1
|
Xia C, Cai M, Lu Y, Wang B, Xu L, Wang K, Liu Z. Radioprotective Effects and Mechanisms of One-Year and Seven-Year White Tea Extracts Against 137Cs Radiation-Induced Cell Damage. Molecules 2025; 30:1448. [PMID: 40286032 PMCID: PMC11990172 DOI: 10.3390/molecules30071448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Ionizing radiation (IR) is widely present in the environment, with 137Cesium (Cs) radiation having particularly severe impacts during nuclear accidents. The objective of our study was to assess the radiation protection or repair effect of one year (WT-1Y) or seven years (WT-7Y) of storage on white teas, as well as to investigate the mechanism of radioprotection. HGC-27 cells exposed to 137Cs γ-rays (30 Gy) exhibited significant changes in cell structure, apoptosis, ROS, LDH, and their expression of p53 and Caspase-3. The results showed that WT-1Y and WT-7Y acted as antioxidants, showed reduced ROS and LDH levels, and had increased CAT and SOD activities as well as cell survival rate. The WT treatments significantly inhibited apoptosis in both the pre- and post-radiation groups, with WT-1 showing stronger effects in pretreatment by reducing LDH, p53, and Caspase-3 levels and enhancing ROS scavenging and enzyme activities. Post-treatment analysis revealed WT-7 had greater effects on cell viability and SOD activity. Overall, both WT-1 and WT-7 mitigated radiation damage, likely by inhibiting the p53/Caspase-3 apoptosis pathway. A Spearman analysis of the differential metabolites in WT-1Y and WT-7Y with cellular radioprotective indicators revealed that metabolites, such as EGC, procyanidin B4, and phenolic acids (abundant in WT-1Y), quercetin-3-glucosylrutinoside, and caffeine (enriched in WT-7Y) contributed to their distinct effects in the pre- and post-treatment of 137Cs γ-rays.
Collapse
Affiliation(s)
- Chen Xia
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Meisheng Cai
- Fuding Tea Industry Development Leading Group, Ningde 355200, China
| | - Yanting Lu
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Bingkui Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Linglin Xu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Kaixi Wang
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhonghua Liu
- Department of Tea Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Xu T, Liu F, He J, Xu P, Qu J, Wang H, Yue J, Yang Q, Wu W, Zeng G, Sun D, Chen X. Leveraging zebrafish models for advancing radiobiology: Mechanisms, applications, and future prospects in radiation exposure research. ENVIRONMENTAL RESEARCH 2025; 266:120504. [PMID: 39638026 DOI: 10.1016/j.envres.2024.120504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Ionizing radiation (IR) represents a significant risk to human health and societal stability. To effectively analyze the mechanisms of IR and enhance protective strategies, the development of more sophisticated animal models is imperative. The zebrafish, with its high degree of genomic homology to humans and the capacity for whole-body optical visualization and high-throughput screening, represents an invaluable model for the study of IR. This review examines the benefits of utilizing zebrafish as a model organism for research on IR, emphasizing recent advancements and applications. It presents a comprehensive overview of the methodologies for establishing IR models in zebrafish, addresses current challenges, and discusses future development trends. This paper provide theoretical support for elucidating the mechanisms of IR injury and developing effective treatment strategies.
Collapse
Affiliation(s)
- Ting Xu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China
| | - Fan Liu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Jiaxuan He
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Peiye Xu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Junying Qu
- State and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Hanbing Wang
- Department of Biotechnology, The University of Hong Kong, Hong Kong SAR, 999077, China
| | - Jinghui Yue
- Nuclear Power Institute of China, Chengdu, 610200, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Wei Wu
- Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Guoming Zeng
- Intelligent Construction Technology Application Service Center, School of Architecture and Engineering, Chongqing City Vocational College, Chongqing, 402160, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China; Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China; Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, School of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| | - Xia Chen
- Department of Endocrinology, Yiwu Central Hospital, The Affiliated Yiwu Hospital of Wenzhou Medical University, Yiwu, 322000, China.
| |
Collapse
|
3
|
Clark-Hachtel CM, Hibshman JD, De Buysscher T, Stair ER, Hicks LM, Goldstein B. The tardigrade Hypsibius exemplaris dramatically upregulates DNA repair pathway genes in response to ionizing radiation. Curr Biol 2024; 34:1819-1830.e6. [PMID: 38614079 PMCID: PMC11078613 DOI: 10.1016/j.cub.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/19/2024] [Accepted: 03/13/2024] [Indexed: 04/15/2024]
Abstract
Tardigrades can survive remarkable doses of ionizing radiation, up to about 1,000 times the lethal dose for humans. How they do so is incompletely understood. We found that the tardigrade Hypsibius exemplaris suffers DNA damage upon gamma irradiation, but the damage is repaired. We show that this species has a specific and robust response to ionizing radiation: irradiation induces a rapid upregulation of many DNA repair genes. This upregulation is unexpectedly extreme-making some DNA repair transcripts among the most abundant transcripts in the animal. By expressing tardigrade genes in bacteria, we validate that increased expression of some repair genes can suffice to increase radiation tolerance. We show that at least one such gene is important in vivo for tardigrade radiation tolerance. We hypothesize that the tardigrades' ability to sense ionizing radiation and massively upregulate specific DNA repair pathway genes may represent an evolved solution for maintaining DNA integrity.
Collapse
Affiliation(s)
- Courtney M Clark-Hachtel
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Biology Department, The University of North Carolina at Asheville, Asheville, NC 28804, USA.
| | - Jonathan D Hibshman
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tristan De Buysscher
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Bioinformatics & Analytics Research Collaborative, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Evan R Stair
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie M Hicks
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bob Goldstein
- Biology Department, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
4
|
Inman JL, Wu Y, Chen L, Brydon E, Ghosh D, Wan KH, De Chant J, Obst-Huebl L, Nakamura K, Ralston CY, Celniker SE, Mao JH, Zwart PH, Holman HYN, Chang H, Brown JB, Snijders AM. Long-term, non-invasive FTIR detection of low-dose ionizing radiation exposure. Sci Rep 2024; 14:6119. [PMID: 38480827 PMCID: PMC10937999 DOI: 10.1038/s41598-024-56491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/07/2024] [Indexed: 03/17/2024] Open
Abstract
Non-invasive methods of detecting radiation exposure show promise to improve upon current approaches to biological dosimetry in ease, speed, and accuracy. Here we developed a pipeline that employs Fourier transform infrared (FTIR) spectroscopy in the mid-infrared spectrum to identify a signature of low dose ionizing radiation exposure in mouse ear pinnae over time. Mice exposed to 0.1 to 2 Gy total body irradiation were repeatedly measured by FTIR at the stratum corneum of the ear pinnae. We found significant discriminative power for all doses and time-points out to 90 days after exposure. Classification accuracy was maximized when testing 14 days after exposure (specificity > 0.9 with a sensitivity threshold of 0.9) and dropped by roughly 30% sensitivity at 90 days. Infrared frequencies point towards biological changes in DNA conformation, lipid oxidation and accumulation and shifts in protein secondary structure. Since only hundreds of samples were used to learn the highly discriminative signature, developing human-relevant diagnostic capabilities is likely feasible and this non-invasive procedure points toward rapid, non-invasive, and reagent-free biodosimetry applications at population scales.
Collapse
Affiliation(s)
- Jamie L Inman
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Yulun Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Department of Statistics, University of California, Berkeley, CA, 94720, USA
| | - Liang Chen
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Ella Brydon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Dhruba Ghosh
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, USA
| | - Kenneth H Wan
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jared De Chant
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Lieselotte Obst-Huebl
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Kei Nakamura
- Accelerator Technology and Applied Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Corie Y Ralston
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Peter H Zwart
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Hoi-Ying N Holman
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| | - James B Brown
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
- Department of Statistics, University of California, Berkeley, CA, 94720, USA.
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA.
| |
Collapse
|
5
|
Sun Y, Xu X, Lin L, Xu K, Zheng Y, Ren C, Tao H, Wang X, Zhao H, Tu W, Bai X, Wang J, Huang Q, Li Y, Chen H, Li H, Bo X. A graph neural network-based interpretable framework reveals a novel DNA fragility-associated chromatin structural unit. Genome Biol 2023; 24:90. [PMID: 37095580 PMCID: PMC10124043 DOI: 10.1186/s13059-023-02916-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND DNA double-strand breaks (DSBs) are among the most deleterious DNA lesions, and they can cause cancer if improperly repaired. Recent chromosome conformation capture techniques, such as Hi-C, have enabled the identification of relationships between the 3D chromatin structure and DSBs, but little is known about how to explain these relationships, especially from global contact maps, or their contributions to DSB formation. RESULTS Here, we propose a framework that integrates graph neural network (GNN) to unravel the relationship between 3D chromatin structure and DSBs using an advanced interpretable technique GNNExplainer. We identify a new chromatin structural unit named the DNA fragility-associated chromatin interaction network (FaCIN). FaCIN is a bottleneck-like structure, and it helps to reveal a universal form of how the fragility of a piece of DNA might be affected by the whole genome through chromatin interactions. Moreover, we demonstrate that neck interactions in FaCIN can serve as chromatin structural determinants of DSB formation. CONCLUSIONS Our study provides a more systematic and refined view enabling a better understanding of the mechanisms of DSB formation under the context of the 3D genome.
Collapse
Affiliation(s)
- Yu Sun
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xiang Xu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Lin Lin
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Kang Xu
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Yang Zheng
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Chao Ren
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Huan Tao
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Xu Wang
- 4Paradigm Inc, Beijing, China
| | | | | | - Xuemei Bai
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Junting Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qiya Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaru Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China
| | - Hebing Chen
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Hao Li
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, China.
| |
Collapse
|