1
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
2
|
Vázquez-Mojena Y, León-Arcia K, González-Zaldivar Y, Rodríguez-Labrada R, Velázquez-Pérez L. Gene Therapy for Polyglutamine Spinocerebellar Ataxias: Advances, Challenges, and Perspectives. Mov Disord 2021; 36:2731-2744. [PMID: 34628681 DOI: 10.1002/mds.28819] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/11/2022] Open
Abstract
Polyglutamine spinocerebellar ataxias (SCAs) comprise a heterogeneous group of six autosomal dominant ataxias caused by cytosine-adenine-guanine repeat expansions in the coding region of single genes. Currently, there is no curative or disease-slowing treatment for these disorders, but their monogenic inheritance has informed rationales for development of gene therapy strategies. In fact, RNA interference strategies have shown promising findings in cellular and/or animal models of SCA1, SCA3, SCA6, and SCA7. In addition, antisense oligonucleotide therapy has provided encouraging proofs of concept in models of SCA1, SCA2, SCA3, and SCA7, but they have not yet progressed to clinical trials. On the contrary, the gene editing strategies, such as the clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), have been introduced to a limited extent in these disorders. In this article, we review the available literature about gene therapy in polyglutamine SCAs and discuss the main technological and ethical challenges toward the prospect of their use in future clinical trials. Although antisense oligonucleotide therapies are further along the path to clinical phases, the recent failure of three clinical trials in Huntington's disease may delay their utilization for polyglutamine SCAs, but they offer lessons that could optimize the likelihood of success in potential future clinical studies. © 2021 International Parkinson and Movement Disorder Society.
Collapse
|
3
|
Krauss S, Evert BO. The Role of MicroRNAs in Spinocerebellar Ataxia Type 3. J Mol Biol 2019; 431:1729-1742. [PMID: 30664869 DOI: 10.1016/j.jmb.2019.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/05/2019] [Accepted: 01/11/2019] [Indexed: 02/07/2023]
Abstract
More than 90% of the human genome are transcribed as non-coding RNAs. While it is still under debate if all these non-coding transcripts are functional, there is emerging evidence that RNA has several important functions in addition to coding for proteins. For example, microRNAs (miRNAs) are important regulatory RNAs that control gene expression in various biological processes and human diseases. In spinocerebellar ataxia type 3 (SCA3), a devastating neurodegenerative disease, miRNAs are involved in the disease process at different levels, including the deregulation of components of the general miRNA biogenesis machinery, as well as in the cell type-specific control of the expression of the SCA3 disease protein and other SCA3 disease-relevant proteins. However, it remains difficult to predict whether these changes are a cause or a consequence of the neurodegenerative process in SCA3. Further studies using standardized procedures for the analysis of miRNA expression and larger sample numbers are required to enhance our understanding of the miRNA-mediated processes involved in SCA3 disease and may enable the development of miRNA-based therapeutics. In this review, we summarize the findings of independent studies highlighting both the disease-related and cytoprotective roles of miRNAs that have been implicated so far in the disease process of SCA3.
Collapse
Affiliation(s)
- Sybille Krauss
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Street 27, 53127 Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University of Bonn, Sigmund-Freud-Street 25, 53127 Bonn, Germany.
| |
Collapse
|
4
|
Abstract
Polyglutamine diseases are hereditary degenerative disorders of the nervous system that have remained, to this date, untreatable. Promisingly, investigation into their molecular etiology and the development of increasingly perfected tools have contributed to the design of novel strategies with therapeutic potential. Encouraging studies have explored gene therapy as a means to counteract cell demise and loss in this context. The current chapter addresses the two main focuses of research in the area: the characteristics of the systems used to deliver nucleic acids to cells and the molecular and cellular actions of the therapeutic agents. Vectors used in gene therapy have to satisfyingly reach the tissues and cell types of interest, while eliciting the lowest toxicity possible. Both viral and non-viral systems have been developed for the delivery of nucleic acids to the central nervous system, each with its respective advantages and shortcomings. Since each polyglutamine disease is caused by mutation of a single gene, many gene therapy strategies have tried to halt degeneration by silencing the corresponding protein products, usually recurring to RNA interference. The potential of small interfering RNAs, short hairpin RNAs and microRNAs has been investigated. Overexpression of protective genes has also been evaluated as a means of decreasing mutant protein toxicity and operate beneficial alterations. Recent gene editing tools promise yet other ways of interfering with the disease-causing genes, at the most upstream points possible. Results obtained in both cell and animal models encourage further delving into this type of therapeutic strategies and support the future use of gene therapy in the treatment of polyglutamine diseases.
Collapse
|
5
|
Curtis HJ, Seow Y, Wood MJA, Varela MA. Knockdown and replacement therapy mediated by artificial mirtrons in spinocerebellar ataxia 7. Nucleic Acids Res 2017; 45:7870-7885. [PMID: 28575281 PMCID: PMC5569705 DOI: 10.1093/nar/gkx483] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 05/26/2017] [Indexed: 12/13/2022] Open
Abstract
We evaluate a knockdown-replacement strategy mediated by mirtrons as an alternative to allele-specific silencing using spinocerebellar ataxia 7 (SCA7) as a model. Mirtrons are introns that form pre-microRNA hairpins after splicing, producing RNAi effectors not processed by Drosha. Mirtron mimics may therefore avoid saturation of the canonical processing pathway. This method combines gene silencing mediated by an artificial mirtron with delivery of a functional copy of the gene such that both elements of the therapy are always expressed concurrently, minimizing the potential for undesirable effects and preserving wild-type function. This mutation- and single nucleotide polymorphism-independent method could be crucial in dominant diseases that feature both gain- and loss-of-function pathologies or have a heterogeneous genetic background. Here we develop mirtrons against ataxin 7 with silencing efficacy comparable to shRNAs, and introduce silent mutations into an ataxin 7 transgene such that it is resistant to their effect. We successfully express the transgene and one mirtron together from a single construct. Hence, we show that this method can be used to silence the endogenous allele of ataxin 7 and replace it with an exogenous copy of the gene, highlighting the efficacy and transferability across patient genotypes of this approach.
Collapse
Affiliation(s)
- Helen J Curtis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK.,Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford OX2 6GG, UK
| | - Yiqi Seow
- Molecular Engineering Laboratory, Biomedical Sciences Institutes, A*STAR, Singapore
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Miguel A Varela
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| |
Collapse
|
6
|
Morihara H, Yamamoto T, Oiwa H, Tonegawa K, Tsuchiyama D, Kawakatsu I, Obana M, Maeda M, Mohri T, Obika S, Fujio Y, Nakayama H. Phospholamban Inhibition by a Single Dose of Locked Nucleic Acid Antisense Oligonucleotide Improves Cardiac Contractility in Pressure Overload-Induced Systolic Dysfunction in Mice. J Cardiovasc Pharmacol Ther 2016; 22:273-282. [PMID: 27811197 DOI: 10.1177/1074248416676392] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Phospholamban (PLN) inhibition enhances calcium cycling and is a potential novel therapy for heart failure (HF). Antisense oligonucleotides (ASOs) are a promising tool for unmet medical needs. Nonviral vector use of locked nucleic acid (LNA)-modified ASOs (LNA-ASOs), which shows strong binding to target RNAs and is resistant to nuclease, is considered to have a potential for use in novel therapeutics in the next decades. Thus, the efficacy of a single-dose injection of LNA-ASO for cardiac disease needs to be elucidated. We assessed the therapeutic efficacy of a single-dose LNA-ASO injection targeting PLN in pressure overload-induced cardiac dysfunction. METHODS AND RESULTS Mice intravenously injected with Cy3-labeled LNA-ASO displayed Cy3 fluorescence in the liver and heart 24 hours after injection. Subsequently, male C57BL/6 mice were subjected to sham or transverse aortic constriction surgery; after 3 weeks, these were treated with PLN-targeting LNA-ASO (0.3 mg/kg) or scrambled LNA-ASO. Cardiac function was measured by echocardiography before and 1 week after injection. Phospholamban-targeting LNA-ASO treatment significantly improved fractional shortening (FS) by 6.5%, whereas administration of the scrambled LNA-ASO decreased FS by 4.0%. CONCLUSION Our study revealed that a single-dose injection of PLN-targeting LNA-ASO improved contractility in pressure overload-induced cardiac dysfunction, suggesting that LNA-ASO is a promising tool for hypertensive HF treatment.
Collapse
Affiliation(s)
- Hirofumi Morihara
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tsuyoshi Yamamoto
- 2 Laboratory of Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Harunori Oiwa
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Kota Tonegawa
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Daisuke Tsuchiyama
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Ikki Kawakatsu
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Masanori Obana
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Makiko Maeda
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Tomomi Mohri
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- 2 Laboratory of Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Yasushi Fujio
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Hiroyuki Nakayama
- 1 Laboratory of Clinical Science and Biomedicine, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
7
|
Yang S, Li XJ, Li S. Molecular mechanisms underlying Spinocerebellar Ataxia 17 (SCA17) pathogenesis. Rare Dis 2016; 4:e1223580. [PMID: 28032013 PMCID: PMC5154381 DOI: 10.1080/21675511.2016.1223580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/31/2016] [Accepted: 08/05/2016] [Indexed: 11/01/2022] Open
Abstract
Spinocerebellar ataxia 17 (SCA17) belongs to the family of 9 genetically inherited, late-onset neurodegenerative diseases, which are caused by polyglutamine (polyQ) expansion in different proteins. In SCA17, the polyQ expansion occurs in the TATA box binding protein (TBP), which functions as a general transcription factor. Patients with SCA17 suffer from a broad array of motor and non-motor defects, and their life expectancy is normally within 20 y after the initial appearance of symptoms. Currently there is no effective treatment, but remarkable efforts have been devoted to tackle this devastating disorder. In this review, we will summarize our current knowledge about the molecular mechanisms underlying the pathogenesis of SCA17, with a primary focus on transcriptional dysregulations. We believe that impaired transcriptional activities caused by mutant TBP with polyQ expansion is a major form of toxicity contributing to SCA17 pathogenesis, and rectifying the altered level of downstream transcripts represents a promising therapeutic approach for the treatment of SCA17.
Collapse
Affiliation(s)
- Su Yang
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| | - Xiao-Jiang Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Shihua Li
- Department of Human Genetics, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
8
|
Matsui M, Corey DR. Allele-selective inhibition of trinucleotide repeat genes. Drug Discov Today 2012; 17:443-50. [PMID: 22285529 PMCID: PMC3468950 DOI: 10.1016/j.drudis.2012.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/06/2011] [Accepted: 01/11/2012] [Indexed: 01/09/2023]
Abstract
Expanded trinucleotide repeats cause Huntington's disease (HD) and many other neurodegenerative disorders. There are no cures for these devastating illnesses and treatments are urgently needed. Each trinucleotide repeat disorder is the result of the mutation of just one gene, and agents that block expression of the mutant gene offer a promising option for treatment. Therapies that block expression of both mutant and wild-type alleles can have adverse effects, challenging researchers to develop strategies to lower levels of mutant protein while leaving adequate wild-type protein levels. Here, we review approaches that use synthetic nucleic acids to inhibit expression of trinucleotide repeat genes.
Collapse
Affiliation(s)
- Masayuki Matsui
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | | |
Collapse
|
9
|
Abstract
Polyglutamine neurodegenerative diseases result from the expansion of a trinucleotide CAG repeat, encoding a polyglutamine tract in the disease-causing protein. The process by which each polyglutamine protein exerts its toxicity is complex, involving a variety of mechanisms including transcriptional dysregulation, proteasome impairment and mitochondrial dysfunction. Thus, the most effective and widely applicable therapies are likely to be those designed to eliminate production of the mutant protein upstream of these deleterious effects. RNA-based approaches represent promising therapeutic strategies for polyglutamine diseases, offering the potential to suppress gene expression in a sequence-specific manner at the transcriptional and post-transcriptional levels. In particular, gene silencing therapies capable of discrimination between mutant and wildtype alleles, based on disease-linked polymorphisms or CAG repeat length, might prove crucial in cases where a loss of wild type function is deleterious. Novel methods, such as gene knockdown and replacement, seek to eliminate the technical difficulties associated with allele-specific silencing by avoiding the need to target specific mutations. With a variety of RNA technologies currently being developed to target multiple facets of polyglutamine pathogenesis, the emergence of an effective therapy seems imminent. However, numerous technical obstacles associated with design, discrimination and delivery must be overcome before RNA therapy can be effectively applied in the clinical setting.
Collapse
|
10
|
Krzyzosiak WJ, Sobczak K, Wojciechowska M, Fiszer A, Mykowska A, Kozlowski P. Triplet repeat RNA structure and its role as pathogenic agent and therapeutic target. Nucleic Acids Res 2011; 40:11-26. [PMID: 21908410 PMCID: PMC3245940 DOI: 10.1093/nar/gkr729] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This review presents detailed information about the structure of triplet repeat RNA and addresses the simple sequence repeats of normal and expanded lengths in the context of the physiological and pathogenic roles played in human cells. First, we discuss the occurrence and frequency of various trinucleotide repeats in transcripts and classify them according to the propensity to form RNA structures of different architectures and stabilities. We show that repeats capable of forming hairpin structures are overrepresented in exons, which implies that they may have important functions. We further describe long triplet repeat RNA as a pathogenic agent by presenting human neurological diseases caused by triplet repeat expansions in which mutant RNA gains a toxic function. Prominent examples of these diseases include myotonic dystrophy type 1 and fragile X-associated tremor ataxia syndrome, which are triggered by mutant CUG and CGG repeats, respectively. In addition, we discuss RNA-mediated pathogenesis in polyglutamine disorders such as Huntington's disease and spinocerebellar ataxia type 3, in which expanded CAG repeats may act as an auxiliary toxic agent. Finally, triplet repeat RNA is presented as a therapeutic target. We describe various concepts and approaches aimed at the selective inhibition of mutant transcript activity in experimental therapies developed for repeat-associated diseases.
Collapse
Affiliation(s)
- Wlodzimierz J Krzyzosiak
- Laboratory of Cancer Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.
| | | | | | | | | | | |
Collapse
|
11
|
Tsou WL, Soong BW, Paulson HL, Rodríguez-Lebrón E. Splice isoform-specific suppression of the Cav2.1 variant underlying spinocerebellar ataxia type 6. Neurobiol Dis 2011; 43:533-42. [PMID: 21550405 PMCID: PMC3169420 DOI: 10.1016/j.nbd.2011.04.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 04/08/2011] [Accepted: 04/21/2011] [Indexed: 01/23/2023] Open
Abstract
Spinocerebellar ataxia type 6 (SCA6) is an inherited neurodegenerative disease caused by a polyglutamine (polyQ) expansion in the Ca(V)2.1 voltage-gated calcium channel subunit (CACNA1A). There is currently no treatment for this debilitating disorder and thus a pressing need to develop preventative therapies. RNA interference (RNAi) has proven effective at halting disease progression in several models of spinocerebellar ataxia (SCA), including SCA types 1 and 3. However, in SCA6 and other dominantly inherited neurodegenerative disorders, RNAi-based strategies that selectively suppress expression of mutant alleles may be required. Using a Ca(V)2.1 mini-gene reporter system, we found that pathogenic CAG expansions in Ca(V)2.1 enhance splicing activity at the 3'end of the transcript, leading to a CAG repeat length-dependent increase in the levels of a polyQ-encoding Ca(V)2.1 mRNA splice isoform and the resultant disease protein. Taking advantage of this molecular phenomenon, we developed a novel splice isoform-specific (SIS)-RNAi strategy that selectively targets the polyQ-encoding Ca(V)2.1 splice variant. Selective suppression of transiently expressed and endogenous polyQ-encoding Ca(V)2.1 splice variants was achieved in a variety of cell-based models including a human neuronal cell line, using a new artificial miRNA-like delivery system. Moreover, the efficacy of gene silencing correlated with effective intracellular recognition and processing of SIS-RNAi miRNA mimics. These results lend support to the preclinical development of SIS-RNAi as a potential therapy for SCA6 and other dominantly inherited diseases.
Collapse
Affiliation(s)
- Wei-Ling Tsou
- Institute of Neuroscience, School of Life Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
Evers MM, Pepers BA, van Deutekom JCT, Mulders SAM, den Dunnen JT, Aartsma-Rus A, van Ommen GJB, van Roon-Mom WMC. Targeting several CAG expansion diseases by a single antisense oligonucleotide. PLoS One 2011; 6:e24308. [PMID: 21909428 PMCID: PMC3164722 DOI: 10.1371/journal.pone.0024308] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 08/04/2011] [Indexed: 12/16/2022] Open
Abstract
To date there are 9 known diseases caused by an expanded polyglutamine repeat, with the most prevalent being Huntington's disease. Huntington's disease is a progressive autosomal dominant neurodegenerative disorder for which currently no therapy is available. It is caused by a CAG repeat expansion in the HTT gene, which results in an expansion of a glutamine stretch at the N-terminal end of the huntingtin protein. This polyglutamine expansion plays a central role in the disease and results in the accumulation of cytoplasmic and nuclear aggregates. Here, we make use of modified 2'-O-methyl phosphorothioate (CUG)n triplet-repeat antisense oligonucleotides to effectively reduce mutant huntingtin transcript and protein levels in patient-derived Huntington's disease fibroblasts and lymphoblasts. The most effective antisense oligonucleotide, (CUG)(7), also reduced mutant ataxin-1 and ataxin-3 mRNA levels in spinocerebellar ataxia 1 and 3, respectively, and atrophin-1 in dentatorubral-pallidoluysian atrophy patient derived fibroblasts. This antisense oligonucleotide is not only a promising therapeutic tool to reduce mutant huntingtin levels in Huntington's disease but our results in spinocerebellar ataxia and dentatorubral-pallidoluysian atrophy cells suggest that this could also be applicable to other polyglutamine expansion disorders as well.
Collapse
Affiliation(s)
- Melvin M. Evers
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Barry A. Pepers
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Johan T. den Dunnen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gert-Jan B. van Ommen
- Center for Human and Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
13
|
Gagnon KT, Watts JK, Pendergraff HM, Montaillier C, Thai D, Potier P, Corey DR. Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. J Am Chem Soc 2011; 133:8404-7. [PMID: 21539318 PMCID: PMC3106116 DOI: 10.1021/ja200312y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oligonucleotides and their derivatives are a proven chemical strategy for modulating gene expression. However, their negative charge remains a challenge for delivery and target recognition inside cells. Here we show that oligonucleotide-oligospermine conjugates (Zip nucleic acids or ZNAs) can help overcome these shortcomings by serving as effective antisense and antigene agents. Conjugates containing DNA and locked nucleic acid (LNA) oligonucleotides are active, and oligospermine conjugation facilitates carrier-free cell uptake at nanomolar concentrations. Conjugates targeting the CAG triplet repeat within huntingtin (HTT) mRNA selectively inhibit expression of the mutant huntingtin protein. Conjugates targeting the promoter of the progesterone receptor (PR) function as antigene agents to block PR expression. These observations support further investigation of ZNA conjugates as gene silencing agents.
Collapse
Affiliation(s)
- Keith T. Gagnon
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Jonathan K. Watts
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Hannah M. Pendergraff
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | | | - Danielle Thai
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - Pierre Potier
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - David R. Corey
- Departments of Pharmacology and Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
14
|
Boudreau RL, Rodríguez-Lebrón E, Davidson BL. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet 2011; 20:R21-7. [PMID: 21459775 DOI: 10.1093/hmg/ddr137] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RNAi interference (RNAi) is a powerful gene silencing technology that has immense potential for treating a vast array of human ailments, for which suppressing disease-associated genes may provide clinical benefit. Here, we review the development of RNAi as a therapeutic modality for neurodegenerative diseases affecting the central nervous system (CNS). We overview promising preclinical data for the application of RNAi in the CNS and discuss key challenges (e.g. delivery and specificity) that remain as these approaches transition to the clinic.
Collapse
Affiliation(s)
- Ryan L Boudreau
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | |
Collapse
|
15
|
Hu J, Gagnon KT, Liu J, Watts JK, Syeda-Nawaz J, Bennett CF, Swayze EE, Randolph J, Chattopadhyaya J, Corey DR. Allele-selective inhibition of ataxin-3 (ATX3) expression by antisense oligomers and duplex RNAs. Biol Chem 2011; 392:315-25. [PMID: 21294677 DOI: 10.1515/bc.2011.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Spinocerebellar ataxia-3 (also known as Machado-Joseph disease) is an incurable neurodegenerative disorder caused by expression of a mutant variant of ataxin-3 (ATX3) protein. Inhibiting expression of ATX3 would provide a therapeutic strategy, but indiscriminant inhibition of both wild-type and mutant ATX3 might lead to undesirable side effects. An ideal silencing agent would block expression of mutant ATX3 while leaving expression of wild-type ATX3 intact. We have previously observed that peptide nucleic acid (PNA) conjugates targeting the expanded CAG repeat within ATX3 mRNA block expression of both alleles. We have now identified additional PNAs capable of inhibiting ATX3 expression that vary in length and in the nature of the conjugated cation chain. We can also achieve potent and selective inhibition using duplex RNAs containing one or more mismatches relative to the CAG repeat. Anti-CAG antisense bridged nucleic acid oligonucleotides that lack a cationic domain are potent inhibitors but are not allele-selective. Allele-selective inhibitors of ATX3 expression provide insights into the mechanism of selectivity and promising lead compounds for further development and in vivo investigation.
Collapse
Affiliation(s)
- Jiaxin Hu
- Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gagnon KT, Pendergraff HM, Deleavey GF, Swayze EE, Potier P, Randolph J, Roesch EB, Chattopadhyaya J, Damha MJ, Bennett CF, Montaillier C, Lemaitre M, Corey DR. Allele-selective inhibition of mutant huntingtin expression with antisense oligonucleotides targeting the expanded CAG repeat. Biochemistry 2010; 49:10166-78. [PMID: 21028906 PMCID: PMC2991413 DOI: 10.1021/bi101208k] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Huntington's disease (HD) is a currently incurable neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat within the huntingtin (HTT) gene. Therapeutic approaches include selectively inhibiting the expression of the mutated HTT allele while conserving function of the normal allele. We have evaluated a series of antisense oligonucleotides (ASOs) targeted to the expanded CAG repeat within HTT mRNA for their ability to selectively inhibit expression of mutant HTT protein. Several ASOs incorporating a variety of modifications, including bridged nucleic acids and phosphorothioate internucleotide linkages, exhibited allele-selective silencing in patient-derived fibroblasts. Allele-selective ASOs did not affect the expression of other CAG repeat-containing genes and selectivity was observed in cell lines containing minimal CAG repeat lengths representative of most HD patients. Allele-selective ASOs left HTT mRNA intact and did not support ribonuclease H activity in vitro. We observed cooperative binding of multiple ASO molecules to CAG repeat-containing HTT mRNA transcripts in vitro. These results are consistent with a mechanism involving inhibition at the level of translation. ASOs targeted to the CAG repeat of HTT provide a starting point for the development of oligonucleotide-based therapeutics that can inhibit gene expression with allelic discrimination in patients with HD.
Collapse
Affiliation(s)
- Keith T. Gagnon
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| | - Hannah M. Pendergraff
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| | - Glen F. Deleavey
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6
| | - Eric E. Swayze
- Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California, USA, 92008
| | - Pierre Potier
- SIGMA Custom Products, Genopole Campus 1, 5 rue Desbruères, 91030 Evry Cedex, France
| | - John Randolph
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - Eric B. Roesch
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - Jyoti Chattopadhyaya
- Department of Bioorganic Chemistry, Uppsala University, Biomedical Center, Box 581, S-751 23 Uppsala, Sweden
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, Quebec, Canada, H3A 2K6
| | - C. Frank Bennett
- Isis Pharmaceuticals, 1896 Rutherford Road, Carlsbad, California, USA, 92008
| | | | - Marc Lemaitre
- Glen Research Corporation, 22825 Davis Drive, Sterling, Virginia, USA, 20164
| | - David R. Corey
- Department of Pharmacology and Biochemistry, UT Southwestern Medical Center, Dallas, Texas, USA, 75390-9041
| |
Collapse
|