1
|
Kaveh M, Zomorodi S, Mariusz S, Dziwulska-Hunek A. Determination of Drying Characteristics and Physicochemical Properties of Mint ( Mentha spicata L.) Leaves Dried in Refractance Window. Foods 2024; 13:2867. [PMID: 39335797 PMCID: PMC11430872 DOI: 10.3390/foods13182867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Drying is one of the most common and effective techniques for preserving the quantitative and qualitative characteristics of medicinal plants in the post-harvest phase. Therefore, in this research, the effect of the new refractance window (RW) technology on the kinetics, thermodynamics, greenhouse gasses, color indices, bioactive properties, and percentage of mint leaf essential oil was investigated in five different water temperatures in the form of a completely randomized design. This process was modeled by the methods of mathematical models and artificial neural networks (ANNs) with inputs (drying time and water temperature) and an output (moisture ratio). The results showed that with the increase in temperature, the rate of moisture removal from the samples increased and as a result, the drying time, specific energy consumption, CO2, NOx, enthalpy, and entropy decreased significantly (p < 0.05). In addition, the drying water temperature had a significant effect on the rehydration ratio, color indices, bioactive properties, and essential oil percentage of the samples (p < 0.05). The highest value of rehydration ratio was obtained at 80 °C. By increasing temperature, the main color indices such as b*, a*, L*, and Chroma decreased significantly compared to the control (p < 0.05). However, with the increase in temperature, the overall color changes (ΔE) and L* first had a decreasing trend and then an increasing trend, and this trend was the opposite for the rest of the indicators. The application of drying water temperature from 50 to 70 °C increased antioxidant, phenol content, and flavonoid content, and higher drying temperatures led to a significant decrease in these parameters (p < 0.05). On the other hand, the efficiency of the essential oil of the samples was in the range of 0.82 to 2.01%, and the highest value was obtained at the water temperature of 80 °C. Based on the analysis performed on the modeled data, a perceptron artificial neural network with 2-15-14-1 structure with explanation coefficient (0.9999) and mean square error (8.77 × 10-7) performs better than the mathematical methods for predicting the moisture ratio of mint leaves.
Collapse
Affiliation(s)
- Mohammad Kaveh
- Agricultural Engineering Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia 5716963963, Iran;
| | - Shahin Zomorodi
- Agricultural Engineering Research Department, West Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia 5716963963, Iran;
| | - Szymanek Mariusz
- Department of Agricultural, Forest and Transport Machinery, University of Life Sciences in Lublin, Głęboka, 28, 20-612 Lublin, Poland
| | - Agata Dziwulska-Hunek
- Department of Biophysics, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| |
Collapse
|
2
|
Nuñez H, Jaques A, Belmonte K, Elitin J, Valdenegro M, Ramírez C, Córdova A. Development of an Apple Snack Enriched with Probiotic Lacticaseibacillus rhamnosus: Evaluation of the Refractance Window Drying Process on Cell Viability. Foods 2024; 13:1756. [PMID: 38890984 PMCID: PMC11171815 DOI: 10.3390/foods13111756] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
The objective of this study was to develop a dried apple snack enriched with probiotics, evaluate its viability using Refractance Window (RWTM) drying, and compare it with conventional hot air drying (CD) and freeze-drying (FD). Apple slices were impregnated with Lacticaseibacillus rhamnosus and dried at 45 °C using RWTM and CD and FD. Total polyphenol content (TPC), color (∆E*), texture, and viable cell count were measured, and samples were stored for 28 days at 4 °C. Vacuum impregnation allowed for a probiotic inoculation of 8.53 log CFU/gdb. Retention values of 6.30, 6.67, and 7.20 log CFU/gdb were observed for CD, RWTM, and FD, respectively; the population in CD, RWTM remained while FD showed a decrease of one order of magnitude during storage. Comparing RWTM with FD, ∆E* was not significantly different (p < 0.05) and RWTM presented lower hardness values and higher crispness than FD, but the RWTM-dried apple slices had the highest TPC retention (41.3%). Microstructural analysis showed that RWTM produced a smoother surface, facilitating uniform moisture diffusion and lower mass transfer resistance. The effective moisture diffusion coefficient was higher in RWTM than in CD, resulting in shorter drying times. As a consequence, RWTM produced dried apple snacks enriched with probiotics, with color and TPC retention comparable to FD.
Collapse
Affiliation(s)
- Helena Nuñez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
| | - Aldonza Jaques
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Karyn Belmonte
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Jamil Elitin
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Mónika Valdenegro
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
- Escuela de Agronomía, Pontificia Universidad Católica de Valparaíso, Calle San Francisco S/N, La Palma, Quillota 2260000, Chile
| | - Cristian Ramírez
- Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, P.O. Box 110-V, Valparaíso 2390123, Chile; (H.N.); (A.J.); (K.B.); (J.E.); (C.R.)
| | - Andrés Córdova
- Programa de Doctorado de Ciencias Agroalimentarias, Facultad de Ciencias Agronómicas y de los Alimentos, Pontifica Universidad Católica de Valparaíso, Valparaíso 2340025, Chile;
- Escuela de Alimentos, Pontificia Universidad Católica de Valparaíso, Waddington 716 Playa Ancha, Valparaíso 2340025, Chile
| |
Collapse
|
3
|
Adnouni M, Jiang L, Zhang X, Zhang L, Pathare PB, Roskilly A. Computational modelling for decarbonised drying of agricultural products: Sustainable processes, energy efficiency, and quality improvement. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Punthi F, Yudhistira B, Gavahian M, Chang CK, Cheng KC, Hou CY, Hsieh CW. Pulsed electric field-assisted drying: A review of its underlying mechanisms, applications, and role in fresh produce plant-based food preservation. Compr Rev Food Sci Food Saf 2022; 21:5109-5130. [PMID: 36199192 DOI: 10.1111/1541-4337.13052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 01/28/2023]
Abstract
Drying is a key processing step for plant-based foods. The quality of dried products, including the physical, nutritional, microbiological, and sensory attributes, is influenced by the drying method used. Conventional drying technologies have low efficiency and can negatively affect product quality. Recently, pulsed electric field (PEF)-assisted techniques are being explored as a novel pretreatment for drying. This review focuses on the application of PEF as pretreatment for drying plant-based products, the preservation effects of this pretreatment, and its underlying mechanisms. A literature search revealed that PEF-assisted drying is beneficial for maintaining the physicochemical properties of the dried products and preserving their color and constituent chemical compounds. PEF-assisted drying promotes rehydration and improves the kinetics of drying. Unlike conventional technologies, PEF-assisted drying enables selective cell disintegration while maintaining product quality. Before the drying process, PEF pretreatment inactivates microbes and enzymes and controls respiratory activity, which may further contribute to preservation. Despite numerous advantages, the efficiency and applicably of PEF-assisted drying can be improved in the future.
Collapse
Affiliation(s)
- Fuangfah Punthi
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Bara Yudhistira
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Food Science and Technology, Sebelas Maret University, Surakarta, Indonesia
| | - Mohsen Gavahian
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, Taiwan, Republic of China
| | - Chao-Kai Chang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China
| | - Kuan-Chen Cheng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.,Graduate Institute of Food Science Technology, National Taiwan University, Taipei, Taiwan, Republic of China.,Department of Optometry, Asia University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan, Republic of China
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, Taiwan, Republic of China.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, Republic of China
| |
Collapse
|
5
|
Ortiz-Jerez MJ, Sánchez AF, Zapata Montoya JE. Drying kinetics and sensory characteristics of dehydrated pumpkin seeds ( Cucurbita moschata) obtained by refractance window drying. Heliyon 2022; 8:e10947. [PMID: 36247168 PMCID: PMC9557908 DOI: 10.1016/j.heliyon.2022.e10947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
The current importance of pumpkin (Cucurbita moschata) in national food security has progressively encouraged research on this fruit. This is how pumpkin seeds constitute a potential raw material to obtain dehydrated products for direct consumption. In this research, we compared the drying kinetics, effective diffusivity (Def) and sensory perception in a non-trained panel of dehydrated pumpkin seeds through refractance window drying (RW) and convective air drying (CA). RW drying was carried out in a laboratory-scale hydro-dryer and CA drying was carried out in a dryer with hot air circulation; both at 80 ± 2 °C. Sensory acceptability (appearance, aroma, taste and texture) was evaluated by an affective test on a hedonic scale from 1 to 5 with 60 panelists. The drying curves (MR vs t) were fitted to four kinetic models: Newton, Logarithmic, Page and Midilli et al. Def was determined by the second Fick’s Law solution. The best model for RW drying was logarithmic, and Def was 6.60 × 10−10 m2/s (R2 = 0.9927); while for CA, it was Midilli et al., with the Def found through this method being 9.60 × 10−10 m2/s (R2 = 0.9928). Dry seeds by RW obtained a general acceptance of 3.82, compared to 3.63 by CA. Results allow us to conclude that among the drying methods evaluated, there is not statistically significant differences, in terms of dehydration characteristics and sensory acceptability, constituting RW drying as an alternative method for obtaining dehydrate pumpkins seeds for direct consumption.
Collapse
|
6
|
Improvement of the Flavor of Powder-Form Meal Replacement: a Review of Relevant Technologies. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02872-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Drying kinetics of blueberry pulp and mass transfer parameters: Effect of hot air and refractance window drying at different temperatures. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2021.110929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Zalpouri R, Singh M, Kaur P, Singh S. Refractance Window Drying–a Revisit on Energy Consumption and Quality of Dried Bio-origin Products. FOOD ENGINEERING REVIEWS 2022. [DOI: 10.1007/s12393-022-09313-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
9
|
Uribe E, Gómez-Pérez LS, Pasten A, Pardo C, Puente L, Vega-Galvez A. Assessment of refractive window drying of physalis (Physalis peruviana L.) puree at different temperatures: drying kinetic prediction and retention of bioactive components. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01373-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
10
|
Santos VCS, Souza RLD, Figueiredo RT, Alsina OLSD. A review on refractance window drying process of fruits and vegetables: its integration with renewable energies. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2022. [DOI: 10.1590/1981-6723.15321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Characterization of physicochemical, packing and microstructural properties of beet, blueberry, carrot and cranberry powders: The effect of drying methods. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.09.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Conductive drying methods for producing high-quality restructured pineapple-starch snacks. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|