1
|
Ghazaei C, Line El Helou M. Beyond proteostasis: Roles of type I chaperonins in bacterial pathogenesis. J Med Microbiol 2018; 67:1203-1211. [PMID: 30074472 DOI: 10.1099/jmm.0.000811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all bacterial species express two or more chaperonin genes. Recent data indicate that type I chaperonins may be key players in bacterial infections. This is partly due to the well-known contribution of chaperonins in cellular proteostasis, the latter being compromised during bacterial host infection. In addition to their protein-folding activity, it has been revealed that certain chaperonins also exhibit moonlighting functions that can contribute in different ways to bacterial pathogenicity. Examples range from inducing adhesion molecules in Chlamydophila pneumoniae to supporting intracellular survival in Mycobacterium tuberculosis and Leishmania donovani, to inducing cytokines in Helicobacter pylori to promoting antimicrobial resistance in Escherichia coli, amongst others. This article provides a thorough reviews of our current understanding of the different mechanisms involving type I chaperonins during bacteria-host interactions, and suggests new areas to be explored and the potential of finding new targets for fighting bacterial infections.
Collapse
Affiliation(s)
- Ciamak Ghazaei
- 1Department of Microbiology, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
2
|
Weinert LA, Welch JJ. Why Might Bacterial Pathogens Have Small Genomes? Trends Ecol Evol 2017; 32:936-947. [PMID: 29054300 DOI: 10.1016/j.tree.2017.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Bacteria that cause serious disease often have smaller genomes, and fewer genes, than their nonpathogenic, or less pathogenic relatives. Here, we review evidence for the generality of this association, and summarise the various reasons why the association might hold. We focus on the population genetic processes that might lead to reductive genome evolution, and show how several of these could be connected to pathogenicity. We find some evidence for most of the processes having acted in bacterial pathogens, including several different modes of genome reduction acting in the same lineage. We argue that predictable processes of genome evolution might not reflect any common underlying process.
Collapse
Affiliation(s)
- Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - John J Welch
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
3
|
An YJ, Rowland SE, Na JH, Spigolon D, Hong SK, Yoon YJ, Lee JH, Robb FT, Cha SS. Structural and mechanistic characterization of an archaeal-like chaperonin from a thermophilic bacterium. Nat Commun 2017; 8:827. [PMID: 29018216 PMCID: PMC5635000 DOI: 10.1038/s41467-017-00980-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
The chaperonins (CPNs) are megadalton sized hollow complexes with two cavities that open and close to encapsulate non-native proteins. CPNs are assigned to two sequence-related groups that have distinct allosteric mechanisms. In Group I CPNs a detachable co-chaperone, GroES, closes the chambers whereas in Group II a built-in lid closes the chambers. Group I CPNs have a bacterial ancestry, whereas Group II CPNs are archaeal in origin. Here we describe open and closed crystal structures representing a new phylogenetic branch of CPNs. These Group III CPNs are divergent in sequence and structure from extant CPNs, but are closed by a built-in lid like Group II CPNs. A nucleotide-sensing loop, present in both Group I and Group II CPNs, is notably absent. We identified inter-ring pivot joints that articulate during ring closure. These Group III CPNs likely represent a relic from the ancestral CPN that formed distinct bacterial and archaeal branches. Chaperonins (CPNs) are ATP-dependent protein-folding machines. Here the authors present the open and closed crystal structures of a Group III CPN from the thermophilic bacterium Carboxydothermus hydrogenoformans, discuss its mechanism and structurally compare it with Group I and II CPNs.
Collapse
Affiliation(s)
- Young Jun An
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Sara E Rowland
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Jung-Hyun Na
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Dario Spigolon
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA.,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA
| | - Seung Kon Hong
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yeo Joon Yoon
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jung-Hyun Lee
- Marine Biotechnology Research Center, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea
| | - Frank T Robb
- Department of Microbiology and Immunology, University of Maryland, Baltimore, MD, 21201, USA. .,Institute of Marine and Environmental Technology, Baltimore, MD, 21201, USA.
| | - Sun-Shin Cha
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
4
|
Genome-Wide Transcriptional Dynamics in the Companion Bacterial Symbionts of the Glassy-Winged Sharpshooter (Cicadellidae: Homalodisca vitripennis) Reveal Differential Gene Expression in Bacteria Occupying Multiple Host Organs. G3-GENES GENOMES GENETICS 2017; 7:3073-3082. [PMID: 28705905 PMCID: PMC5592932 DOI: 10.1534/g3.117.044255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The agricultural pest known as the glassy-winged sharpshooter (GWSS) or Homalodisca vitripennis (Hemiptera: Cicadellidae) harbors two bacterial symbionts, “Candidatus Sulcia muelleri” and “Ca. Baumannia cicadellinicola,” which provide the 10 essential amino acids (EAAs) that are limited in the host plant-sap diet. Although they differ in origin and symbiotic age, both bacteria have experienced extensive genome degradation resulting from their ancient restriction to specialized host organs (bacteriomes) that provide cellular support and ensure vertical transmission. GWSS bacteriomes are of different origins and distinctly colored red and yellow. While Sulcia occupies the yellow bacteriome, Baumannia inhabits both. Aside from genomic predictions, little is currently known about the cellular functions of these bacterial symbionts, particularly whether Baumannia in different bacteriomes perform different roles in the symbiosis. To address these questions, we conducted a replicated, strand-specific RNA-seq experiment to assay global gene expression patterns in Sulcia and Baumannia. Despite differences in genomic capabilities, the symbionts exhibit similar profiles of their most highly expressed genes, including those involved in nutrition synthesis and protein stability (chaperonins dnaK and groESL) that likely aid impaired proteins. Baumannia populations in separate bacteriomes differentially express genes enriched in essential nutrient synthesis, including EAAs (histidine and methionine) and B vitamins (biotin and thiamine). Patterns of differential gene expression further reveal complexity in methionine synthesis. Baumannia’s capability to differentially express genes is unusual, as ancient symbionts lose the capability to independently regulate transcription. Combined with previous microscopy, our results suggest that the GWSS may rely on distinct Baumannia populations for essential nutrition and vertical transmission.
Collapse
|
5
|
Novel chaperonins are prevalent in the virioplankton and demonstrate links to viral biology and ecology. ISME JOURNAL 2017; 11:2479-2491. [PMID: 28731469 PMCID: PMC5649160 DOI: 10.1038/ismej.2017.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/26/2017] [Accepted: 05/06/2017] [Indexed: 12/18/2022]
Abstract
Chaperonins are protein-folding machinery found in all cellular life. Chaperonin genes have been documented within a few viruses, yet, surprisingly, analysis of metagenome sequence data indicated that chaperonin-carrying viruses are common and geographically widespread in marine ecosystems. Also unexpected was the discovery of viral chaperonin sequences related to thermosome proteins of archaea, indicating the presence of virioplankton populations infecting marine archaeal hosts. Virioplankton large subunit chaperonin sequences (GroELs) were divergent from bacterial sequences, indicating that viruses have carried this gene over long evolutionary time. Analysis of viral metagenome contigs indicated that: the order of large and small subunit genes was linked to the phylogeny of GroEL; both lytic and temperate phages may carry group I chaperonin genes; and viruses carrying a GroEL gene likely have large double-stranded DNA (dsDNA) genomes (>70 kb). Given these connections, it is likely that chaperonins are critical to the biology and ecology of virioplankton populations that carry these genes. Moreover, these discoveries raise the intriguing possibility that viral chaperonins may more broadly alter the structure and function of viral and cellular proteins in infected host cells.
Collapse
|
6
|
Rowland SE, Robb FT. Structure, Function and Evolution of the Hsp60 Chaperonins. PROKARYOTIC CHAPERONINS 2017. [DOI: 10.1007/978-981-10-4651-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Fares MA. Coevolution Analysis Illuminates the Evolutionary Plasticity of the Chaperonin System GroES/L. STRESS AND ENVIRONMENTAL REGULATION OF GENE EXPRESSION AND ADAPTATION IN BACTERIA 2016:796-811. [DOI: 10.1002/9781119004813.ch77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
8
|
The evolution of protein moonlighting: adaptive traps and promiscuity in the chaperonins. Biochem Soc Trans 2015; 42:1709-14. [PMID: 25399594 DOI: 10.1042/bst20140225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Moonlighting proteins exhibit functions that are alternative to their main role in the cell. Heat-shock proteins, also known as molecular chaperones, are now recognized for their wide range of activities in and/or outside the cell, being prominent examples of moonlighting proteins. Chaperonins are highly conserved molecular chaperones that fold other proteins into their native conformation allowing them to carry out essential functions in the cell. Activities alternative to folding have been reported for the chaperonin (Cpn) 60 protein. Preservation of various alternative functions in one protein conflicts with the optimization of each of the functions. What evolutionary mechanisms have allowed the persistence of moonlighting proteins, and in particular the chaperonins, remains a mystery. In the present article, I argue that mechanisms that increase the resistance of phenotypes to genetic and environmental perturbations enable the persistence of a reservoir of genetic variants, each potentially codifying for a distinct function. Gene duplication is one such mechanism that has characterized the expansion and has been concomitant with the emergence of novel functions in these protein families. Indeed, Cpn60 performs a large list of folding-independent functions, including roles in the transmission of viruses from insects to plants and stimulation of the immune system, among others. In addition to the innovation promoted by gene duplication, I discuss that the Cpn60 protein comprises a hidden amino acid combinatorial code that may well be responsible for its ability to develop novel functions while maintaining an optimized folding ability. The present review points to a complex model of evolution of protein moonlighting.
Collapse
|
9
|
Kumar CMS, Mande SC, Mahajan G. Multiple chaperonins in bacteria--novel functions and non-canonical behaviors. Cell Stress Chaperones 2015; 20:555-74. [PMID: 25986150 PMCID: PMC4463927 DOI: 10.1007/s12192-015-0598-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/29/2015] [Accepted: 04/30/2015] [Indexed: 01/05/2023] Open
Abstract
Chaperonins are a class of molecular chaperones that assemble into a large double ring architecture with each ring constituting seven to nine subunits and enclosing a cavity for substrate encapsulation. The well-studied Escherichia coli chaperonin GroEL binds non-native substrates and encapsulates them in the cavity thereby sequestering the substrates from unfavorable conditions and allowing the substrates to fold. Using this mechanism, GroEL assists folding of about 10-15 % of cellular proteins. Surprisingly, about 30 % of the bacteria express multiple chaperonin genes. The presence of multiple chaperonins raises questions on whether they increase general chaperoning ability in the cell or have developed specific novel cellular roles. Although the latter view is widely supported, evidence for the former is beginning to appear. Some of these chaperonins can functionally replace GroEL in E. coli and are generally indispensable, while others are ineffective and likewise are dispensable. Additionally, moonlighting functions for several chaperonins have been demonstrated, indicating a functional diversity among the chaperonins. Furthermore, proteomic studies have identified diverse substrate pools for multiple chaperonins. We review the current perception on multiple chaperonins and their physiological and functional specificities.
Collapse
Affiliation(s)
- C M Santosh Kumar
- Laboratory of Structural Biology, National Centre for Cell Science, Pune, 411007, India,
| | | | | |
Collapse
|
10
|
Survival and innovation: The role of mutational robustness in evolution. Biochimie 2014; 119:254-61. [PMID: 25447135 DOI: 10.1016/j.biochi.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022]
Abstract
Biological systems are resistant to perturbations caused by the environment and by the intrinsic noise of the system. Robustness to mutations is a particular aspect of robustness in which the phenotype is resistant to genotypic variation. Mutational robustness has been linked to the ability of the system to generate heritable genetic variation (a property known as evolvability). It is known that greater robustness leads to increased evolvability. Therefore, mechanisms that increase mutational robustness fuel evolvability. Two such mechanisms, molecular chaperones and gene duplication, have been credited with enormous importance in generating functional diversity through the increase of system's robustness to mutational insults. However, the way in which such mechanisms regulate robustness remains largely uncharacterized. In this review, I provide evidence in support of the role of molecular chaperones and gene duplication in innovation. Specifically, I present evidence that these mechanisms regulate robustness allowing unstable systems to survive long periods of time, and thus they provide opportunity for other mutations to compensate the destabilizing effects of functionally innovative mutations. The findings reported in this study set new questions with regards to the synergy between robustness mechanisms and how this synergy can alter the adaptive landscape of proteins. The ideas proposed in this article set the ground for future research in the understanding of the role of robustness in evolution.
Collapse
|
11
|
Heinz E, Lithgow T. A comprehensive analysis of the Omp85/TpsB protein superfamily structural diversity, taxonomic occurrence, and evolution. Front Microbiol 2014; 5:370. [PMID: 25101071 PMCID: PMC4104836 DOI: 10.3389/fmicb.2014.00370] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 07/02/2014] [Indexed: 01/25/2023] Open
Abstract
Members of the Omp85/TpsB protein superfamily are ubiquitously distributed in Gram-negative bacteria, and function in protein translocation (e.g., FhaC) or the assembly of outer membrane proteins (e.g., BamA). Several recent findings are suggestive of a further level of variation in the superfamily, including the identification of the novel membrane protein assembly factor TamA and protein translocase PlpD. To investigate the diversity and the causal evolutionary events, we undertook a comprehensive comparative sequence analysis of the Omp85/TpsB proteins. A total of 10 protein subfamilies were apparent, distinguished in their domain structure and sequence signatures. In addition to the proteins FhaC, BamA, and TamA, for which structural and functional information is available, are families of proteins with so far undescribed domain architectures linked to the Omp85 β-barrel domain. This study brings a classification structure to a dynamic protein superfamily of high interest given its essential function for Gram-negative bacteria as well as its diverse domain architecture, and we discuss several scenarios of putative functions of these so far undescribed proteins.
Collapse
Affiliation(s)
- Eva Heinz
- Department of Microbiology, Monash University Melbourne, VIC, Australia ; Victorian Bioinformatics Consortium, Monash University Melbourne, VIC, Australia
| | - Trevor Lithgow
- Department of Microbiology, Monash University Melbourne, VIC, Australia
| |
Collapse
|
12
|
Chowdhury N, Kingston JJ, Whitaker WB, Carpenter MR, Cohen A, Boyd EF. Sequence and expression divergence of an ancient duplication of the chaperonin groESEL operon in Vibrio species. MICROBIOLOGY-SGM 2014; 160:1953-1963. [PMID: 24913685 DOI: 10.1099/mic.0.079194-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Heat-shock proteins are molecular chaperones essential for protein folding, degradation and trafficking. The human pathogen Vibrio vulnificus encodes a copy of the groESEL operon in both chromosomes and these genes share <80 % similarity with each other. Comparative genomic analysis was used to determine whether this duplication is prevalent among Vibrionaceae specifically or Gammaproteobacteria in general. Among the Vibrionaceae complete genome sequences in the database (31 species), seven Vibrio species contained a copy of groESEL in each chromosome, including the human pathogens Vibrio cholerae, Vibrio parahaemolyticus and V. vulnificus. Phylogenetic analysis of GroEL among the Gammaproteobacteria indicated that GroESEL-1 encoded in chromosome I was the ancestral copy and GroESEL-2 in chromosome II arose by an ancient gene duplication event. Interestingly, outside of the Vibrionaceae within the Gammaproteobacteria, groESEL chromosomal duplications were rare among the 296 genomes examined; only five additional species contained two or more copies. Examination of the expression pattern of groEL from V. vulnificus cells grown under different conditions revealed differential expression between the copies. The data demonstrate that groEL-1 was more highly expressed during growth in exponential phase than groEL-2 and a similar pattern was also found in both V. cholerae and V. parahaemolyticus. Overall these data suggest that retention of both copies of groESEL in Vibrio species may confer an evolutionary advantage.
Collapse
Affiliation(s)
- Nityananda Chowdhury
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Joseph J Kingston
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - W Brian Whitaker
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Megan R Carpenter
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Analuisa Cohen
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - E Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
13
|
Bogumil D, Alvarez-Ponce D, Landan G, McInerney JO, Dagan T. Integration of two ancestral chaperone systems into one: the evolution of eukaryotic molecular chaperones in light of eukaryogenesis. Mol Biol Evol 2013; 31:410-8. [PMID: 24188869 PMCID: PMC3907059 DOI: 10.1093/molbev/mst212] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Eukaryotic genomes are mosaics of genes acquired from their prokaryotic ancestors, the eubacterial endosymbiont that gave rise to the mitochondrion and its archaebacterial host. Genomic footprints of the prokaryotic merger at the origin of eukaryotes are still discernable in eukaryotic genomes, where gene expression and function correlate with their prokaryotic ancestry. Molecular chaperones are essential in all domains of life as they assist the functional folding of their substrate proteins and protect the cell against the cytotoxic effects of protein misfolding. Eubacteria and archaebacteria code for slightly different chaperones, comprising distinct protein folding pathways. Here we study the evolution of the eukaryotic protein folding pathways following the endosymbiosis event. A phylogenetic analysis of all 64 chaperones encoded in the Saccharomyces cerevisiae genome revealed 25 chaperones of eubacterial ancestry, 11 of archaebacterial ancestry, 10 of ambiguous prokaryotic ancestry, and 18 that may represent eukaryotic innovations. Several chaperone families (e.g., Hsp90 and Prefoldin) trace their ancestry to only one prokaryote group, while others, such as Hsp40 and Hsp70, are of mixed ancestry, with members contributed from both prokaryotic ancestors. Analysis of the yeast chaperone–substrate interaction network revealed no preference for interaction between chaperones and substrates of the same origin. Our results suggest that the archaebacterial and eubacterial protein folding pathways have been reorganized and integrated into the present eukaryotic pathway. The highly integrated chaperone system of yeast is a manifestation of the central role of chaperone-mediated folding in maintaining cellular fitness. Most likely, both archaebacterial and eubacterial chaperone systems were essential at the very early stages of eukaryogenesis, and the retention of both may have offered new opportunities for expanding the scope of chaperone-mediated folding.
Collapse
Affiliation(s)
- David Bogumil
- Institute of Microbiology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | | | | | | | | |
Collapse
|
14
|
Henderson B, Fares MA, Lund PA. Chaperonin 60: a paradoxical, evolutionarily conserved protein family with multiple moonlighting functions. Biol Rev Camb Philos Soc 2013; 88:955-87. [DOI: 10.1111/brv.12037] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 02/07/2023]
Affiliation(s)
- Brian Henderson
- Department of Microbial Diseases, UCL-Eastman Dental Institute; University College London; London WC1X 8LD U.K
| | - Mario A. Fares
- Department of Genetics; University of Dublin, Trinity College Dublin; Dublin 2 Ireland
- Department of Abiotic Stress; Instituto de Biologia Molecular y Celular de Plantas, Consejo Superior de Investigaciones Cientificas (CSIC-UPV); Valencia 46022 Spain
| | - Peter A. Lund
- School of Biosciences; University of Birmingham; Birmingham B15 2TT U.K
| |
Collapse
|
15
|
Bogumil D, Dagan T. Cumulative impact of chaperone-mediated folding on genome evolution. Biochemistry 2012; 51:9941-53. [PMID: 23167595 DOI: 10.1021/bi3013643] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Molecular chaperones support protein folding and unfolding along with assembly and translocation of protein complexes. Chaperones have been recognized as important mediators between an organismal genotype and phenotype as well as important maintainers of cellular fitness under environmental conditions that induce high mutational loads. Here we review recent studies revealing that the folding assistance supplied by chaperones is evident in genomic sequences implicating chaperone-mediated folding as an influential factor during protein evolution. Interaction of protein with chaperones ensures a proper folding and function, yet an adaptation to obligatory dependence on such assistance may be irreversible, representing an evolutionary trap. A correlation between the requirement for a chaperone and protein expression level indicates that the evolution of substrate-chaperone interaction is bounded by the required substrate abundance within the cell. Accumulating evidence suggests that the utility of chaperones is governed by a delicate balance between their help in mitigating the risks of protein misfolding and aggregate formation on one hand and the slower rate of protein maturation and the energetic cost of chaperone synthesis on the other.
Collapse
Affiliation(s)
- David Bogumil
- Institute for Genomic Microbiology, Heinrich-Heine University of Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
16
|
Caffrey BE, Williams TA, Jiang X, Toft C, Hokamp K, Fares MA. Proteome-wide analysis of functional divergence in bacteria: exploring a host of ecological adaptations. PLoS One 2012; 7:e35659. [PMID: 22563391 PMCID: PMC3338524 DOI: 10.1371/journal.pone.0035659] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/21/2012] [Indexed: 12/31/2022] Open
Abstract
Functional divergence is the process by which new genes and functions originate through the modification of existing ones. Both genetic and environmental factors influence the evolution of new functions, including gene duplication or changes in the ecological requirements of an organism. Novel functions emerge at the expense of ancestral ones and are generally accompanied by changes in the selective forces at constrained protein regions. We present software capable of analyzing whole proteomes, identifying putative amino acid replacements leading to functional change in each protein and performing statistical tests on all tabulated data. We apply this method to 750 complete bacterial proteomes to identify high-level patterns of functional divergence and link these patterns to ecological adaptations. Proteome-wide analyses of functional divergence in bacteria with different ecologies reveal a separation between proteins involved in information processing (Ribosome biogenesis etc.) and those which are dependent on the environment (energy metabolism, defense etc.). We show that the evolution of pathogenic and symbiotic bacteria is constrained by their association with the host, and also identify unusual events of functional divergence even in well-studied bacteria such as Escherichia coli. We present a description of the roles of phylogeny and ecology in functional divergence at the level of entire proteomes in bacteria.
Collapse
Affiliation(s)
- Brian E. Caffrey
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Tom A. Williams
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Xiaowei Jiang
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Christina Toft
- Department of Molecular Evolution, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Karsten Hokamp
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
| | - Mario A. Fares
- Department of Genetics, University of Dublin, Trinity College, Dublin, Ireland
- Integrative Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas, CSIC-Universidad Politécnica de Valencia (UPV), Valencia, Spain
- * E-mail:
| |
Collapse
|
17
|
Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Res Microbiol 2011; 162:877-87. [DOI: 10.1016/j.resmic.2011.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 05/09/2011] [Indexed: 11/23/2022]
|
18
|
Jiang X, Fares MA. Functional Diversification of the Twin-Arginine Translocation Pathway Mediates the Emergence of Novel Ecological Adaptations. Mol Biol Evol 2011; 28:3183-93. [DOI: 10.1093/molbev/msr154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
19
|
Bruneel O, Volant A, Gallien S, Chaumande B, Casiot C, Carapito C, Bardil A, Morin G, Brown GE, Personné CJ, Le Paslier D, Schaeffer C, Van Dorsselaer A, Bertin PN, Elbaz-Poulichet F, Arsène-Ploetze F. Characterization of the active bacterial community involved in natural attenuation processes in arsenic-rich creek sediments. MICROBIAL ECOLOGY 2011; 61:793-810. [PMID: 21318282 DOI: 10.1007/s00248-011-9808-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 01/20/2011] [Indexed: 05/08/2023]
Abstract
Acid mine drainage of the Carnoulès mine (France) is characterized by acid waters containing high concentrations of arsenic and iron. In the first 30 m along the Reigous, a small creek draining the site, more than 38% of the dissolved arsenic was removed by co-precipitation with Fe(III), in agreement with previous studies, which suggest a role of microbial activities in the co-precipitation of As(III) and As(V) with Fe(III) and sulfate. To investigate how this particular ecosystem functions, the bacterial community was characterized in water and sediments by 16S rRNA encoding gene library analysis. Based on the results obtained using a metaproteomic approach on sediments combined with high-sensitivity HPLC-chip spectrometry, several GroEL orthologs expressed by the community were characterized, and the active members of the prokaryotic community inhabiting the creek sediments were identified. Many of these bacteria are β-proteobacteria such as Gallionella and Thiomonas, but γ-proteobacteria such as Acidithiobacillus ferrooxidans and α-proteobacteria such as Acidiphilium, Actinobacteria, and Firmicutes were also detected.
Collapse
Affiliation(s)
- Odile Bruneel
- Laboratoire HydroSciences Montpellier, UMR5569 (CNRS-IRD-Universités Montpellier I et II), Université Montpellier II, CC MSE, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Host-adapted bacteria include mutualists and pathogens of animals, plants and insects. Their study is therefore important for biotechnology, biodiversity and human health. The recent rapid expansion in bacterial genome data has provided insights into the adaptive, diversifying and reductive evolutionary processes that occur during host adaptation. The results have challenged many pre-existing concepts built from studies of laboratory bacterial strains. Furthermore, recent studies have revealed genetic changes associated with transitions from parasitism to mutualism and opened new research avenues to understand the functional reshaping of bacteria as they adapt to growth in the cytoplasm of a eukaryotic host.
Collapse
|
21
|
Warnecke T, Rocha EPC. Function-specific accelerations in rates of sequence evolution suggest predictable epistatic responses to reduced effective population size. Mol Biol Evol 2011; 28:2339-49. [PMID: 21349981 DOI: 10.1093/molbev/msr054] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Changes in effective population size impinge on patterns of molecular evolution. Notably, slightly deleterious mutations are more likely to drift to fixation in smaller populations, which should typically also lead to an overall acceleration in the rates of evolution. This prediction has been validated empirically for several endosymbiont and island taxa. Here, we first show that rate accelerations are also evident in bacterial pathogens whose recent shifts in virulence make them prime candidates for reduced effective population size: Bacillus anthracis, Bordetella parapertussis, Mycobacterium leprae, Salmonella enterica typhi, Shigella spp., and Yersinia pestis. Using closely related genomes to analyze substitution rate dynamics across six phylogenetically independent bacterial clades, we demonstrate that relative rates of coding sequence evolution are biased according to gene functional category. Notably, genes that buffer against slightly deleterious mutations, such as chaperones, experience stronger rate accelerations than other functional classes at both nonsynonymous and synonymous sites. Although theory predicts altered evolutionary dynamics for buffer loci in the face of accumulating deleterious mutations, to observe even stronger rate accelerations is surprising. We suggest that buffer loci experience elevated substitution rates because the accumulation of deleterious mutations in the remainder of the genome favors compensatory substitutions in trans. Critically, the hyper-acceleration is evident across phylogenetically independent clades, supporting the hypothesis that reductions in effective population size predictably induce epistatic responses in genes that buffer against slightly deleterious mutations.
Collapse
Affiliation(s)
- Tobias Warnecke
- Department of Biology and Biochemistry, University of Bath, Bath, UK.
| | | |
Collapse
|
22
|
Abstract
It is now well understood that, although proteins fold spontaneously (in a thermodynamic sense), many nevertheless require the assistance of helpers called molecular chaperones to reach their correct and active folded state in living cells. This is because the pathways of protein folding are full of traps for the unwary: the forces that drive proteins into their folded states can also drive them into insoluble aggregates, and, particularly when cells are stressed, this can lead, without prevention or correction, to cell death. The chaperonins are a family of molecular chaperones, practically ubiquitous in all living organisms, which possess a remarkable structure and mechanism of action. They act as nanoboxes in which proteins can fold, isolated from their environment and from other partners with which they might, with potentially deleterious consequences, interact. The opening and closing of these boxes is timed by the binding and hydrolysis of ATP. The chaperonins which are found in bacteria are extremely well characterized, and, although those found in archaea (also known as thermosomes) and eukaryotes have received less attention, our understanding of these proteins is constantly improving. This short review will summarize what we know about chaperonin function in the cell from studies on the archaeal chaperonins, and show how recent work is improving our understanding of this essential class of molecular chaperones.
Collapse
|
23
|
Rytkönen KT, Williams TA, Renshaw GM, Primmer CR, Nikinmaa M. Molecular Evolution of the Metazoan PHD–HIF Oxygen-Sensing System. Mol Biol Evol 2011; 28:1913-26. [DOI: 10.1093/molbev/msr012] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
24
|
Abstract
Chaperonins (CPN) are ubiquitous oligomeric protein machines that mediate the ATP-dependent folding of polypeptide chains. These chaperones have not only been assigned stress response and normal housekeeping functions but also have a role in certain human disease states. A longstanding convention divides CPNs into two groups that share many conserved sequence motifs but differ in both structure and distribution. Group I complexes are the well known GroEL/ES heat-shock proteins in bacteria, that also occur in some species of mesophilic archaea and in the endosymbiotic organelles of eukaryotes. Group II CPNs are found only in the cytosol of archaea and eukaryotes. Here we report a third, divergent group of CPNs found in several species of bacteria. We propose to name these Group III CPNs because of their distant relatedness to both Group I and II CPNs as well as their unique genomic context, within the hsp70 operon. The prototype Group III CPN, Carboxydothermus hydrogenoformans chaperonin (Ch-CPN), is able to refold denatured proteins in an ATP-dependent manner and is structurally similar to the Group II CPNs, forming a 16-mer with each subunit contributing to a flexible lid domain. The Group III CPN represent a divergent group of bacterial CPNs distinct from the GroEL/ES CPN found in all bacteria. The Group III lineage may represent an ancient horizontal gene transfer from an archaeon into an early Firmicute lineage. An analysis of their functional and structural characteristics may provide important insights into the early history of this ubiquitous family of proteins.
Collapse
Affiliation(s)
- Stephen M. Techtmann
- Institute of Marine and Environmental Technology, Program in the Biology of Model Systems, 701 East Pratt Street, Baltimore, MD 21202 and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201
| | - Frank T. Robb
- Institute of Marine and Environmental Technology, Program in the Biology of Model Systems, 701 East Pratt Street, Baltimore, MD 21202 and Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD 21201
| |
Collapse
|