1
|
Kotakadi SM, Borelli DPR, Nannepaga JS. Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Front Bioeng Biotechnol 2022; 10:789016. [PMID: 35547173 PMCID: PMC9081342 DOI: 10.3389/fbioe.2022.789016] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Magnetotactic bacteria (MTB) are aquatic microorganisms have the ability to biomineralize magnetosomes, which are membrane-enclosed magnetic nanoparticles. Magnetosomes are organized in a chain inside the MTB, allowing them to align with and traverse along the earth’s magnetic field. Magnetosomes have several potential applications for targeted cancer therapy when isolated from the MTB, including magnetic hyperthermia, localized medication delivery, and tumour monitoring. Magnetosomes features and properties for various applications outperform manufactured magnetic nanoparticles in several ways. Similarly, the entire MTB can be regarded as prospective agents for cancer treatment, thanks to their flagella’s ability to self-propel and the magnetosome chain’s ability to guide them. MTBs are conceptualized as nanobiots that can be guided and manipulated by external magnetic fields and are driven to hypoxic areas, such as tumor sites, while retaining the therapeutic and imaging characteristics of isolated magnetosomes. Furthermore, unlike most bacteria now being studied in clinical trials for cancer treatment, MTB are not pathogenic but might be modified to deliver and express certain cytotoxic chemicals. This review will assess the current and prospects of this burgeoning research field and the major obstacles that must be overcome before MTB can be successfully used in clinical treatments.
Collapse
Affiliation(s)
- Sai Manogna Kotakadi
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
| | | | - John Sushma Nannepaga
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam, Tirupati, India
- *Correspondence: John Sushma Nannepaga, , orcid.org/0000-0002-8739-9936
| |
Collapse
|
2
|
Yan L, Da H, Zhang S, López VM, Wang W. Bacterial magnetosome and its potential application. Microbiol Res 2017; 203:19-28. [PMID: 28754204 DOI: 10.1016/j.micres.2017.06.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/08/2017] [Accepted: 06/17/2017] [Indexed: 01/01/2023]
Abstract
Bacterial magnetosome, synthetized by magnetosome-producing microorganisms including magnetotactic bacteria (MTB) and some non-magnetotactic bacteria (Non-MTB), is a new type of material comprising magnetic nanocrystals surrounded by a phospholipid bilayer. Because of the special properties such as single magnetic domain, excellent biocompatibility and surface modification, bacterial magnetosome has become an increasingly attractive for researchers in biology, medicine, paleomagnetism, geology and environmental science. This review briefly describes the general feature of magnetosome-producing microorganisms. This article also highlights recent advances in the understanding of the biochemical and magnetic characteristics of bacterial magnetosome, as well as the magnetosome formation mechanism including iron ions uptake, magnetosome membrane formation, biomineralization and magnetosome chain assembly. Finally, this review presents the potential applications of bacterial magnetosome in biomedicine, wastewater treatment, and the significance of mineralization of magnetosome in biology and geology.
Collapse
Affiliation(s)
- Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China.
| | - Huiyun Da
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| | - Viviana Morillo López
- School of Life Sciences, University of Nevada at Las Vegas, Las Vegas, NV 89154, USA
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, 163319, PR China
| |
Collapse
|
3
|
Crystallizing the function of the magnetosome membrane mineralization protein Mms6. Biochem Soc Trans 2017; 44:883-90. [PMID: 27284056 PMCID: PMC4900750 DOI: 10.1042/bst20160057] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Indexed: 12/18/2022]
Abstract
The literature on the magnetosome membrane (MM) protein, magnetosome membrane specific6 (Mms6), is reviewed. Mms6 is native to magnetotactic bacteria (MTB). These bacteria take up iron from solution and biomineralize magnetite nanoparticles within organelles called magnetosomes. Mms6 is a small protein embedded on the interior of the MM and was discovered tightly associated with the formed mineral. It has been the subject of intensive research as it is seen to control the formation of particles both in vivo and in vitro. Here, we compile, review and discuss the research detailing Mms6’s activity within the cell and in a range of chemical in vitro methods where Mms6 has a marked effect on the composition, size and distribution of synthetic particles, with approximately 21 nm in size for solution precipitations and approximately 90 nm for those formed on surfaces. Furthermore, we review and discuss recent work detailing the structure and function of Mms6. From the evidence, we propose a mechanism for its function as a specific magnetite nucleation protein and summaries the key features for this action: namely, self-assembly to display a charged surface for specific iron binding, with the curvature of the surfaces determining the particle size. We suggest these may aid design of biomimetic additives for future green nanoparticle production.
Collapse
|
4
|
Shin J, Lee KM, Lee JH, Lee J, Cha M. Magnetic manipulation of bacterial magnetic nanoparticle-loaded neurospheres. Integr Biol (Camb) 2014; 6:532-9. [PMID: 24638869 DOI: 10.1039/c3ib40195b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Specific targeting of cells to sites of tissue damage and delivery of high numbers of transplanted cells to lesion tissue in vivo are critical parameters for the success of cell-based therapies. Here, we report a promising in vitro model system for studying the homing of transplanted cells, which may eventually be applicable for targeted regeneration of damaged neurons in spinal cord injury. In this model system, neurospheres derived from human neuroblastoma SH-SY5Y cells labeled with bacterial magnetic nanoparticles were guided by a magnetic field and successfully accumulated near the focus site of the magnetic field. Our results demonstrate the effectiveness of using an in vitro model for testing bacterial magnetic nanoparticles to develop successful stem cell targeting strategies during fluid flow, which may ultimately be translated into in vivo targeted delivery of cells through circulation in various tissue-repair models.
Collapse
Affiliation(s)
- Jaeha Shin
- School of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 151-744, South Korea
| | | | | | | | | |
Collapse
|
5
|
Iranifam M. Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles. Trends Analyt Chem 2013. [DOI: 10.1016/j.trac.2013.05.014] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
6
|
Choi J, Shin J, Lee J, Cha M. Magnetic response of mitochondria-targeted cancer cells with bacterial magnetic nanoparticles. Chem Commun (Camb) 2012; 48:7474-6. [PMID: 22728544 DOI: 10.1039/c2cc33659f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
We first demonstrate the effects of magnetic trapping of mitochondria using aptamer conjugated to bacterial magnetic nanoparticles that allowed targeting of the mitochondrial cytochrome c in the treatment of cancer cells. Our findings offer a new approach for targeted cell therapy, with the advantage of remote control over subcellular elements.
Collapse
Affiliation(s)
- Jungin Choi
- Interdisciplinary Program of Bioengineering, Seoul National University, San 56-1, Shinlim, Kwanak, Seoul, 151-742, Korea
| | | | | | | |
Collapse
|
7
|
Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly. Proc Natl Acad Sci U S A 2011; 108:E480-7. [PMID: 21784982 DOI: 10.1073/pnas.1103367108] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum gryphiswaldense MSR-1. MamA folds as a sequential tetra-trico-peptide repeat (TPR) protein with a unique hook-like shape. Analysis of the MamA structures indicates two distinct domains that can undergo conformational changes. Furthermore, structural analysis of seven crystal forms verified that the core of MamA is not affected by crystallization conditions and identified three protein-protein interaction sites, namely a concave site, a convex site, and a putative TPR repeat. Additionally, relying on transmission electron microscopy and size exclusion chromatography, we show that highly stable complexes form upon MamA homooligomerization. Disruption of the MamA putative TPR motif or N-terminal domain led to protein mislocalization in vivo and prevented MamA oligomerization in vitro. We, therefore, propose that MamA self-assembles through its putative TPR motif and its concave site to create a large homooligomeric scaffold which can interact with other magnetosome-associated proteins via the MamA convex site. We discuss the structural basis for TPR homooligomerization that allows the proper function of a prokaryotic organelle.
Collapse
|
8
|
Weddemann A, Ennen I, Regtmeier A, Albon C, Wolff A, Eckstädt K, Mill N, Peter MKH, Mattay J, Plattner C, Sewald N, Hütten A. Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2010; 1:75-93. [PMID: 21977397 PMCID: PMC3045928 DOI: 10.3762/bjnano.1.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/28/2010] [Indexed: 05/26/2023]
Abstract
This paper highlights recent advances in synthesis, self-assembly and sensing applications of monodisperse magnetic Co and Co-alloyed nanoparticles. A brief introduction to solution phase synthesis techniques as well as the magnetic properties and aspects of the self-assembly process of nanoparticles will be given with the emphasis placed on selected applications, before recent developments of particles in sensor devices are outlined. Here, the paper focuses on the fabrication of granular magnetoresistive sensors by the employment of particles themselves as sensing layers. The role of interparticle interactions is discussed.
Collapse
Affiliation(s)
- Alexander Weddemann
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Inga Ennen
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
- Institute of Solid State Physics, Vienna University of Technology, A-1040 Vienna, Austria
| | - Anna Regtmeier
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Camelia Albon
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Annalena Wolff
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Katrin Eckstädt
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Nadine Mill
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| | - Michael K-H Peter
- Department of Chemistry, Organic Chemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Jochen Mattay
- Department of Chemistry, Organic Chemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Carolin Plattner
- Department of Chemistry, Organic Chemistry III, Bielefeld University, 33615 Bielefeld, Germany
| | - Norbert Sewald
- Department of Chemistry, Organic Chemistry III, Bielefeld University, 33615 Bielefeld, Germany
| | - Andreas Hütten
- Department of Physics, Thin Films and Physics of Nanostructures, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Visualization and structural analysis of the bacterial magnetic organelle magnetosome using atomic force microscopy. Proc Natl Acad Sci U S A 2010; 107:9382-7. [PMID: 20439702 DOI: 10.1073/pnas.1001870107] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The unique ability of magnetotactic bacteria to navigate along a geomagnetic field is accomplished with the help of prokaryotic organelles, magnetosomes. The magnetosomes have well-ordered chain-like structures, comprising membrane-enveloped, nano-sized magnetic crystals, and various types of specifically associated proteins. In this study, we applied atomic force microscopy (AFM) to investigate the spatial configuration of isolated magnetosomes from Magnetospirillum magneticum AMB-1 in near-native buffer conditions. AFM observation revealed organic material with a approximately 7-nm thickness surrounding a magnetite crystal. Small globular proteins, identified as magnetosome-associated protein MamA, were distributed on the mica surface around the magnetosome. Immuno-labeling with AFM showed that MamA is located on the magnetosome surface. In vitro experiments showed that MamA proteins interact with each other and form a high molecular mass complex. These findings suggest that magnetosomes are covered with MamA oligomers in near-native environments. Furthermore, nanodissection revealed that magnetosomes are built with heterogeneous structures that comprise the organic layer. This study provides important clues to the supramolecular architecture of the bacterial organelle, the magnetosome, and insight into the function of the proteins localized in the organelle.
Collapse
|
10
|
Abstract
Magnetosomes are specialized organelles for magnetic navigation that comprise membrane-enveloped, nano-sized crystals of a magnetic iron mineral; they are formed by a diverse group of magnetotactic bacteria (MTB). The synthesis of magnetosomes involves strict genetic control over intracellular differentiation, biomineralization, and their assembly into highly ordered chains. Physicochemical control over biomineralization is achieved by compartmentalization within vesicles of the magnetosome membrane, which is a phospholipid bilayer associated with a specific set of proteins that have known or suspected functions in vesicle formation, iron transport, control of crystallization, and arrangement of magnetite particles. Magnetosome formation is genetically complex, and relevant genes are predominantly located in several operons within a conserved genomic magnetosome island that has been likely transferred horizontally and subsequently adapted between diverse MTB during evolution. This review summarizes the recent progress in our understanding of magnetobacterial cell biology, genomics, and the genetic control of magnetosome formation and magnetotaxis.
Collapse
Affiliation(s)
- Christian Jogler
- Department of Biology I, LMU Biozentrum, Ludwig-Maximilians-Universität München, Planegg-Martinsried 82152, Germany.
| | | |
Collapse
|
11
|
Brayner R, Yéprémian C, Djediat C, Coradin T, Herbst F, Livage J, Fiévet F, Couté A. Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:10062-10067. [PMID: 19572505 DOI: 10.1021/la9010345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.
Collapse
Affiliation(s)
- Roberta Brayner
- Universite Paris Diderot (Paris 7), CNRS, UMR 7086, Interfaces, Traitements, Organisation et Dynamique des Systemes (ITODYS), F-75205 Paris Cedex 13, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
From biominerals to biomaterials: the role of biomolecule–mineral interactions. Biochem Soc Trans 2009; 37:687-91. [DOI: 10.1042/bst0370687] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interactions between inorganic materials and biomolecules at the molecular level, although complex, are commonplace. Examples include biominerals, which are, in most cases, facilitated by and in contact with biomolecules; implantable biomaterials; and food and drug handling. The effectiveness of these functional materials is dependent on the interfacial properties, i.e. the extent of molecular level ‘association’ with biomolecules. The present article gives information on biomolecule–inorganic material interactions and illustrates our current understanding using selected examples. The examples include (i) mechanism of biointegration: the role of surface chemistry and protein adsorption, (ii) towards improved aluminium-containing materials, and (iii) understanding the bioinorganic interface: experiment and modelling. A wide range of experimental techniques (microscopic, spectroscopic, particle sizing, thermal methods and solution methods) are used by the research group to study interactions between (bio)molecules and molecular and colloidal species that are coupled with computational simulation studies to gain as much information as possible on the molecular-scale interactions. Our goal is to uncover the mechanisms underpinning any interactions and to identify ‘rules’ or ‘guiding principles’ that could be used to explain and hence predict behaviour for a wide range of (bio)molecule–mineral systems.
Collapse
|
13
|
Alphandéry E, Ding Y, Ngo AT, Wang ZL, Wu LF, Pileni MP. Assemblies of aligned magnetotactic bacteria and extracted magnetosomes: what is the main factor responsible for the magnetic anisotropy? ACS NANO 2009; 3:1539-47. [PMID: 19459692 DOI: 10.1021/nn900289n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The origin of the magnetic anisotropy is explained in an assembly of aligned magnetic nanoparticles. For that, nanoparticles synthesized biologically by Magnetospirillum magneticum AMB-1 magnetotactic bacteria are used. For the first time, it is possible to differentiate between the two contributions arising from the alignment of the magnetosome easy axes and the strength of the magnetosome dipolar interactions. The magnetic anisotropy is shown to arise mainly from the dipolar interactions between the magnetosomes.
Collapse
Affiliation(s)
- E Alphandéry
- Universite Pierre et Marie-Curie, Laboratoire des materiaux mesoscopiques et nanometriques (LM2N), 4 place Jussieu, Paris cedex 05, France
| | | | | | | | | | | |
Collapse
|
14
|
Bharde AA, Parikh RY, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad BLV, Shouche YS, Ogale S, Sastry M. Bacteria-mediated precursor-dependent biosynthesis of superparamagnetic iron oxide and iron sulfide nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:5787-94. [PMID: 18454562 DOI: 10.1021/la704019p] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The bacterium Actinobacter sp. has been shown to be capable of extracellularly synthesizing iron based magnetic nanoparticles, namely maghemite (gamma-Fe2O3) and greigite (Fe3S4) under ambient conditions depending on the nature of precursors used. More precisely, the bacterium synthesized maghemite when reacted with ferric chloride and iron sulfide when exposed to the aqueous solution of ferric chloride-ferrous sulfate. Challenging the bacterium with different metal ions resulted in induction of different proteins, which bring about the specific biochemical transformations in each case leading to the observed products. Maghemite and iron sulfide nanoparticles show superparamagnetic characteristics as expected. Compared to the earlier reports of magnetite and greigite synthesis by magnetotactic bacteria and iron reducing bacteria, which take place strictly under anaerobic conditions, the present procedure offers significant advancement since the reaction occurs under aerobic condition. Moreover, reaction end products can be tuned by the choice of precursors used.
Collapse
Affiliation(s)
- Atul A Bharde
- Materials Chemistry Division, National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Schüler D. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 2008; 32:654-72. [PMID: 18537832 DOI: 10.1111/j.1574-6976.2008.00116.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The ability of magnetotactic bacteria (MTB) to orient in magnetic fields is based on the synthesis of magnetosomes, which are unique prokaryotic organelles comprising membrane-enveloped, nano-sized crystals of a magnetic iron mineral that are aligned in well-ordered intracellular chains. Magnetosome crystals have species-specific morphologies, sizes, and arrangements. The magnetosome membrane, which originates from the cytoplasmic membrane by invagination, represents a distinct subcellular compartment and has a unique biochemical composition. The roughly 20 magnetosome-specific proteins have functions in vesicle formation, magnetosomal iron transport, and the control of crystallization and intracellular arrangement of magnetite particles. The assembly of magnetosome chains is under genetic control and involves the action of an acidic protein that links magnetosomes to a novel cytoskeletal structure, presumably formed by a specific actin-like protein. A total of 28 conserved genes present in various magnetic bacteria were identified to be specifically associated with the magnetotactic phenotype, most of which are located in the genomic magnetosome island. The unique properties of magnetosomes attracted broad interdisciplinary interest, and MTB have recently emerged as a model to study prokaryotic organelle formation and evolution.
Collapse
Affiliation(s)
- Dirk Schüler
- Faculty of Biology, Microbiology, Ludwig Maximilians University, München, Germany.
| |
Collapse
|
16
|
Rapid magnetosome formation shown by real-time x-ray magnetic circular dichroism. Proc Natl Acad Sci U S A 2007; 104:19524-8. [PMID: 18032611 DOI: 10.1073/pnas.0704879104] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Magnetosomes are magnetite nanoparticles formed by biomineralization within magnetotactic bacteria. Although there have been numerous genetic and proteomic studies of the magnetosome-formation process, there have been only limited and inconclusive studies of mineral-phase evolution during the formation process, and no real-time studies of such processes have yet been performed. Thus, suggested formation mechanisms still need substantiating with data. Here we report the examination of the magnetosome material throughout the formation process in a real-time in vivo study of Magnetospirillum gryphiswaldense, strain MSR-1. Transmission EM and x-ray absorption spectroscopy studies reveal that full-sized magnetosomes are seen 15 min after formation is initiated. These immature magnetosomes contain a surface layer of the nonmagnetic iron oxide-phase hematite. Mature magnetite is found after another 15 min, concurrent with a dramatic increase in magnetization. This rapid formation result is contrary to previously reported studies and discounts the previously proposed slow, multistep formation mechanisms. Thus, we conclude that the biomineralization of magnetite occurs rapidly in magnetotactic bacteria on a similar time scale to high-temperature chemical precipitation reactions, and we suggest that this finding is caused by a biological catalysis of the process.
Collapse
|
17
|
Effect of stable weak magnetic field on Cr(VI) bio-removal in anaerobic SBR system. Biodegradation 2007; 19:455-62. [DOI: 10.1007/s10532-007-9151-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
|
18
|
Li SY, Zhao FM. Research on the structure and performance of bacterial magnetic nanoparticles. J Biomater Appl 2007; 22:433-48. [PMID: 17623711 DOI: 10.1177/0885328207079064] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Magnetite nanocrystals have been widely used in many fields. Recently, a new magnetite nanocrystals, called magnetosome, has been found in magnetotactic bacteria. In this article, we researched on the properties of magnetosomes in detail, such as crystalline, morphology, crystal-size distributions, vitro cytotoxicity, and magnetic properties and quantified primary amino groups on the magnetosomes membrane surface by fluorescamine assay for the first time. From the results, it was clear that magnetosomes have more potential in the biomedical applications than synthetic magnetite.
Collapse
|
19
|
Gilad AA, Winnard PT, van Zijl PCM, Bulte JWM. Developing MR reporter genes: promises and pitfalls. NMR IN BIOMEDICINE 2007; 20:275-90. [PMID: 17451181 DOI: 10.1002/nbm.1134] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
MR reporter genes have the potential to monitor transgene expression non-invasively in real time at high resolution. These genes can be applied to interrogate the efficacy of gene therapy, to assess cellular differentiation, cell trafficking, and specific metabolic activity, and also assess changes in the microenvironment. Efforts toward the development of MR reporter genes have been made for at least a decade, but, despite these efforts, the field is still in its early developmental stage. This reflects the fact that there are potential pitfalls, caused by the low sensitivity of detection, the need for substrates with their associated undesirable pharmacokinetics, and/or the difficult and, in some cases, delayed interpretation of signal changes. Nevertheless, significant progress has been made during the last few years. Whereas enzyme-based reporters were initially applied to NMR spectroscopic monitoring of changes in phosphor and fluorine metabolism, MRI-based approaches are now emerging that rely on: (1) enzyme-based cleavage of functional groups that block water (proton) exchange or protein binding of MR contrast agents; (2) expression of surface receptors that enable binding of specific MR contrast agents; (3) expression of para- and anti-ferromagnetic (metallo)proteins involved with iron metabolism, such as tyrosinase, transferrin receptor, and ferritin. After an introduction to the basic principles of designing promoters, expression vectors, and cloning of transgenes, a fresh look is provided on the use of reporter genes for optical (including bioluminescent) and nuclear imaging, with which MR reporter genes compete. Although progress in the use of MR reporter genes has been slow, newer strategies that use metalloproteins or alternative contrast mechanisms, with no need for substrates, promise rapid growth potential for this field.
Collapse
Affiliation(s)
- Assaf A Gilad
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
20
|
Matsunaga T, Suzuki T, Tanaka M, Arakaki A. Molecular analysis of magnetotactic bacteria and development of functional bacterial magnetic particles for nano-biotechnology. Trends Biotechnol 2007; 25:182-8. [PMID: 17306901 DOI: 10.1016/j.tibtech.2007.02.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 12/18/2006] [Accepted: 02/06/2007] [Indexed: 11/25/2022]
Abstract
Biomineralization is an elaborate process that produces complex nano-structures consisting of organic and inorganic components of uniform size and highly ordered morphology that self-assemble into structures in a hierarchical manner. Magnetotactic bacteria synthesize nano-sized magnetite crystals that are highly consistent in size and morphology within bacterial species; each particle is surrounded by a thin organic membrane, which facilitates their use for various biotechnological applications. Recent molecular studies, including mutagenesis, whole genome, transcriptome and comprehensive proteome analyses, have elucidated the processes important to bacterial magnetite formation. Some of the genes and proteins identified from these studies have enabled us, through genetic engineering, to express proteins efficiently, with their activity preserved, onto bacterial magnetic particles, leading to the simple preparation of functional protein-magnetic particle complexes. This review describes the recent advances in the fundamental analysis of bacterial magnetic particles and the development of surface-protein-modified magnetic particles for biotechnological applications.
Collapse
Affiliation(s)
- Tadashi Matsunaga
- Department of Biotechnology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | | | | | | |
Collapse
|
21
|
Lins U, McCartney MR, Farina M, Frankel RB, Buseck PR. Crystal habits and magnetic microstructures of magnetosomes in coccoid magnetotactic bacteria. AN ACAD BRAS CIENC 2007; 78:463-74. [PMID: 16936936 DOI: 10.1590/s0001-37652006000300007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 02/17/2006] [Indexed: 11/21/2022] Open
Abstract
We report on the application of off-axis electron holography and high-resolution TEM to study the crystal habits of magnetosomes and magnetic microstructure in two coccoid morphotypes of magnetotactic bacteria collected from a brackish lagoon at Itaipu, Brazil. Itaipu-1, the larger coccoid organism, contains two separated chains of unusually large magnetosomes; the magnetosome crystals have roughly square projections, lengths up to 250 nm and are slightly elongated along [111] (width/length ratio of about 0.9). Itaipu-3 magnetosome crystals have lengths up to 120 nm, greater elongation along [111] (width/length approximately 0.6), and prominent corner facets. The results show that Itaipu-1 and Itaipu-3 magnetosome crystal habits are related, differing only in the relative sizes of their crystal facets. In both cases, the crystals are aligned with their [111] elongation axes parallel to the chain direction. In Itaipu-1, but not Itaipu-3, crystallographic positioning perpendicular to [111] of successive crystals in the magnetosome chain appears to be under biological control. Whereas the large magnetosomes in Itaipu-1 are metastable, single-magnetic domains, magnetosomes in Itaipu-3 are permanent, single-magnetic domains, as in most magnetotactic bacteria.
Collapse
Affiliation(s)
- Ulysses Lins
- Instituto de Microbiologia Professor Paulo de Góes, CCS, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
22
|
Patwardhan SV, Patwardhan G, Perry CC. Interactions of biomolecules with inorganic materials: principles, applications and future prospects. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b704075j] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Abstract
In this critical review we discuss recent advances in understanding the modes of interaction of metal ions with membrane proteins, including channels, pumps, transporters, ATP-binding cassette proteins, G-protein coupled receptors, kinases and respiratory enzymes. Such knowledge provides a basis for elucidating the mechanism of action of some classes of metallodrugs, and a stimulus for the further exploration of the coordination chemistry of metal ions in membranes. Such research offers promise for the discovery of new drugs with unusual modes of action. The article will be of interest to bioinorganic chemists, chemical biologists, biochemists, pharmacologists and medicinal chemists. (247 references).
Collapse
Affiliation(s)
- Xiangyang Liang
- School of Chemistry, University of Edinburgh, King's Buildings, West Mains Road, Edinburgh, UKEH9 3JJ
| | | | | |
Collapse
|
24
|
Taoka A, Asada R, Sasaki H, Anzawa K, Wu LF, Fukumori Y. Spatial localizations of Mam22 and Mam12 in the magnetosomes of Magnetospirillum magnetotacticum. J Bacteriol 2006; 188:3805-12. [PMID: 16707673 PMCID: PMC1482926 DOI: 10.1128/jb.00020-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum magnetotacticum possesses intracellular magnetite particles with a chain-like structure, termed magnetosomes. The bacterium expresses 22-kDa and 12-kDa magnetosome-associated proteins, termed Mam22 (MamA) and Mam12 (MamC), respectively. In this study, we investigated the structure of the purified magnetosomes with transmission electron microscopic techniques and found that the magnetosomes consisted of four compartments, i.e., magnetite crystal, magnetosomal membrane, interparticle connection, and magnetosomal matrix. Furthermore, we determined the precise localizations of Mam22 and Mam12 using immunogold staining of the purified magnetosomes and ultrathin sections of the bacterial cells. Interestingly, most Mam22 existed in the magnetosomal matrix, whereas Mam12 was strictly localized in the magnetosomal membrane. Moreover, the recombinant Mam22 was attached to the magnetosomal matrix of the Mam22-deficient magnetosomes prepared by alkaline treatment, such as 0.1 M Caps-NaOH buffer (pH 11.0). The spatial localization of the magnetosome-associated proteins in the magnetosomal chain provides useful information to elucidate the functional roles of these proteins.
Collapse
Affiliation(s)
- Azuma Taoka
- Department of Life Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Frank P, DeTomaso A, Hedman B, Hodgson KO. A new structural motif for biological iron: iron K-edge XAS reveals a [Fe4-mu-(OR)5(OR)(9-10)] cluster in the ascidian Perophora annectens. Inorg Chem 2006; 45:3920-31. [PMID: 16676950 DOI: 10.1021/ic051445x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Phlebobranch ascidian Perophora annectens surprisingly exhibited a biological Fe/V ratio of approximately 15:1 on multichannel X-ray fluorescence analysis of two independent collections of organisms. Iron K-edge X-ray absorption spectroscopy (XAS) indicated a single form of iron. The XAS K-edge of the first collection of blood cells was shifted approximately +1 eV relative to that of the second, indicating redox activity with average iron oxidation states of 2.67+ and 2.60+. The first-derivative iron XAS K-edge features at 7120.5, 7124, and 7128 eV resembled the XAS of magnetite but not of ferritin or of dissolved Fe(II) or Fe(III). Pseudo-Voigt fits to blood-cell iron K-edge XAS spectra yielded 12.4 integrated units of preedge intensity, indicating a noncentrosymmetric environment. The non-phase-corrected extended X-ray absorption fine structure (EXAFS) Fourier transform spectrum showed a first-shell O/N peak at 1.55 angstroms and an intense Fe-Fe feature at 2.65 angstroms. Fits to the EXAFS required a split first shell with two O at 1.93 angstroms and three O at 2.07 angstroms, consistent with terminal and bridging alkoxide ligands, respectively. More distant shells included three C at 2.87 angstroms, two Fe at 3.08 angstroms, three O at 3.29 angstroms, and one Fe at 3.8 angstroms. Structural models consistent with these findings include a [Fe4(OR)13](2-/3-) broken-edged Fe4O5 cuboid or a [Fe4(OR)14](3-/4-) "Jacob's ladder" with three edge-fused Fe2(OR)2 rhombs. Either of these models represents an entirely new structural motif for biological iron. Vanadium domination of blood-cell metals cannot be a defining trait of Phlebobranch tunicates so long as P. annectens is included among them.
Collapse
Affiliation(s)
- Patrick Frank
- Department of Chemistry, Stanford University, Stanford, California 94305-5080, USA
| | | | | | | |
Collapse
|
26
|
Abstract
Sensing of magnetic fields by living organisms -- magnetosensing -- is best understood in magnetotactic bacteria. Recently work has provided new insight into the biogenesis of bacterial magnetosomes, and links these organelles to a newly recognized prokaryotic cytoskeletal filament which organizes magnetosomes into a sensory structure capable of aligning cells with the geomagnetic field.
Collapse
Affiliation(s)
- Craig Stephens
- Biology Department, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, USA.
| |
Collapse
|
27
|
Involvement of a Gene Encoding Putative Acetate Kinase in Magnetosome Synthesis in Magnetospirillum magneticum AMB-1. HAYATI JOURNAL OF BIOSCIENCES 2006. [DOI: 10.1016/s1978-3019(16)30375-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Abstract
RNA sequences previously isolated by in vitro selection were further characterized for their ability to control palladium particle growth. Five pyridyl-modified RNA sequences (Pdases) representing each of the different evolved families were found to form hexagonal plates with a high degree of shape specificity. However, a sixth nonrelated pyridyl-modified RNA sequence was found to form exclusively cubic particles under identical conditions. Replacing pyridyl-modified RNA with native RNA resulted in a complete loss of RNA function. Removing the 3'-fixed sequence region from the Pdase had little effect on particle growth; however, further truncations into the variable region resulted in a significant loss of activity and particle shape control. These Pdases were selected using the organometallic precursor complex tris(dibenzylideneacetone) dipalladium(0) ([Pd2(DBA)3]). Changing the metal center and ligand of the group VIII organometallic precursor complex revealed a strong dependence of particle growth and shape on the DBA ligands. Changing the metal center from Pd to Pt while retaining the DBA ligands gave predominantly hexagonal Pt, but with a decrease in shape control. Taken together, the results of this study suggest that the full-length Pdases contain active sites capable of highly specific molecular recognition of organometallic complexes as particle formation reagents.
Collapse
Affiliation(s)
- Lina A Gugliotti
- W. M. Keck Center for RNA-Mediated Materials Synthesis, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA
| | | | | |
Collapse
|
29
|
Abstract
The ability of iron to cycle between Fe(2+) and Fe(3+) forms has led to the evolution, in different forms, of several iron-containing protein cofactors that are essential for a wide variety of cellular processes, to the extent that virtually all cells require iron for survival and prosperity. The redox properties of iron, however, also mean that this metal is potentially highly toxic and this, coupled with the extreme insolubility of Fe(3+), presents the cell with the significant problem of how to maintain this essential metal in a safe and bioavailable form. This has been overcome through the evolution of proteins capable of reversibly storing iron in the form of a Fe(3+) mineral. For several decades the ferritins have been synonymous with the function of iron storage. Within this family are subfamilies of mammalian, plant and bacterial ferritins which are all composed of 24 subunits assembled to form an essentially spherical protein with a central cavity in which the mineral is laid down. In the past few years it has become clear that other proteins, belonging to the family of DNA-binding proteins from starved cells (the Dps family), which are oligomers of 12 subunits, and to the frataxin family, which may contain up to 48 subunits, are also able to lay down a Fe(3+) mineral core. Here we present an overview of the formation of protein-coated iron minerals, with particular emphasis on the structures of the protein coats and the mechanisms by which they promote core formation. We show on the one hand that significant mechanistic similarities exist between structurally dissimilar proteins, while on the other that relatively small structural differences between otherwise similar proteins result in quite dramatic mechanistic differences.
Collapse
Affiliation(s)
- Allison Lewin
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich, UK.
| | | | | |
Collapse
|