1
|
Schmid EW, Walter JC. Predictomes, a classifier-curated database of AlphaFold-modeled protein-protein interactions. Mol Cell 2025; 85:1216-1232.e5. [PMID: 40015271 PMCID: PMC11931459 DOI: 10.1016/j.molcel.2025.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 03/01/2025]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying cellular processes is lacking. AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, but standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on curated datasets to train a structure prediction and omics-informed classifier (SPOC) that effectively separates true and false AF-M predictions of PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ∼40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High-confidence PPIs discovered using our approach enable hypothesis generation in genome maintenance. Our results provide a framework for interpreting large-scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Cao H, Qiu C, Fang A, Shang J, Xu W, He L, Duan X, Zhang Q, Yu C. Extensive homologous recombination safeguards oocyte genome integrity in mammals. Nucleic Acids Res 2025; 53:gkae1304. [PMID: 39797737 PMCID: PMC11724361 DOI: 10.1093/nar/gkae1304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive. Here, we show that FIRRM/FLIP is required for disassembly of RAD51-filaments and maintenance of genome integrity in oocytes. Deletion of FIRRM in oocytes leads to formation of massive nuclear RAD51 foci in oocytes of primordial follicles and activated follicles in mice. These RAD51 foci colocalize with the sites of DNA damage repair, as indicated by RPA2 and EdU, suggesting substantial DNA damage and extensive HR in oocytes. Especially in fully-grown FIRRM-deleted oocytes, RAD51 forms a net-like structure. As a consequence, FIRRM-deleted females are infertile due to aberrant homologous chromosome segregation at metaphase I and primordial follicle insufficiency at young adulthood. Hence, our study demonstrates the physiological importance of HR in maintaining genome integrity in oocytes.
Collapse
Affiliation(s)
- Huiwen Cao
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, No.718 East Haizhou Road, 314499, Haining, China
| | - Cheng Qiu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, No.718 East Haizhou Road, 314499, Haining, China
| | - Anxuan Fang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China
| | - Jianzhou Shang
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, No.666 Wusu Street, 311300, Hangzhou, China
| | - Wei Xu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China
| | - Lugeng He
- Department of Urology, the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.79 Qinchun Road, 310003,Hangzhou, China
| | - Xing Duan
- College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, No.666 Wusu Street, 311300, Hangzhou, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, No.87 Dingjiaqiao Street, 210009, Nanjing, China
| | - Qianting Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, No.718 East Haizhou Road, 314499, Haining, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, No.88 Jiefang Road, 310009, Hangzhou, China
| | - Chao Yu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University, School of Medicine, No.3 Qinchun Road, 310009, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, No.3 Qinchun Road, 310009, Hangzhou, China
| |
Collapse
|
3
|
Zainu A, Dupaigne P, Bouchouika S, Cau J, Clément JAJ, Auffret P, Ropars V, Charbonnier JB, de Massy B, Mercier R, Kumar R, Baudat F. FIGNL1-FIRRM is essential for meiotic recombination and prevents DNA damage-independent RAD51 and DMC1 loading. Nat Commun 2024; 15:7015. [PMID: 39147779 PMCID: PMC11327267 DOI: 10.1038/s41467-024-51458-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/07/2024] [Indexed: 08/17/2024] Open
Abstract
During meiosis, nucleoprotein filaments of the strand exchange proteins RAD51 and DMC1 are crucial for repairing SPO11-generated DNA double-strand breaks (DSBs) by homologous recombination (HR). A balanced activity of positive and negative RAD51/DMC1 regulators ensures proper recombination. Fidgetin-like 1 (FIGNL1) was previously shown to negatively regulate RAD51 in human cells. However, FIGNL1's role during meiotic recombination in mammals remains unknown. Here, we decipher the meiotic functions of FIGNL1 and FIGNL1 Interacting Regulator of Recombination and Mitosis (FIRRM) using male germline-specific conditional knock-out (cKO) mouse models. Both FIGNL1 and FIRRM are required for completing meiotic prophase in mouse spermatocytes. Despite efficient recruitment of DMC1 on ssDNA at meiotic DSB hotspots, the formation of late recombination intermediates is defective in Firrm cKO and Fignl1 cKO spermatocytes. Moreover, the FIGNL1-FIRRM complex limits RAD51 and DMC1 accumulation on intact chromatin, independently from the formation of SPO11-catalyzed DSBs. Purified human FIGNL1ΔN alters the RAD51/DMC1 nucleoprotein filament structure and inhibits strand invasion in vitro. Thus, this complex might regulate RAD51 and DMC1 association at sites of meiotic DSBs to promote proficient strand invasion and processing of recombination intermediates.
Collapse
Affiliation(s)
- Akbar Zainu
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Pauline Dupaigne
- Genome Integrity and Cancers UMR9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Soumya Bouchouika
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, CNRS-UMR 5535, Univ Montpellier, Montpellier, France
| | - Julien Cau
- Biocampus Montpellier, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie A J Clément
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France
| | - Pauline Auffret
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
- Ifremer, IRSI, Service de Bioinformatique (SeBiMER), Plouzané, France
| | - Virginie Ropars
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Jean-Baptiste Charbonnier
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Bernard de Massy
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France
| | - Raphael Mercier
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Frédéric Baudat
- Institut de Génétique Humaine, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Schmid EW, Walter JC. Predictomes: A classifier-curated database of AlphaFold-modeled protein-protein interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588596. [PMID: 38645019 PMCID: PMC11030396 DOI: 10.1101/2024.04.09.588596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Protein-protein interactions (PPIs) are ubiquitous in biology, yet a comprehensive structural characterization of the PPIs underlying biochemical processes is lacking. Although AlphaFold-Multimer (AF-M) has the potential to fill this knowledge gap, standard AF-M confidence metrics do not reliably separate relevant PPIs from an abundance of false positive predictions. To address this limitation, we used machine learning on well curated datasets to train a Structure Prediction and Omics informed Classifier called SPOC that shows excellent performance in separating true and false PPIs, including in proteome-wide screens. We applied SPOC to an all-by-all matrix of nearly 300 human genome maintenance proteins, generating ~40,000 predictions that can be viewed at predictomes.org, where users can also score their own predictions with SPOC. High confidence PPIs discovered using our approach suggest novel hypotheses in genome maintenance. Our results provide a framework for interpreting large scale AF-M screens and help lay the foundation for a proteome-wide structural interactome.
Collapse
Affiliation(s)
- Ernst W. Schmid
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes C. Walter
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|