect of bioprocessed surplus bread as ingredient for bread-making: Identification of active compounds and impact on shelf-life. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107437] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Adepehin J. Microbial diversity and pasting properties of finger millet (Eleusine coracana), pearl millet (Pennisetum glaucum) and sorghum (Sorghum bicolor) sourdoughs. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
40
|
Characterization and selection of functional yeast strains during sourdough fermentation of different cereal wholegrain flours. Sci Rep 2020; 10:12856. [PMID: 32732890 PMCID: PMC7393511 DOI: 10.1038/s41598-020-69774-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/16/2020] [Indexed: 01/25/2023] Open
Abstract
The increasing demand for healthy baked goods boosted studies on sourdough microbiota with beneficial metabolic traits, to be used as potential functional starters. Here, 139 yeasts isolated from cereal-based fermented foods were in vitro characterized for their phytase and antioxidant activities. The molecular characterization at strain level of the best 39 performing isolates showed that they did not derive from cross contamination by baker’s yeast. Afterwards, the 39 isolates were in vivo analyzed for their leavening ability, phytase activity and polyphenols content using five different wholegrain flours, obtained from conventional and pigmented common wheat, emmer and hull-less barley. Combining these findings, through multivariate permutation analysis, we identified the 2 best performing strains, which resulted diverse for each flour. Doughs singly inoculated with the selected strains were further analyzed for their antioxidant capacity, phenolic acids, xanthophylls and anthocyanins content. All the selected yeasts significantly increased the total antioxidant activity, the soluble, free and conjugated, forms of phenolic acids and anthocyanins of fermented doughs. This study revealed the importance of a specific selection of yeast strains for wholegrain flours obtained from different cereals or cultivars, in order to enhance the pro-technological, nutritional and nutraceutical traits of fermented doughs.
Collapse
|
41
|
Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:126. [PMID: 32695222 PMCID: PMC7364526 DOI: 10.1186/s13068-020-01761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND High acetic acid tolerance is of major importance in industrial yeast strains used for second-generation bioethanol production, because of the high acetic acid content of lignocellulose hydrolysates. It is also important in first-generation starch hydrolysates and in sourdoughs containing significant acetic acid levels. We have previously identified snf4 E269* as a causative allele in strain MS164 obtained after whole-genome (WG) transformation and selection for improved acetic acid tolerance. RESULTS We have now performed polygenic analysis with the same WG transformant MS164 to identify novel causative alleles interacting with snf4 E269* to further enhance acetic acid tolerance, from a range of 0.8-1.2% acetic acid at pH 4.7, to previously unmatched levels for Saccharomyces cerevisiae. For that purpose, we crossed the WG transformant with strain 16D, a previously identified strain displaying very high acetic acid tolerance. Quantitative trait locus (QTL) mapping with pooled-segregant whole-genome sequence analysis identified four major and two minor QTLs. In addition to confirmation of snf4 E269* in QTL1, we identified six other genes linked to very high acetic acid tolerance, TRT2, MET4, IRA2 and RTG1 and a combination of MSH2 and HAL9, some of which have never been connected previously to acetic acid tolerance. Several of these genes appear to be wild-type alleles that complement defective alleles present in the other parent strain. CONCLUSIONS The presence of several novel causative genes highlights the distinct genetic basis and the strong genetic background dependency of very high acetic acid tolerance. Our results suggest that elimination of inferior mutant alleles might be equally important for reaching very high acetic acid tolerance as introduction of rare superior alleles. The superior alleles of MET4 and RTG1 might be useful for further improvement of acetic acid tolerance in specific industrial yeast strains.
Collapse
Affiliation(s)
- Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| |
Collapse
|
42
|
Screening of Lactic Acid Bacteria and Yeasts from Sourdough as Starter Cultures for Reduced Allergenicity Wheat Products. Foods 2020; 9:foods9060751. [PMID: 32517155 PMCID: PMC7353608 DOI: 10.3390/foods9060751] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 01/27/2023] Open
Abstract
Previous researchers have shown the potential of sourdough or related lactic acid bacteria in reducing wheat allergens. However, there are no mixed or single cultures for producing reduced allergenicity wheat products. In this study, twelve strains of lactic acid bacteria and yeast isolated from sourdough were evaluated for their ability to hydrolyze proteins and ferment dough. Strain Pediococcus acidilacticiXZ31 showed higher proteolytic activity on both casein and wheat protein substrates, and had strong ability to reduce wheat protein allergenicity. The tested Saccharomyces and non-Saccharomyces showed limited proteolysis. Strains Torulaspora delbrueckii JM1 and Saccharomyces cerevisiae JM4 demonstrated a higher capacity to ferment dough compared to other yeasts. These strains may be applied as starters for the preparation of reduced allergenicity wheat products.
Collapse
|
43
|
Rodríguez de Olmos A, Garro MS. Metabolic profile of Lactobacillus paracasei subsp. paracasei CRL 207 in solid state fermentation using commercial soybean meal. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
44
|
Özülkü G, Sivri Özay D. IMPROVING THE BREAD QUALITY OF SUNI-BUG DAMAGED WHEAT FLOURS BY SOURDOUGH BREADMAKING AND LIQUID RYE SOUR. ACTA ALIMENTARIA 2020. [DOI: 10.1556/066.2020.49.2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The breadmaking quality of bug-damaged wheat flours with high protease activity (HPAWF) and low protease activity (LPAWF) was attempted to be improved by using sourdough (prepared by L. plantarum (SD1) and L. sanfrancissensis (SD2)) and liquid rye sour (LRS) in this study. The effects of sourdoughs (20 and 40%) and LRS (1 and 2%) on the protease activity of the HPAWF were determined by SDS-PAGE. Protease activity of HPAWF decreased with the addition of 40% SD1, 20% SD2, and both levels of LRS (1 and 2%) compared to a control sample. The HPAWF bread samples produced with LRS (1 and 2%) had higher volume (P<0.05) and bread quality as compared to sourdough applications. LPAWF bread sample was comparable with those of 40% SD2 added sample in terms of volume and hardness (N) values (P>0.05), while SD1 addition caused quality losses. The overall results suggested that addition of 2% LRS had promising results for improving bread quality flours that were damaged by suni-bug at low levels.
Collapse
Affiliation(s)
- G. Özülkü
- aDepartment of Food Engineering, Chemical and Metallurgical Engineering Faculty, Yildiz Technical University, Istanbul. Turkey
| | - D. Sivri Özay
- bDepartment of Food Engineering, Engineering Faculty, Hacettepe University, Ankara. Turkey
| |
Collapse
|
45
|
Textural and Sensory Features Changes of Gluten Free Muffins Based on Rice Sourdough Fermented with Lactobacillus spicheri DSM 15429. Foods 2020; 9:foods9030363. [PMID: 32245079 PMCID: PMC7143808 DOI: 10.3390/foods9030363] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 12/12/2022] Open
Abstract
Gluten free products available on the market have a low textural quality associated with high crumbly structure, low-flavor, aroma, poor mouthfeel, less appearance, in comparison with the conventional final baked products. The aim of this study was to assess the influence of rice sourdough fermented with Lactobacillus spicheri DSM 15429 strain on textural, volatile profile, and sensorial properties of gluten free muffins in order to obtain baked goods with improved quality characteristics. Lactobacillus spicheri is a novel strain isolated from industrial rice sourdough but unexploited for bakery products manufacturing. The results showed that Lactobacillus spicheri DSM 15429 was able to growth in the rice flour influencing the texture and the volatile profile of gluten free muffins as well as their sensory characteristics. Both, textural parameters and volatiles recorded significant differences comparing to muffins obtained with a spontaneously fermented rice sourdough. Hardness and cohesiveness decreased while springiness and resilience of gluten free muffins improved their values. The volatile profile of gluten free muffins was significantly improved by utilization of the rice sourdough fermented with Lactobacilus spicheri DSM 15429. 3-methylbutanal, 2-methylbutanal, acetophenone and limonene were the main volatile derivatives responsible for aroma and odor scores of sensory analysis.
Collapse
|
46
|
De Pasquale I, Pontonio E, Gobbetti M, Rizzello CG. Nutritional and functional effects of the lactic acid bacteria fermentation on gelatinized legume flours. Int J Food Microbiol 2020; 316:108426. [DOI: 10.1016/j.ijfoodmicro.2019.108426] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/11/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
|
47
|
Çakır E, Arıcı M, Durak MZ, Karasu S. The molecular and technological characterization of lactic acid bacteria in einkorn sourdough: effect on bread quality. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00412-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
48
|
Verce M, De Vuyst L, Weckx S. Comparative genomics of Lactobacillus fermentum suggests a free-living lifestyle of this lactic acid bacterial species. Food Microbiol 2020; 89:103448. [PMID: 32138996 DOI: 10.1016/j.fm.2020.103448] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/12/2019] [Accepted: 01/26/2020] [Indexed: 11/28/2022]
Abstract
Lactobacillus fermentum is a lactic acid bacterium frequently isolated from mammal tissues, milk, and plant material fermentations, such as sourdough. A comparative genomics analysis of 28 L. fermentum strains enabled the investigation of the core and accessory genes of this species. The core protein phylogenomic tree of the strains examined, consisting of five clades, did not exhibit clear clustering of strains based on isolation source, suggesting a free-living lifestyle. Based on the presence/absence of orthogroups, the largest clade, containing most of the human-related strains, was separated from the rest. The extended core genome included genes necessary for the heterolactic fermentation. Many traits were found to be strain-dependent, for instance utilisation of xylose and arabinose. Compared to other strains, the genome of L. fermentum IMDO 130101, a candidate starter culture strain capable of dominating sourdough fermentations, contained unique genes related to the metabolism of starch degradation products, which could be advantageous for growth in sourdough matrices. This study explained the traits that were previously demonstrated for L. fermentum IMDO 130101 at the genetic level and provided future avenues of research regarding L. fermentum strains isolated from sourdough.
Collapse
Affiliation(s)
- Marko Verce
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Stefan Weckx
- Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
49
|
García-Cano I, Rocha-Mendoza D, Kosmerl E, Zhang L, Jiménez-Flores R. Technically relevant enzymes and proteins produced by LAB suitable for industrial and biological activity. Appl Microbiol Biotechnol 2020; 104:1401-1422. [DOI: 10.1007/s00253-019-10322-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/06/2019] [Accepted: 12/15/2019] [Indexed: 12/19/2022]
|
50
|
Chiș MS, Păucean A, Stan L, Suharoschi R, Socaci SA, Man SM, Pop CR, Muste S. Impact of protein metabolic conversion and volatile derivatives on gluten-free muffins made with quinoa sourdough. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1646320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maria Simona Chiș
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Adriana Păucean
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Laura Stan
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Ramona Suharoschi
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sonia-Ancuța Socaci
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Simona Maria Man
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Sevastița Muste
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| |
Collapse
|