1
|
Deng J, Du Z, Li L, Zhu M, Zhao H. Phase separation in DNA repair: orchestrating the cellular response to genomic stability. PeerJ 2025; 13:e19402. [PMID: 40330699 PMCID: PMC12051939 DOI: 10.7717/peerj.19402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/09/2025] [Indexed: 05/08/2025] Open
Abstract
DNA repair is a hierarchically organized, spatially and temporally regulated process involving numerous repair factors that respond to various types of damage. Despite decades of research, the mechanisms by which these factors are recruited to and depart from repair sites have been a subject of intrigue. Recent advancements in the field have increasingly highlighted the role of phase separation as a critical facilitator of the efficiency of DNA repair. This review emphasizes how phase separation enhances the concentration and coordination of repair factors at damage sites, optimizing repair efficiency. Understanding how dysregulation of phase separation can impair DNA repair and alter nuclear organization, potentially leading to diseases such as cancer and neurodegenerative disorders, is crucial. This manuscript provides a comprehensive understanding of the pivotal role of phase separation in DNA repair, sheds light on the current research, and suggests potential future directions for research and therapeutic interventions.
Collapse
Affiliation(s)
- Juxin Deng
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Zhaoyang Du
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lei Li
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Institute of Emergency and Critical Care Medicine, Bengbu, Anhui, China
| | - Min Zhu
- School of Life Science, Anhui Agriculture University, Hefei, Anhui, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Institute of Emergency and Critical Care Medicine, Bengbu, Anhui, China
| |
Collapse
|
2
|
Llerena Schiffmacher DA, Pai YJ, Pines A, Vermeulen W. Transcription-coupled repair: tangled up in convoluted repair. FEBS J 2025. [PMID: 40272095 DOI: 10.1111/febs.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/08/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Significant progress has been made in understanding the mechanism of transcription-coupled nucleotide excision repair (TC-NER); however, numerous aspects remain elusive, including TC-NER regulation, lesion-specific and cell type-specific complex composition, structural insights, and lesion removal dynamics in living cells. This review summarizes and discusses recent advancements in TC-NER, focusing on newly identified interactors, mechanistic insights from cryo-electron microscopy (Cryo-EM) studies and live cell imaging, and the contribution of post-translational modifications (PTMs), such as ubiquitin, in regulating TC-NER. Furthermore, we elaborate on the consequences of TC-NER deficiencies and address the role of accumulated damage and persistent lesion-stalled RNA polymerase II (Pol II) as major drivers of the disease phenotype of Cockayne syndrome (CS) and its related disorders. In this context, we also discuss the severe effects of transcription-blocking lesions (TBLs) on neurons, highlighting their susceptibility to damage. Lastly, we explore the potential of investigating three-dimensional (3D) chromatin structure and phase separation to uncover further insights into this essential DNA repair pathway.
Collapse
Affiliation(s)
- Diana A Llerena Schiffmacher
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yun Jin Pai
- Master Scientific Illustrations, Department of Anatomy and Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, The Netherlands
| | - Alex Pines
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Ali I, Xu F, Peng Q, Qiu J. The dilemma of nuclear mechanical forces in DNA damage and repair. Biochem Biophys Res Commun 2025; 758:151639. [PMID: 40121966 DOI: 10.1016/j.bbrc.2025.151639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/13/2025] [Accepted: 03/14/2025] [Indexed: 03/25/2025]
Abstract
Genomic stability, encompassing DNA damage and repair mechanisms, plays a pivotal role in the onset of diseases and the aging process. The stability of DNA is intricately linked to the chemical and mechanical forces exerted on chromatin, particularly within lamina-associated domains (LADs). Mechanical stress can induce DNA damage through the deformation and rupture of the nuclear envelope, leading to DNA bending and cleavage. However, DNA can evade such mechanical stress-induced damage by relocating away from the nuclear membrane, a process facilitated by the depletion of H3K9me3-marked heterochromatin and its cleavage from the lamina. When DNA double-stranded breaks occur, they prompt the rapid recruitment of Lamin B1 and the deposition of H3K9me3. Despite these insights, the precise mechanisms underlying DNA damage and repair under mechanical stress remain unclear. In this review, we explore the interplay between mechanical forces and the nuclear envelope in the context of DNA damage, elucidate the molecular pathways through which DNA escapes force-induced damage, and discuss the corresponding repair strategies involving the nuclear cytoskeleton. By summarizing the mechanisms of force-induced DNA damage and repair, we aim to underscore the potential for developing targeted therapeutic strategies to bolster genomic stability and alleviate the impacts of aging and disease.
Collapse
Affiliation(s)
- Iqra Ali
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Fangning Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Qin Peng
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
4
|
Lee S, Liu X, Ziabkin I, Zidovska A. Image-based analysis of the genome's fractality during the cell cycle. Biophys J 2025:S0006-3495(25)00105-5. [PMID: 40007120 DOI: 10.1016/j.bpj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
The human genome consists of about 2 m of DNA packed inside the cell nucleus barely 10 μm in diameter. DNA is complexed with histones, forming chromatin fiber, which folds inside the nucleus into loops, topologically associating domains, A/B compartments, and chromosome territories. This organization is knot-free and self-similar across length scales, leading to a hypothesis that the genome presents a fractal globule, which was corroborated by chromosome conformation capture experiments. In addition, many microscopy techniques have been used to obtain the fractal dimension of the genome's spatial distribution from its images. However, different techniques often required that different definitions of fractal dimension be adapted, making the comparison of these results not trivial. In this study, we use spinning disk confocal microscopy to collect high-resolution images of nuclei in live human cells during the cell cycle. We then systematically compare existing image-based fractal analyses-including mass-scaling, box-counting, lacunarity, and multifractal spectrum-by applying them to images of human cell nuclei and investigate changes in the genome's spatial organization during the cell cycle. Our data reveal that different image-based fractal measurements offer distinct metrics, highlighting different features of the genome's spatial organization. Yet, all these metrics consistently indicate the following trend for the changes in the genome's organization during the cell cycle: the genome being compactly packed in early G1 phase, followed by a decondensation throughout the G1 phase, and a subsequent condensation in the S and G2 phases. Our comprehensive comparison of image-based fractal analyses reconciles the perceived discrepancies between different methods. Moreover, our results offer new insights into the physical principles underlying the genome's organization and its changes during the cell cycle.
Collapse
Affiliation(s)
- Suho Lee
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Xutong Liu
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Ivan Ziabkin
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, New York.
| |
Collapse
|
5
|
Marsin S, Jeannin S, Baconnais S, Walbott H, Pehau-Arnaudet G, Noiray M, Aumont-Nicaise M, Stender EGP, Cargemel C, Le Bars R, Le Cam E, Quevillon-Cheruel S. DciA, the Bacterial Replicative Helicase Loader, Promotes LLPS in the Presence of ssDNA. J Mol Biol 2025; 437:168873. [PMID: 39603490 DOI: 10.1016/j.jmb.2024.168873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
The loading of the bacterial replicative helicase DnaB is an essential step for genome replication and depends on the assistance of accessory proteins. Several of these proteins have been identified across the bacterial phyla. DciA is the most common loading protein in bacteria, yet the one whose mechanism is the least understood. We have previously shown that DciA from Vibrio cholerae is composed of a globular domain followed by an unfolded extension and demonstrated its strong affinity for DNA. Here, we characterize the condensates formed by VcDciA upon interaction with a short single-stranded DNA substrate. We demonstrate the fluidity of these condensates using light microscopy and address their network organization through electron microscopy, thereby bridging events to conclude on a liquid-liquid phase separation behavior. Additionally, we observe the recruitment of DnaB in the droplets, concomitant with the release of DciA. We show that the well-known helicase loader DnaC from Escherichia coli is also competent to form these phase-separated condensates in the presence of ssDNA. Our phenomenological data are still preliminary as regards the existence of these condensates in vivo, but open the way for exploring the potential involvement of DciA in the formation of non-membrane compartments within the bacterium to facilitate the assembly of replication players on chromosomal DNA.
Collapse
Affiliation(s)
- Stéphanie Marsin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Sylvain Jeannin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Sonia Baconnais
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Hélène Walbott
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Magali Noiray
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Claire Cargemel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Eric Le Cam
- Genome Integrity and Cancer UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy 114 rue Edouard Vaillant, 94805 Villejuif, France
| | - Sophie Quevillon-Cheruel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| |
Collapse
|
6
|
Yang L, Zhang Y, Hua J, Song G, Li F, Zheng N, Zhang T, Xu Z, Ren X, Zhu B, Han Y, Guo Y, Han J, Zhou B. Integrated Studies on Male Reproductive Toxicity of Decabromodiphenyl Ethane in Zebrafish Spermatozoa Ex Vivo, Male Zebrafish in Vivo, and GC-1 Cells in Vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:117005. [PMID: 39570742 PMCID: PMC11580837 DOI: 10.1289/ehp14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/06/2024] [Accepted: 10/24/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND Legacy brominated flame retardants have been recognized as risky factors leading to declined sperm quality. The widespread utilization of decabromodiphenyl ethane (DBDPE) as a replacement for decabromodiphenyl ether has given rise to considerable concern over its potential risks to reproductive health. OBJECTIVES The objectives were to quickly determine whether DBDPE affects sperm quality upon ex vivo exposure, to reveal the reproductive outcomes and underlying molecular mechanisms using an in vivo zebrafish model exposed to DBDPE, and to validate the potential impact on DNA damage and energy metabolism balance in vitro. METHODS Zebrafish spermatozoa were treated with DBDPE (0.01, 0.1, 1, 10 μ M ) for 3 h, and the spermatozoa motility and fertilization ability with normal eggs were evaluated. Then adult male zebrafish were treated with DBDPE (0.1, 1, 10, and 100 nM ) for 2 months, and their reproductive performance was examined. Four-dimensional label-free proteome and phosphoproteome were performed in zebrafish testes, and the findings were validated by multiple indicators. Finally, mouse spermatogonial GC-1 cells were treated with DBDPE (0.1, 1 μ M ) for 72 h, and DNA damage was examined, as well as the energy production of glycolysis and oxidative phosphorylation. RESULTS Ex vivo exposure to DBDPE caused lower motility and fertilization rates of zebrafish spermatozoa. In vivo exposure to DBDPE caused lower sperm motility and abnormal spermatogenesis in male zebrafish testes. Integrated whole-proteome and phosphoproteome analysis revealed DNA damage responses and energy metabolic disorders in zebrafish testes. A dosage window characterized by higher mitochondrial membrane potential (MMP) in combination with unchanged reactive oxygen species and apoptosis rates was observed in both zebrafish testes and GC-1 cells. DISCUSSION This study suggests that in zebrafish, DBDPE exposure could impair sperm quality and spermatogenesis, and the underlying mechanism could be related to DNA damage and energy metabolic reprogramming in testicular germ cells. https://doi.org/10.1289/EHP14426.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jianghuan Hua
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
- Hubei Shizhen Laboratory, Wuhan, People’s Republic of China
| | - Guili Song
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Fan Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Na Zheng
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Taotao Zhang
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Zhixiang Xu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, People’s Republic of China
| | - Xinxin Ren
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Biran Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, People’s Republic of China
| | - Yanna Han
- Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, People’s Republic of China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People’s Republic of China
| |
Collapse
|
7
|
Huang Y, Xia P. Biomolecular condensates in plant cells: Mediating and integrating environmental signals and development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112178. [PMID: 38971467 DOI: 10.1016/j.plantsci.2024.112178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/23/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
In response to the spatiotemporal coordination of various biochemical reactions and membrane-encapsulated organelles, plants appear to provide another effective mechanism for cellular organization by phase separation that allows the internal compartmentalization of cells to form a variety of membrane-less organelles. Most of the research on phase separation has centralized in various non-plant systems, such as yeast and animal systems. Recent studies have shown a remarkable correlation between the formation of condensates in plant systems and the formation of condensates in these systems. Moreover, the last decade has made new advances in phase separation research in the context of plant biology. Here, we provide an overview of the physicochemical forces and molecular factors that drive liquid-liquid phase separation in plant cells and the biochemical characterization of condensates. We then explore new developments in phase separation research specific to plants, discussing examples of condensates found in green plants and detailing their role in plant growth and development. We propose that phase separation may be a conserved organizational mechanism in plant evolution to help plants respond rapidly and effectively to various environmental stresses as sessile organisms.
Collapse
Affiliation(s)
- Yang Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Pengguo Xia
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Shokrollahi M, Stanic M, Hundal A, Chan JNY, Urman D, Jordan CA, Hakem A, Espin R, Hao J, Krishnan R, Maass PG, Dickson BC, Hande MP, Pujana MA, Hakem R, Mekhail K. DNA double-strand break-capturing nuclear envelope tubules drive DNA repair. Nat Struct Mol Biol 2024; 31:1319-1330. [PMID: 38632359 DOI: 10.1038/s41594-024-01286-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Current models suggest that DNA double-strand breaks (DSBs) can move to the nuclear periphery for repair. It is unclear to what extent human DSBs display such repositioning. Here we show that the human nuclear envelope localizes to DSBs in a manner depending on DNA damage response (DDR) kinases and cytoplasmic microtubules acetylated by α-tubulin acetyltransferase-1 (ATAT1). These factors collaborate with the linker of nucleoskeleton and cytoskeleton complex (LINC), nuclear pore complex (NPC) protein NUP153, nuclear lamina and kinesins KIF5B and KIF13B to generate DSB-capturing nuclear envelope tubules (dsbNETs). dsbNETs are partly supported by nuclear actin filaments and the circadian factor PER1 and reversed by kinesin KIFC3. Although dsbNETs promote repair and survival, they are also co-opted during poly(ADP-ribose) polymerase (PARP) inhibition to restrain BRCA1-deficient breast cancer cells and are hyper-induced in cells expressing the aging-linked lamin A mutant progerin. In summary, our results advance understanding of nuclear structure-function relationships, uncover a nuclear-cytoplasmic DDR and identify dsbNETs as critical factors in genome organization and stability.
Collapse
Affiliation(s)
- Mitra Shokrollahi
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mia Stanic
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anisha Hundal
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Janet N Y Chan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Defne Urman
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Chris A Jordan
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anne Hakem
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Roderic Espin
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Jun Hao
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Rehna Krishnan
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada
| | - Philipp G Maass
- Department of Molecular Genetics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Genetics and Genome Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brendan C Dickson
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Manoor P Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Miquel A Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Razqallah Hakem
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Research Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
| | - Karim Mekhail
- Department of Laboratory Medicine and Pathobiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, Ontario, Canada.
- College of New Scholars, Artists and Scientists, Royal Society of Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
9
|
Schirmeisen K, Naiman K, Fréon K, Besse L, Chakraborty S, Saada AA, Carr AM, Kramarz K, Lambert SAE. SUMO protease and proteasome recruitment at the nuclear periphery differently affect replication dynamics at arrested forks. Nucleic Acids Res 2024; 52:8286-8302. [PMID: 38917328 DOI: 10.1093/nar/gkae526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Nuclear pore complexes (NPCs) have emerged as genome organizers, defining a particular nuclear compartment enriched for SUMO protease and proteasome activities, and act as docking sites for the repair of DNA damage. In fission yeast, the anchorage of perturbed replication forks to NPCs is an integral part of the recombination-dependent replication restart mechanism (RDR) that resumes DNA synthesis at terminally dysfunctional forks. By mapping DNA polymerase usage, we report that SUMO protease Ulp1-associated NPCs ensure efficient initiation of restarted DNA synthesis, whereas proteasome-associated NPCs sustain the progression of restarted DNA polymerase. In contrast to Ulp1-dependent events, this last function is not alleviated by preventing SUMO chain formation. By analyzing the role of the nuclear basket, the nucleoplasmic extension of the NPC, we reveal that the activities of Ulp1 and the proteasome cannot compensate for each other and affect the dynamics of RDR in distinct ways. Our work probes two distinct mechanisms by which the NPC environment ensures optimal RDR, both controlled by different NPC components.
Collapse
Affiliation(s)
- Kamila Schirmeisen
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Karel Naiman
- INSERM U1068, CNRS UMR7258, Aix Marseille Univ U105, Institut Paoli-Calmettes, CRCM, Marseille, France
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Karine Fréon
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Laetitia Besse
- Institut Curie, Université PSL, CNRS UAR2016, Inserm US43, Université Paris-Saclay, Multimodal Imaging Center, 91400 Orsay, France
| | - Shrena Chakraborty
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Anissia Ait Saada
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer BN1 9RQ, UK
| | - Karol Kramarz
- Academic Excellence Hub - Research Centre for DNA Repair and Replication, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - Sarah A E Lambert
- Institut Curie, Université PSL, CNRS UMR3348, 91400 Orsay, France
- Université Paris-Saclay, CNRS UMR3348, 91400 Orsay, France
- Equipe Labellisée Ligue Nationale Contre le cancer, France
| |
Collapse
|
10
|
Simon MN, Dubrana K, Palancade B. On the edge: how nuclear pore complexes rule genome stability. Curr Opin Genet Dev 2024; 84:102150. [PMID: 38215626 DOI: 10.1016/j.gde.2023.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Nuclear organization has emerged as a critical layer in the coordination of DNA repair activities. Distinct types of DNA lesions have notably been shown to relocate at the vicinity of nuclear pore complexes (NPCs), where specific repair pathways are favored, ultimately safeguarding genome integrity. Here, we review the most recent progress in this field, notably highlighting the increasingly diverse types of DNA structures undergoing repositioning, and the signaling pathways involved. We further discuss our growing knowledge of the molecular mechanisms underlying the choice of repair pathways at NPCs, and their conservation - or divergences. Intriguingly, a series of recent findings suggest that DNA metabolism may be coupled to NPC biogenesis and specialization, challenging our initial vision of these processes.
Collapse
Affiliation(s)
- Marie-Noëlle Simon
- Marseille Cancer Research Center (CRCM), U1068 Inserm, UMR7258 CNRS, Institut Paoli-Calmettes, Equipe Labélisée Ligue, Aix Marseille University, Marseille, France. https://twitter.com/@IJMonod
| | - Karine Dubrana
- Université Paris Cité, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France; Université Paris-Saclay, Inserm, CEA, Stabilité Génétique Cellules Souches et Radiations, F-92260 Fontenay-aux-Roses, France. https://twitter.com/@DubranaLab
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France.
| |
Collapse
|
11
|
Cai Z, Mei S, Zhou L, Ma X, Wuyun Q, Yan J, Ding H. Liquid-Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases. Int J Mol Sci 2023; 24:15418. [PMID: 37895097 PMCID: PMC10607581 DOI: 10.3390/ijms242015418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS.
Collapse
Affiliation(s)
- Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
12
|
Qin C, Wang YL, Zhou JY, Shi J, Zhao WW, Zhu YX, Bai SM, Feng LL, Bie SY, Zeng B, Zheng J, Zeng GD, Feng WX, Wan XB, Fan XJ. RAP80 phase separation at DNA double-strand break promotes BRCA1 recruitment. Nucleic Acids Res 2023; 51:9733-9747. [PMID: 37638744 PMCID: PMC10570032 DOI: 10.1093/nar/gkad686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/29/2023] [Accepted: 08/17/2023] [Indexed: 08/29/2023] Open
Abstract
RAP80 has been characterized as a component of the BRCA1-A complex and is responsible for the recruitment of BRCA1 to DNA double-strand breaks (DSBs). However, we and others found that the recruitment of RAP80 and BRCA1 were not absolutely temporally synchronized, indicating that other mechanisms, apart from physical interaction, might be implicated. Recently, liquid-liquid phase separation (LLPS) has been characterized as a novel mechanism for the organization of key signaling molecules to drive their particular cellular functions. Here, we characterized that RAP80 LLPS at DSB was required for RAP80-mediated BRCA1 recruitment. Both cellular and in vitro experiments showed that RAP80 phase separated at DSB, which was ascribed to a highly disordered region (IDR) at its N-terminal. Meanwhile, the Lys63-linked poly-ubiquitin chains that quickly formed after DSBs occur, strongly enhanced RAP80 phase separation and were responsible for the induction of RAP80 condensation at the DSB site. Most importantly, abolishing the condensation of RAP80 significantly suppressed the formation of BRCA1 foci, encovering a pivotal role of RAP80 condensates in BRCA1 recruitment and radiosensitivity. Together, our study disclosed a new mechanism underlying RAP80-mediated BRCA1 recruitment, which provided new insight into the role of phase separation in DSB repair.
Collapse
Affiliation(s)
- Caolitao Qin
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jin-Ying Zhou
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Ya-Xi Zhu
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Shao-Mei Bai
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Li-Li Feng
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510655, P.R. China
| | - Shu-Ying Bie
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Bing Zeng
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Gastroenterology, Hernia and Abdominal Wall Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Guang-Dong Zeng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Wei-Xing Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, P.R. China
| |
Collapse
|
13
|
Fu J, Zhou S, Xu H, Liao L, Shen H, Du P, Zheng X. ATM-ESCO2-SMC3 axis promotes 53BP1 recruitment in response to DNA damage and safeguards genome integrity by stabilizing cohesin complex. Nucleic Acids Res 2023; 51:7376-7391. [PMID: 37377435 PMCID: PMC10415120 DOI: 10.1093/nar/gkad533] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
53BP1 is primarily known as a key regulator in DNA double-strand break (DSB) repair. However, the mechanism of DSB-triggered cohesin modification-modulated chromatin structure on the recruitment of 53BP1 remains largely elusive. Here, we identified acetyltransferase ESCO2 as a regulator for DSB-induced cohesin-dependent chromatin structure dynamics, which promotes 53BP1 recruitment. Mechanistically, in response to DNA damage, ATM phosphorylates ESCO2 S196 and T233. MDC1 recognizes phosphorylated ESCO2 and recruits ESCO2 to DSB sites. ESCO2-mediated acetylation of SMC3 stabilizes cohesin complex conformation and regulates the chromatin structure at DSB breaks, which is essential for the recruitment of 53BP1 and the formation of 53BP1 microdomains. Furthermore, depletion of ESCO2 in both colorectal cancer cells and xenografted nude mice sensitizes cancer cells to chemotherapeutic drugs. Collectively, our results reveal a molecular mechanism for the ATM-ESCO2-SMC3 axis in DSB repair and genome integrity maintenance with a vital role in chemotherapy response in colorectal cancer.
Collapse
Affiliation(s)
- Jianfeng Fu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Siru Zhou
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Huilin Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Liming Liao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| | - Hui Shen
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
- Centre for Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
14
|
Irvin EM, Wang H. Single-molecule imaging of genome maintenance proteins encountering specific DNA sequences and structures. DNA Repair (Amst) 2023; 128:103528. [PMID: 37392578 PMCID: PMC10989508 DOI: 10.1016/j.dnarep.2023.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 07/03/2023]
Abstract
DNA repair pathways are tightly regulated processes that recognize specific hallmarks of DNA damage and coordinate lesion repair through discrete mechanisms, all within the context of a three-dimensional chromatin landscape. Dysregulation or malfunction of any one of the protein constituents in these pathways can contribute to aging and a variety of diseases. While the collective action of these many proteins is what drives DNA repair on the organismal scale, it is the interactions between individual proteins and DNA that facilitate each step of these pathways. In much the same way that ensemble biochemical techniques have characterized the various steps of DNA repair pathways, single-molecule imaging (SMI) approaches zoom in further, characterizing the individual protein-DNA interactions that compose each pathway step. SMI techniques offer the high resolving power needed to characterize the molecular structure and functional dynamics of individual biological interactions on the nanoscale. In this review, we highlight how our lab has used SMI techniques - traditional atomic force microscopy (AFM) imaging in air, high-speed AFM (HS-AFM) in liquids, and the DNA tightrope assay - over the past decade to study protein-nucleic acid interactions involved in DNA repair, mitochondrial DNA replication, and telomere maintenance. We discuss how DNA substrates containing specific DNA sequences or structures that emulate DNA repair intermediates or telomeres were generated and validated. For each highlighted project, we discuss novel findings made possible by the spatial and temporal resolution offered by these SMI techniques and unique DNA substrates.
Collapse
Affiliation(s)
| | - Hong Wang
- Toxicology Program, North Carolina State University, Raleigh, NC, USA; Physics Department, North Carolina State University, Raleigh, NC, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
15
|
Zheng Y, Li H, Bo X, Chen H. Ionizing radiation damage and repair from 3D-genomic perspective. Trends Genet 2023; 39:1-4. [PMID: 35934594 DOI: 10.1016/j.tig.2022.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
Ionizing radiation (IR)-induced DNA damage and repair are complex and occur at hierarchical chromatin structures; radiobiology needs to be studied from a 3D-genomic perspective. Differences in IR damage and repair throughout the 3D genome may help to explain differences in radiosensitivity.
Collapse
Affiliation(s)
- Yang Zheng
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China; State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Hao Li
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China.
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China.
| |
Collapse
|
16
|
Archambault V, Li J, Emond-Fraser V, Larouche M. Dephosphorylation in nuclear reassembly after mitosis. Front Cell Dev Biol 2022; 10:1012768. [PMID: 36268509 PMCID: PMC9576876 DOI: 10.3389/fcell.2022.1012768] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/31/2022] [Indexed: 11/13/2022] Open
Abstract
In most animal cell types, the interphase nucleus is largely disassembled during mitotic entry. The nuclear envelope breaks down and chromosomes are compacted into separated masses. Chromatin organization is also mostly lost and kinetochores assemble on centromeres. Mitotic protein kinases play several roles in inducing these transformations by phosphorylating multiple effector proteins. In many of these events, the mechanistic consequences of phosphorylation have been characterized. In comparison, how the nucleus reassembles at the end of mitosis is less well understood in mechanistic terms. In recent years, much progress has been made in deciphering how dephosphorylation of several effector proteins promotes nuclear envelope reassembly, chromosome decondensation, kinetochore disassembly and interphase chromatin organization. The precise roles of protein phosphatases in this process, in particular of the PP1 and PP2A groups, are emerging. Moreover, how these enzymes are temporally and spatially regulated to ensure that nuclear reassembly progresses in a coordinated manner has been partly uncovered. This review provides a global view of nuclear reassembly with a focus on the roles of dephosphorylation events. It also identifies important open questions and proposes hypotheses.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
- *Correspondence: Vincent Archambault,
| | - Jingjing Li
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Virginie Emond-Fraser
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, QC, Canada
| | - Myreille Larouche
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
17
|
Batnasan E, Koivukoski S, Kärkkäinen M, Latonen L. Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results Probl Cell Differ 2022; 70:469-494. [PMID: 36348119 DOI: 10.1007/978-3-031-06573-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Minttu Kärkkäinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|