1
|
Bahl A, Rakshit R, Pandey S, Tripathi D. Genome wide screening to discover novel toxin-antitoxin modules in Mycobacterium indicus pranii; perspective on gene acquisition during mycobacterial evolution. Biotechnol Appl Biochem 2025; 72:116-137. [PMID: 39113212 DOI: 10.1002/bab.2651] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/24/2024] [Indexed: 02/06/2025]
Abstract
Mycobacterium indicus pranii (MIP), a benign saprophyte with potent immunomodulatory attributes, holds a pivotal position in mycobacterial evolution, potentially serving as the precursor to the pathogenic Mycobacterium avium complex (MAC). Despite its established immunotherapeutic efficacy against leprosy and notable outcomes in gram-negative sepsis and COVID-19 cases, the genomic and biochemical features of MIP remain largely elusive. This study explores the uncharted territory of toxin-antitoxin (TA) systems within MIP, hypothesizing their role in mycobacterial pathogenicity regulation. Genome-wide screening, employing diverse databases, unveils putative TA modules in MIP, setting the stage for a comparative analysis with known modules in Mycobacterium tuberculosis, Mycobacterium smegmatis, Escherichia coli, and Vibrio cholerae. The study further delves into the TA network of MAC and Mycobacterium intracellulare, unraveling interactive properties and family characteristics of identified TA modules in MIP. This comprehensive exploration seeks to illuminate the contribution of TA modules in regulating virulence, habitat diversification, and the evolutionary pathogenicity of mycobacteria. The insights garnered from this investigation not only enhance our understanding of MIP's potential as a vaccine candidate but also hold promise in optimizing tuberculosis drug regimens for expedited recovery.
Collapse
Affiliation(s)
- Aayush Bahl
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Roopshali Rakshit
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Saurabh Pandey
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, Delhi, India
| | - Deeksha Tripathi
- Microbial Pathogenesis and Microbiome Lab, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
2
|
Sinha PR, Balasubramanian R, Hegde SR. Integrated sequence and -omic features reveal novel small proteome of Mycobacterium tuberculosis. Front Microbiol 2024; 15:1335310. [PMID: 38812687 PMCID: PMC11133741 DOI: 10.3389/fmicb.2024.1335310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/15/2024] [Indexed: 05/31/2024] Open
Abstract
Bioinformatic studies on small proteins are under-represented due to difficulties in annotation posed by their small size. However, recent discoveries emphasize the functional significance of small proteins in cellular processes including cell signaling, metabolism, and adaptation to stress. In this study, we utilized a Random Forest classifier trained on sequence features, RNA-Seq, and Ribo-Seq data to uncover small proteins (smORFs) in M. tuberculosis. Independent predictions for the exponential and starvation conditions resulted in 695 potential smORFs. We examined the functional implications of these smORFs using homology searches, LC-MS/MS, and ChIP-seq data, testing their expression in diverse growth conditions, and identifying protein domains. We provide evidence that some of these smORFs could be part of operons, or exist as upstream ORFs. This expanded data resource for the proteins of M. tuberculosis would aid in fine-tuning the existing protein and gene regulatory networks, thereby improving system-wide studies. The primary goal of this study was to uncover and characterize smORFs in M. tuberculosis through bioinformatic analysis, shedding light on their functional roles and genomic organization. Further investigation of these potential smORFs would provide valuable insights into the genome organization and functional diversity of the M. tuberculosis proteome.
Collapse
Affiliation(s)
| | | | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, India
| |
Collapse
|
3
|
In Silico Identification of Novel Derivatives of Rifampicin Targeting Ribonuclease VapC2 of M. tuberculosis H37Rv: Rifampicin Derivatives Target VapC2 of Mtb H37Rv. Molecules 2023; 28:molecules28041652. [PMID: 36838640 PMCID: PMC9968056 DOI: 10.3390/molecules28041652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
The emergence of multi-drug-resistant Mycobacterium tuberculosis (Mtb) strains has rendered many of the currently available anti-TB drugs ineffective. Hence, there is a pressing need to discover new potential drug targets/candidates. In this study, attempts have been made to identify novel inhibitors of the ribonuclease VapC2 of Mtb H37Rv using various computational techniques. Ribonuclease VapC2 Mtb H37Rv's protein structure was retrieved from the PDB databank, 22 currently used anti-TB drugs were retrieved from the PubChem database, and protein-ligand interactions were analyzed by docking studies. Out of the 22 drugs, rifampicin (RIF), being a first-line drug, showed the best binding energy (-8.8 Kcal/mol) with Mtb H37Rv VapC2; hence, it was selected as a parent molecule for the design of its derivatives. Based on shape score and radial plot criteria, out of 500 derivatives designed through SPARK (Cresset®, Royston, UK) program, the 10 best RIF derivatives were selected for further studies. All the selected derivatives followed the ADME criteria concerning drug-likeness. The docking of ribonuclease VapC2 with RIF derivatives revealed the best binding energy of -8.1 Kcal/mol with derivative 1 (i.e., RIF-155841). A quantitative structure-activity relationship study revealed that derivative 1's activity assists in the inhibition of ribonuclease VapC2. The stability of the VapC2-RIF155841 complex was evaluated using molecular dynamics simulations for 50 ns and the complex was found to be stable after 10 nsec. Further, a chemical synthesis scheme was designed for the newly identified RIF derivative (RIF-155841), which verified that its chemical synthesis is possible for future in vitro/in vivo experimental validation. Overall, this study evaluated the potential of the newly designed RIF derivatives with respect to the Mtb VapC2 protein, which is predicted to be involved in some indispensable processes of the related pathogen. Future experimental studies regarding RIF-155841, including the exploration of the remaining RIF derivatives, are warranted to verify our current findings.
Collapse
|
4
|
VapC toxin switches M. smegmatis cells into dormancy through 23S rRNA cleavage. Arch Microbiol 2023; 205:28. [DOI: 10.1007/s00203-022-03363-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
|
5
|
Mycobacterium tuberculosis VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress response. Proc Natl Acad Sci U S A 2021; 118:2022136118. [PMID: 34362841 DOI: 10.1073/pnas.2022136118] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Mycobacterium tuberculosis (Mtb) VapBC4 toxin-antitoxin system is essential for the establishment of Mtb infection. Using a multitier, systems-level approach, we uncovered the sequential molecular events triggered by the VapC4 toxin that activate a circumscribed set of critical stress survival pathways which undoubtedly underlie Mtb virulence. VapC4 exclusively inactivated the sole transfer RNACys (tRNACys) through cleavage at a single site within the anticodon sequence. Depletion of the pool of tRNACys led to ribosome stalling at Cys codons within actively translating messenger RNAs. Genome mapping of these Cys-stalled ribosomes unexpectedly uncovered several unannotated Cys-containing open reading frames (ORFs). Four of these are small ORFs (sORFs) encoding Cys-rich proteins of fewer than 50 amino acids that function as Cys-responsive attenuators that engage ribosome stalling at tracts of Cys codons to control translation of downstream genes. Thus, VapC4 mimics a state of Cys starvation, which then activates Cys attenuation at sORFs to globally redirect metabolism toward the synthesis of free Cys. The resulting newly enriched pool of Cys feeds into the synthesis of mycothiol, the glutathione counterpart in this pathogen that is responsible for maintaining cellular redox homeostasis during oxidative stress, as well as into a circumscribed subset of cellular pathways that enable cells to defend against oxidative and copper stresses characteristically endured by Mtb within macrophages. Our ability to pinpoint activation or down-regulation of pathways that collectively align with Mtb virulence-associated stress responses and the nonreplicating persistent state brings to light a direct and vital role for the VapC4 toxin in mediating these critical pathways.
Collapse
|
6
|
Kang SM, Jin C, Kim DH, Lee Y, Lee BJ. Structural and Functional Study of the Klebsiella pneumoniae VapBC Toxin-Antitoxin System, Including the Development of an Inhibitor That Activates VapC. J Med Chem 2020; 63:13669-13679. [PMID: 33146528 DOI: 10.1021/acs.jmedchem.0c01118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Klebsiella pneumoniae is one of the most critical opportunistic pathogens. TA systems are promising drug targets because they are related to the survival of bacterial pathogens. However, structural information on TA systems in K. pneumoniae remains lacking; therefore, it is necessary to explore this information for the development of antibacterial agents. Here, we present the first crystal structure of the VapBC complex from K. pneumoniae at a resolution of 2.00 Å. We determined the toxin inhibitory mechanism of the VapB antitoxin through an Mg2+ switch, in which Mg2+ is displaced by R79 of VapB. This inhibitory mechanism of the active site is a novel finding and the first to be identified in a bacterial TA system. Furthermore, inhibitors, including peptides and small molecules, that activate the VapC toxin were discovered and investigated. These inhibitors can act as antimicrobial agents by disrupting the VapBC complex and activating VapC. Our comprehensive investigation of the K. pneumoniae VapBC system will help elucidate an unsolved conundrum in VapBC systems and develop potential antimicrobial agents.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Chenglong Jin
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| | - Do-Hee Kim
- College of Pharmacy, Jeju National University, Jeju 63243, Korea.,Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Korea
| | - Yuno Lee
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
7
|
Park D, Yoon HJ, Lee KY, Park SJ, Cheon SH, Lee HH, Lee SJ, Lee BJ. Crystal structure of proteolyzed VapBC and DNA-bound VapBC from Salmonella enterica Typhimurium LT2 and VapC as a putative Ca 2+ -dependent ribonuclease. FASEB J 2020; 34:3051-3068. [PMID: 31908032 DOI: 10.1096/fj.201901989r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/22/2022]
Abstract
Bacterial toxin-antitoxin (TA) system has gained attention for its essential roles in cellular maintenance and survival under harsh environmental conditions such as nutrient deficiency and antibiotic treatment. There are at least 14 TA systems in Salmonella enterica serovar Typhimurium LT2, a pathogenic bacterium, and none of the structures of these TA systems have been determined. We determined the crystal structure of the VapBC TA complex from S. Typhimurium LT2 in proteolyzed and DNA-bound forms at 2.0 Å and 2.8 Å resolution, respectively. The VapC toxin possesses a pilT N-terminal domain (PIN-domain) that shows ribonuclease activity, and the VapB antitoxin has an AbrB-type DNA binding domain. In addition, the structure revealed details of interaction mode between VapBC and the cognate promoter DNA, including the inhibition of VapC by VapB and linear conformation of bound DNA in the VapBC complex. The complexation of VapBC with the linear DNA is not consistent with known structures of VapBC homologs in complex with bent DNA. We also identified VapC from S. Typhimurium LT2 as a putative Ca2+ -dependent ribonuclease, which differs from previous data showing that VapC homologs have Mg2+ or Mn2+ -dependent ribonuclease activities. The present studies could provide structural understanding of the physiology of VapBC systems and foundation for the development of new antibiotic drugs against Salmonella infection.
Collapse
Affiliation(s)
- DongWon Park
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ki-Young Lee
- Department of Medical Biophysics, University of Toronto, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Sung-Jean Park
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Seung-Ho Cheon
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Jae Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Andrews ESV, Arcus VL. PhoH2 proteins couple RNA helicase and RNAse activities. Protein Sci 2020; 29:883-892. [PMID: 31886915 DOI: 10.1002/pro.3814] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 01/29/2023]
Abstract
PhoH2 proteins are found in a very diverse range of microorganisms that span bacteria and archaea. These proteins are composed of two domains: an N-terminal PIN-domain fused with a C-terminal PhoH domain. Collectively this fusion functions as an RNA helicase and ribonuclease. In other genomic contexts, PINdomains and PhoHdomains are separate but adjacent suggesting association to achieve similar function. Exclusively among the mycobacteria, PhoH2 proteins are encoded in the genome with an upstream gene, phoAT, which is thought to play the role of an antitoxin (in place of the traditional VapB antitoxin that lies upstream of the 47 other PINdomains in the mycobacterial genome). This review examines PhoH2 proteins as a whole and describes the bioinformatics, biochemical, structural, and biological properties of the two domains that make up PhoH2: PIN and PhoH. We review the transcriptional regulators of phoH2 from two mycobacterial species and speculate on the function of PhoH2 proteins in the context of a Type II toxin-antitoxin system which are thought to play a role in the stress response in bacteria.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| | - Vickery L Arcus
- School of Science, Division of Health, Engineering, Computing and Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
9
|
Silva-Pereira TT, Ikuta CY, Zimpel CK, Camargo NCS, de Souza Filho AF, Ferreira Neto JS, Heinemann MB, Guimarães AMS. Genome sequencing of Mycobacterium pinnipedii strains: genetic characterization and evidence of superinfection in a South American sea lion (Otaria flavescens). BMC Genomics 2019; 20:1030. [PMID: 31888476 PMCID: PMC6937676 DOI: 10.1186/s12864-019-6407-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 12/17/2019] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Mycobacterium pinnipedii, a member of the Mycobacterium tuberculosis Complex (MTBC), is capable of infecting several host species, including humans. Recently, ancient DNA from this organism was recovered from pre-Columbian mummies of Peru, sparking debate over the origin and frequency of tuberculosis in the Americas prior to European colonization. RESULTS We present the first comparative genomic study of this bacterial species, starting from the genome sequencing of two M. pinnipedii isolates (MP1 and MP2) obtained from different organs of a stranded South American sea lion. Our results indicate that MP1 and MP2 differ by 113 SNPs (single nucleotide polymorphisms) and 46 indels, constituting the first report of a mixed-strain infection in a sea lion. SNP annotation analyses indicate that genes of the VapBC family, a toxin-antitoxin system, and genes related to cell wall remodeling are under evolutionary pressure for protein sequence change in these strains. OrthoMCL analysis with seven modern isolates of M. pinnipedii shows that these strains have highly similar proteomes. Gene variations were only marginally associated with hypothetical proteins and PE/PPE (proline-glutamate and proline-proline-glutamate, respectively) gene families. We also detected large deletions in ancient and modern M. pinnipedii strains, including a few occurring only in modern strains, indicating a process of genome reduction occurring over the past one thousand years. Our phylogenomic analyses suggest the existence of two modern clusters of M. pinnipedii associated with geographic location, and possibly host species, and one basal node associated with the ancient M. pinnipedii strains. Previously described MiD3 and MiD4 deletions may have occurred independently, twice, over the evolutionary course of the MTBC. CONCLUSION The presence of superinfection (i.e. mixed-strain infection) in this sea lion suggests that M. pinnipedii is highly endemic in this population. Mycobacterium pinnipedii proteomes of the studied isolates showed a high degree of conservation, despite being under genomic decay when compared to M. tuberculosis. This finding indicates that further genomes need to be sequenced and analyzed to increase the chances of finding variably present genes among strains or that M. pinnipedii genome remodeling occurred prior to bacterial speciation.
Collapse
Affiliation(s)
- Taiana T Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Cássia Y Ikuta
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristina K Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila C S Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio F de Souza Filho
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - José S Ferreira Neto
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcos B Heinemann
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana M S Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil. .,Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
10
|
Tandon H, Sharma A, Wadhwa S, Varadarajan R, Singh R, Srinivasan N, Sandhya S. Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J Biol Chem 2019; 294:9048-9063. [PMID: 31018964 DOI: 10.1074/jbc.ra118.006814] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Mycobacterium tuberculosis possesses an unusually large representation of type II toxin-antitoxin (TA) systems, whose functions and targets are mostly unknown. To better understand the basis of their unique expansion and to probe putative functional similarities among these systems, here we computationally and experimentally investigated their sequence relationships. Bioinformatic and phylogenetic investigations revealed that 51 sequences of the VapBC toxin family group into paralogous sub-clusters. On the basis of conserved sequence fingerprints within paralogues, we predicted functional residues and residues at the putative TA interface that are useful to evaluate TA interactions. Substitution of these likely functional residues abolished the toxin's growth-inhibitory activity. Furthermore, conducting similarity searches in 101 mycobacterial and ∼4500 other prokaryotic genomes, we assessed the relative conservation of the M. tuberculosis TA systems and found that most TA orthologues are well-conserved among the members of the M. tuberculosis complex, which cause tuberculosis in animal hosts. We found that soil-inhabiting, free-living Actinobacteria also harbor as many as 12 TA pairs. Finally, we identified five novel putative TA modules in M. tuberculosis. For one of them, we demonstrate that overexpression of the putative toxin, Rv2514c, induces bacteriostasis and that co-expression of the cognate antitoxin Rv2515c restores bacterial growth. Taken together, our findings reveal that toxin sequences are more closely related than antitoxin sequences in M. tuberculosis Furthermore, the identification of additional TA systems reported here expands the known repertoire of TA systems in M. tuberculosis.
Collapse
Affiliation(s)
- Himani Tandon
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Arun Sharma
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Saruchi Wadhwa
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| | - Ramandeep Singh
- the Tuberculosis Research Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, P. O. Box 4, Faridabad, Haryana-121001, India
| | | | - Sankaran Sandhya
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore-560012 and
| |
Collapse
|
11
|
Cintrón M, Zeng JM, Barth VC, Cruz JW, Husson RN, Woychik NA. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci Rep 2019; 9:5949. [PMID: 30976025 PMCID: PMC6459853 DOI: 10.1038/s41598-019-41548-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/01/2019] [Indexed: 01/18/2023] Open
Abstract
The Mycobacterium tuberculosis genome harbors an unusually high number of toxin-antitoxin (TA) systems. These TA systems have been implicated in establishing the nonreplicating persistent state of this pathogen during latent tuberculosis infection. More than half of the M. tuberculosis TA systems belong to the VapBC (virulence associated protein) family. In this work, we first identified the RNA targets for the M. tuberculosis VapC-mt11 (VapC11, Rv1561) toxin in vitro to learn more about the general function of this family of toxins. Recombinant VapC-mt11 cleaved 15 of the 45 M. tuberculosis tRNAs at a single site within their anticodon stem loop (ASL) to generate tRNA halves. Cleavage was dependent on the presence of a GG consensus sequence immediately before the cut site and a structurally intact ASL. However, in striking contrast to the broad enzyme activity exhibited in vitro, we used a specialized RNA-seq method to demonstrate that tRNA cleavage was highly specific in vivo. Expression of VapC-mt11 in M. tuberculosis resulted in cleavage of only two tRNA isoacceptors containing the GG consensus sequence, tRNAGln32-CUG and tRNALeu3-CAG. Therefore, our results indicate that although in vitro studies are useful for identification of the class of RNA cleaved and consensus sequences required for accurate substrate recognition by endoribonuclease toxins, definitive RNA target identification requires toxin expression in their native host. The restricted in vivo specificity of VapC-mt11 suggests that it may be enlisted to surgically manipulate pathogen physiology in response to stress.
Collapse
Affiliation(s)
- Melvilí Cintrón
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Ju-Mei Zeng
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Valdir C Barth
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital/Harvard Medical School, Boston, MA, 02115, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, 08854, USA. .,Member, Rutgers Cancer Institute of New Jersey, Piscataway, 08854, USA.
| |
Collapse
|
12
|
A toxin-antitoxin system is essential for the stability of mosquitocidal plasmid pBsph of Lysinibacillus sphaericus. Microbiol Res 2018; 214:114-122. [PMID: 30031473 DOI: 10.1016/j.micres.2018.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/13/2018] [Accepted: 06/23/2018] [Indexed: 11/22/2022]
Abstract
Lysinibacillus sphaericus C3-41 carries a large low-copy-number plasmid pBsph, which encodes binary toxin proteins. Our previous study found that the transcriptional activator TubX plays an important role in the newly identified type Ⅲ TubRZC replication/partition system in pBsph, and that a vector consisting of tubRZC and tubX is not as stable as pBsph, indicating the presence of other maintenance module(s). In this study, we identified that orf9 and orf10 are necessary for the stability of pBsph by a series of deletion and complementation experiments. Bioinformatics analysis showed that ORF9 contains a PIN domain of VapBC toxin-antitoxin (TA) system, whereas ORF10 share no significant sequence similarity to any of the characterized antitoxins in the database. Further studies revealed that orf9 and orf10 are transcribed as an operon. The overexpression of ORF9 repressed the growth of both Escherichia coli and L. sphaericus, which can be alleviated by overexpression of ORF10. The deletion of orf10 individually or orf9-10 together resulted a decrease on plasmid stability which was restored by the complementation of corresponding gene(s), suggesting that ORF10 plays an important role in plasmid stability. In addition, it was found the plasmid stability is related with the transcription level of tubRZ, and overexpression of TubRZ could neutralize the negative effect on plasmid stability caused by the deletion of orf9-orf10. Moreover, the recombinant vector containing tubRZC, tubX and orf9-10 was more stable than the ones containing only tubRZC and either tubX or orf9-10. The data indicate that the plasmid maintenance system on pBsph includes orf9-orf10 TA system.
Collapse
|
13
|
Antonova AV, Gryadunov DA, Zimenkov DV. Molecular Mechanisms of Drug Tolerance in Mycobacterium tuberculosis. Mol Biol 2018. [DOI: 10.1134/s0026893318030020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y, Takashima Y, Narisawa K, Ohta H. Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 2018. [PMID: 29540638 PMCID: PMC5877345 DOI: 10.1264/jsme2.me17138] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yong Guo
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Tomoyasu Nishizawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Shoko Ohshima
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yoshinori Sato
- Center for Conservation and Restoration Techniques, Tokyo National Research Institute for Cultural Properties
| | - Yusuke Takashima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Kazuhiko Narisawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
15
|
Homologous VapC Toxins Inhibit Translation and Cell Growth by Sequence-Specific Cleavage of tRNA fMet. J Bacteriol 2018; 200:JB.00582-17. [PMID: 29109187 DOI: 10.1128/jb.00582-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 01/19/2023] Open
Abstract
Type II toxin-antitoxin (TA) systems play a critical role in the establishment and maintenance of bacterial dormancy. They are composed of a protein toxin and its cognate protein antitoxin. They function to regulate growth under conditions of stress, such as starvation or antibiotic treatment. As cellular proteases degrade the antitoxin, which normally binds and neutralizes the toxin, this frees the toxin to act on its cellular targets and arrest bacterial growth. TA systems are of particular concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae (NTHi), as dormancy may lead to chronic infections and failure of antibiotic treatment. Many targets of VapC toxins have not been identified, to date, and this knowledge is crucial to understanding how toxins control the establishment and maintenance of bacterial dormancy. Accordingly, we characterized the target specificity of the VapC toxins from the two paralogous NTHi vapBC TA systems. RNA sequencing and Northern blot analysis revealed that VapC1 and VapC2 cleave tRNAfMet in the anticodon loop. Overexpression of tRNAfMet suppresses VapC toxicity, suggesting that translation inhibition results from the depletion of tRNAfMet These experiments also identified base pairs in the tRNAfMet anticodon stem that play a key role in VapC-specific cleavage of the tRNA. Together these findings suggest the potential for NTHi VapC1 and VapC2 to induce dormancy by sequence-specific cleavage of tRNAfMetIMPORTANCE Bacterial persistence is a significant concern in regard to pathogenic organisms, such as nontypeable Haemophilus influenzae, as it can result in recurrent and chronic infections. Toxin-antitoxin systems can lead to persistence by causing bacteria to enter a slow-growing state that renders them antibiotic tolerant. Type II toxin components affect a wide variety of bacterial targets in order to elicit dormancy, and for many toxin-antitoxin systems, these mechanisms are not well understood. Thus, in order to understand how vapBC toxin-antitoxin systems cause dormancy, it is crucial to investigate the substrate specificity of VapC toxins. This study identifies the target of the VapC1 and VapC2 toxins from NTHi and takes important steps toward understanding the specificity of these toxins for their tRNA target.
Collapse
|
16
|
Thakur Z, Dharra R, Saini V, Kumar A, Mehta PK. Insights from the protein-protein interaction network analysis of Mycobacterium tuberculosis toxin-antitoxin systems. Bioinformation 2017; 13:380-387. [PMID: 29225431 PMCID: PMC5712783 DOI: 10.6026/97320630013380] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interaction (PPI) network analysis is a powerful strategy to understand M. tuberculosis (Mtb) system level physiology in the identification of hub proteins. In the present study, the PPI network of 79 Mtb toxin-antitoxin (TA) systems comprising of 167 nodes and 234 edges was investigated. The topological properties of PPI network were examined by 'Network analyzer' a cytoscape plugin app and STRING database. The key enriched biological processes and the molecular functions of Mtb TA systems were analyzed by STRING. Manual curation of the PPI data identified four proteins (i.e. Rv2762c, VapB14, VapB42 and VapC42) to possess the highest number of interacting partners. The top 15% hub proteins were identified in the PPI network by employing two statistical measures, i.e. betweenness and radiality by employing cytohubba. Insights gained from the molecular protein models of VapC9 and VapC10 are also documented.
Collapse
Affiliation(s)
- Zoozeal Thakur
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak-124001 (Haryana), India
| | - Renu Dharra
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak-124001 (Haryana), India
| | - Vandana Saini
- Toxicology & Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University (MDU), Rohtak-124001 (Haryana), India
| | - Ajit Kumar
- Toxicology & Computational Biology Group, Centre for Bioinformatics, Maharshi Dayanand University (MDU), Rohtak-124001 (Haryana), India
| | - Promod K. Mehta
- Centre for Biotechnology, Maharshi Dayanand University (MDU), Rohtak-124001 (Haryana), India
| |
Collapse
|
17
|
Neoteric advancement in TB drugs and an overview on the anti-tubercular role of peptides through computational approaches. Microb Pathog 2017; 114:80-89. [PMID: 29174699 DOI: 10.1016/j.micpath.2017.11.034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/21/2022]
Abstract
Tuberculosis (TB) is a devastating threat to human health whose treatment without the emergence of drug resistant Mycobacterium tuberculosis (M. tuberculosis) is the million-dollar question at present. The pathogenesis of M. tuberculosis has been extensively studied which represents unique defence strategies by infecting macrophages. Several anti-tubercular drugs with varied mode of action and administration from diversified sources have been used for the treatment of TB that later contributed to the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB). However, few of potent anti-tubercular drugs are scheduled for clinical trials status in 2017-2018. Peptides of varied origins such as human immune cells and non-immune cells, bacteria, fungi, and venoms have been widely investigated as anti-tubercular agents for the replacement of existing anti-tubercular drugs in future. In the present review, we spotlighted not only on the mechanisms of action and mode of administration of currently available anti-tubercular drugs but also the recent comprehensive report of World Health Organization (WHO) on TB epidemic, diagnosis, prevention, and treatment. The major excerpt of the study also inspects the direct contribution of different computational tools during drug designing strategies against M. tuberculosis in order to grasp the interplay between anti-tubercular peptides and targeted bacterial protein. The potentiality of some of these anti-tubercular peptides as therapeutic agents unlocks a new portal for achieving the goal of end TB strategy.
Collapse
|
18
|
Kang SM, Kim DH, Lee KY, Park SJ, Yoon HJ, Lee SJ, Im H, Lee BJ. Functional details of the Mycobacterium tuberculosis VapBC26 toxin-antitoxin system based on a structural study: insights into unique binding and antibiotic peptides. Nucleic Acids Res 2017; 45:8564-8580. [PMID: 28575388 PMCID: PMC5737657 DOI: 10.1093/nar/gkx489] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/25/2017] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are essential for bacterial persistence under stressful conditions. In particular, Mycobacterium tuberculosis express VapBC TA genes that encode the stable VapC toxin and the labile VapB antitoxin. Under normal conditions, these proteins interact to form a non-toxic TA complex, but the toxin is activated by release from the antitoxin in response to unfavorable conditions. Here, we present the crystal structure of the M. tuberculosis VapBC26 complex and show that the VapC26 toxin contains a pilus retraction protein (PilT) N-terminal (PIN) domain that is essential for ribonuclease activity and that, the VapB26 antitoxin folds into a ribbon-helix-helix DNA-binding motif at the N-terminus. The active site of VapC26 is sterically blocked by the flexible C-terminal region of VapB26. The C-terminal region of free VapB26 adopts an unfolded conformation but forms a helix upon binding to VapC26. The results of RNase activity assays show that Mg2+ and Mn2+ are essential for the ribonuclease activity of VapC26. As shown in the nuclear magnetic resonance spectra, several residues of VapB26 participate in the specific binding to the promoter region of the VapBC26 operon. In addition, toxin-mimicking peptides were designed that inhibit TA complex formation and thereby increase toxin activity, providing a novel approach to the development of new antibiotics.
Collapse
Affiliation(s)
- Sung-Min Kang
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Do-Hee Kim
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Ki-Young Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Sung Jean Park
- College of Pharmacy, Gachon University, 534-2 Yeonsu-dong, Yeonsu-gu, Incheon 406-799, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Sang Jae Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Hookang Im
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 151-742, Republic of Korea
| |
Collapse
|
19
|
Matelska D, Steczkiewicz K, Ginalski K. Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Res 2017; 45:6995-7020. [PMID: 28575517 PMCID: PMC5499597 DOI: 10.1093/nar/gkx494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022] Open
Abstract
PIN-like domains constitute a widespread superfamily of nucleases, diverse in terms of the reaction mechanism, substrate specificity, biological function and taxonomic distribution. Proteins with PIN-like domains are involved in central cellular processes, such as DNA replication and repair, mRNA degradation, transcription regulation and ncRNA maturation. In this work, we identify and classify the most complete set of PIN-like domains to provide the first comprehensive analysis of sequence–structure–function relationships within the whole PIN domain-like superfamily. Transitive sequence searches using highly sensitive methods for remote homology detection led to the identification of several new families, including representatives of Pfam (DUF1308, DUF4935) and CDD (COG2454), and 23 other families not classified in the public domain databases. Further sequence clustering revealed relationships between individual sequence clusters and showed heterogeneity within some families, suggesting a possible functional divergence. With five structural groups, 70 defined clusters, over 100,000 proteins, and broad biological functions, the PIN domain-like superfamily constitutes one of the largest and most diverse nuclease superfamilies. Detailed analyses of sequences and structures, domain architectures, and genomic contexts allowed us to predict biological function of several new families, including new toxin-antitoxin components, proteins involved in tRNA/rRNA maturation and transcription/translation regulation.
Collapse
Affiliation(s)
- Dorota Matelska
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Kamil Steczkiewicz
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| | - Krzysztof Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089 Warsaw, Poland
| |
Collapse
|
20
|
Masuda H, Inouye M. Toxins of Prokaryotic Toxin-Antitoxin Systems with Sequence-Specific Endoribonuclease Activity. Toxins (Basel) 2017; 9:toxins9040140. [PMID: 28420090 PMCID: PMC5408214 DOI: 10.3390/toxins9040140] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 01/21/2023] Open
Abstract
Protein translation is the most common target of toxin-antitoxin system (TA) toxins. Sequence-specific endoribonucleases digest RNA in a sequence-specific manner, thereby blocking translation. While past studies mainly focused on the digestion of mRNA, recent analysis revealed that toxins can also digest tRNA, rRNA and tmRNA. Purified toxins can digest single-stranded portions of RNA containing recognition sequences in the absence of ribosome in vitro. However, increasing evidence suggests that in vivo digestion may occur in association with ribosomes. Despite the prevalence of recognition sequences in many mRNA, preferential digestion seems to occur at specific positions within mRNA and also in certain reading frames. In this review, a variety of tools utilized to study the nuclease activities of toxins over the past 15 years will be reviewed. A recent adaptation of an RNA-seq-based technique to analyze entire sets of cellular RNA will be introduced with an emphasis on its strength in identifying novel targets and redefining recognition sequences. The differences in biochemical properties and postulated physiological roles will also be discussed.
Collapse
Affiliation(s)
- Hisako Masuda
- School of Sciences, Indiana University Kokomo, Kokomo, IN 46902, USA.
| | - Masayori Inouye
- Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08854, USA.
| |
Collapse
|
21
|
Structure, Biology, and Therapeutic Application of Toxin-Antitoxin Systems in Pathogenic Bacteria. Toxins (Basel) 2016; 8:toxins8100305. [PMID: 27782085 PMCID: PMC5086665 DOI: 10.3390/toxins8100305] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/09/2023] Open
Abstract
Bacterial toxin–antitoxin (TA) systems have received increasing attention for their diverse identities, structures, and functional implications in cell cycle arrest and survival against environmental stresses such as nutrient deficiency, antibiotic treatments, and immune system attacks. In this review, we describe the biological functions and the auto-regulatory mechanisms of six different types of TA systems, among which the type II TA system has been most extensively studied. The functions of type II toxins include mRNA/tRNA cleavage, gyrase/ribosome poison, and protein phosphorylation, which can be neutralized by their cognate antitoxins. We mainly explore the similar but divergent structures of type II TA proteins from 12 important pathogenic bacteria, including various aspects of protein–protein interactions. Accumulating knowledge about the structure–function correlation of TA systems from pathogenic bacteria has facilitated a novel strategy to develop antibiotic drugs that target specific pathogens. These molecules could increase the intrinsic activity of the toxin by artificially interfering with the intermolecular network of the TA systems.
Collapse
|
22
|
Shur K, Zaychikova M, Mikheecheva N, Klimina K, Bekker O, Zhdanova S, Ogarkov O, Danilenko V. Draft genome sequence of Mycobacterium tuberculosis strain B9741 of Beijing B0/W lineage from HIV positive patient from Siberia. GENOMICS DATA 2016; 10:61-62. [PMID: 27761405 PMCID: PMC5064989 DOI: 10.1016/j.gdata.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 07/22/2016] [Accepted: 08/02/2016] [Indexed: 11/16/2022]
Abstract
We report a draft genome sequence of Mycobacterium tuberculosis strain B9741 belonging to Beijing B0/W lineage isolated from a HIV patient from Siberia, Russia. This clinical isolate showed MDR phenotype and resistance to isoniazid, rifampin, streptomycin and pyrazinamide. We analyzed SNPs associated with virulence and resistance. The draft genome sequence and annotation have been deposited at GenBank under the accession NZ_LVJJ00000000.
Collapse
Affiliation(s)
- K.V. Shur
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
| | - M.V. Zaychikova
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
| | - N.E. Mikheecheva
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
| | - K.M. Klimina
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
| | - O.B. Bekker
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
| | - S.N. Zhdanova
- Scientific Centre for Family Health and Human Reproduction Problems (SCFHHRP), Irkutsk, Russia
| | - O.B. Ogarkov
- Scientific Centre for Family Health and Human Reproduction Problems (SCFHHRP), Irkutsk, Russia
| | - V.N. Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics (VIGG RAS), Gubkina str. 3, 119991 Moscow, Russia
- Corresponding author at: 3 Gubkina str., 119991 Moscow, Russia.3 Gubkina str.Moscow119991Russia
| |
Collapse
|
23
|
Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress. Infect Immun 2016; 84:2505-23. [PMID: 27324481 DOI: 10.1128/iai.00072-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/10/2016] [Indexed: 12/27/2022] Open
Abstract
Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1.
Collapse
|
24
|
Characterization of the Deep-Sea Streptomyces sp. SCSIO 02999 Derived VapC/VapB Toxin-Antitoxin System in Escherichia coli. Toxins (Basel) 2016; 8:toxins8070195. [PMID: 27376329 PMCID: PMC4963828 DOI: 10.3390/toxins8070195] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 06/13/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Toxin-antitoxin (TA) systems are small genetic elements that are ubiquitous in prokaryotes. Most studies on TA systems have focused on commensal and pathogenic bacteria; yet very few studies have focused on TAs in marine bacteria, especially those isolated from a deep sea environment. Here, we characterized a type II VapC/VapB TA system from the deep-sea derived Streptomyces sp. SCSIO 02999. The VapC (virulence-associated protein) protein belongs to the PIN (PilT N-terminal) superfamily. Overproduction of VapC strongly inhibited cell growth and resulted in a bleb-containing morphology in E. coli. The toxicity of VapC was neutralized through direct protein-protein interaction by a small protein antitoxin VapB encoded by a neighboring gene. Antitoxin VapB alone or the VapB/VapC complex negatively regulated the vapBC promoter activity. We further revealed that three conserved Asp residues in the PIN domain were essential for the toxic effect of VapC. Additionally, the VapC/VapB TA system stabilized plasmid in E. coli. Furthermore, VapC cross-activated transcription of several TA operons via a partially Lon-dependent mechanism in E. coli, and the activated toxins accumulated more preferentially than their antitoxin partners. Collectively, we identified and characterized a new deep sea TA system in the deep sea Streptomyces sp. and demonstrated that the VapC toxin in this system can cross-activate TA operons in E. coli.
Collapse
|
25
|
Gazi MA, Kibria MG, Mahfuz M, Islam MR, Ghosh P, Afsar MNA, Khan MA, Ahmed T. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: An in silico approach for prioritizing the targets. Gene 2016; 591:442-55. [PMID: 27374154 DOI: 10.1016/j.gene.2016.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/27/2016] [Accepted: 06/28/2016] [Indexed: 01/11/2023]
Abstract
The global control of tuberculosis (TB) remains a great challenge from the standpoint of diagnosis, detection of drug resistance, and treatment. Major serodiagnostic limitations include low sensitivity and high cost in detecting TB. On the other hand, treatment measures are often hindered by low efficacies of commonly used drugs and resistance developed by the bacteria. Hence, there is a need to look into newer diagnostic and therapeutic targets. The proteome information available suggests that among the 3906 proteins in Mycobacterium tuberculosis H37Rv, about quarter remain classified as hypothetical uncharacterized set. This study involves a combination of a number of bioinformatics tools to analyze those hypothetical proteins (HPs). An entire set of 999 proteins was primarily screened for protein sequences having conserved domains with high confidence using a combination of the latest versions of protein family databases. Subsequently, 98 of such potential target proteins were extensively analyzed by means of physicochemical characteristics, protein-protein interaction, sub-cellular localization, structural similarity and functional classification. Next, we predicted antigenic proteins from the entire set and identified B and T cell epitopes of these proteins in M. tuberculosis H37Rv. We predicted the function of these HPs belong to various classes of proteins such as enzymes, transporters, receptors, structural proteins, transcription regulators and other proteins. However, the structural similarity prediction of the annotated proteins substantiated the functional classification of those proteins. Consequently, based on higher antigenicity score and sub-cellular localization, we choose two (NP_216420.1, NP_216903.1) of the antigenic proteins to exemplify B and T cell epitope prediction approach. Finally we found 15 epitopes those located partially or fully in the linear epitope region. We found 21 conformational epitopes by using Ellipro server as well. In silico methodology used in this study and the data thus generated for HPs of M. tuberculosis H37Rv may facilitate swift experimental identification of potential serodiagnostic and therapeutic targets for treatment and control.
Collapse
Affiliation(s)
- Md Amran Gazi
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Mohammad Golam Kibria
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Mustafa Mahfuz
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Rezaul Islam
- International Max Planck Research School, Grisebachstraße 5, 37077 Göttingen, Germany.
| | - Prakash Ghosh
- Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Nure Alam Afsar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| | - Md Arif Khan
- Bio-Bio-1 Research Foundation, Sangskriti Bikash Kendra Bhaban, 1/E/1, Poribag, Dhaka 1000, Bangladesh.
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh.
| |
Collapse
|
26
|
Lu Z, Wang H, Zhang A, Tan Y. The VapBC1 toxin-antitoxin complex from Mycobacterium tuberculosis: purification, crystallization and X-ray diffraction analysis. Acta Crystallogr F Struct Biol Commun 2016; 72:485-9. [PMID: 27303903 PMCID: PMC4909250 DOI: 10.1107/s2053230x16007603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium tuberculosis, a major human pathogen, encodes at least 88 toxin-antitoxin (TA) systems. Remarkably, more than half of these modules belong to the VapBC family. Under normal growth conditions, the toxicity of the toxin VapC is neutralized by the protein antitoxin VapB. When bacteria face an unfavourable environment, the antitoxin is degraded and the free toxin VapC targets important cellular processes in order to inhibit cell growth. TA systems function in many biological processes, such as in the stringent response, in biofilm formation and in drug tolerance. To explore the structure of the VapBC1 complex, the toxin VapC1 and the antitoxin VapB1 were separately cloned, co-expressed and crystallized. The best crystal was obtained using a crystallization solution consisting of optimized solution with commercial sparse-matrix screen solutions as additives. The crystal diffracted to a resolution of 2.7 Å and belonged to space group P21, with unit-cell parameters a = 59.3, b = 106.7, c = 250.0 Å, β = 93.75°.
Collapse
Affiliation(s)
- Zuokun Lu
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Han Wang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Aili Zhang
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin City 300071, People’s Republic of China
| | - Yusheng Tan
- School of Life Sciences, Tianjin University, Tianjin City, People’s Republic of China
| |
Collapse
|
27
|
Wei H, Yu X. Functions of PARylation in DNA Damage Repair Pathways. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 14:131-139. [PMID: 27240471 PMCID: PMC4936651 DOI: 10.1016/j.gpb.2016.05.001] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/29/2016] [Accepted: 05/02/2016] [Indexed: 12/15/2022]
Abstract
Protein poly ADP-ribosylation (PARylation) is a widespread post-translational modification at DNA lesions, which is catalyzed by poly(ADP-ribose) polymerases (PARPs). This modification regulates a number of biological processes including chromatin reorganization, DNA damage response (DDR), transcriptional regulation, apoptosis, and mitosis. PARP1, functioning as a DNA damage sensor, can be activated by DNA lesions, forming PAR chains that serve as a docking platform for DNA repair factors with high biochemical complexity. Here, we highlight molecular insights into PARylation recognition, the expanding role of PARylation in DDR pathways, and the functional interaction between PARylation and ubiquitination, which will offer us a better understanding of the biological roles of this unique post-translational modification.
Collapse
Affiliation(s)
- Huiting Wei
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, MOE Key Laboratory of Immune Microenvironment and Disease, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
28
|
Coussens NP, Daines DA. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy. Exp Biol Med (Maywood) 2016; 241:1332-42. [PMID: 27216598 DOI: 10.1177/1535370216651938] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications.
Collapse
Affiliation(s)
- Nathan P Coussens
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Dayle A Daines
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| |
Collapse
|
29
|
Hologenome analysis of two marine sponges with different microbiomes. BMC Genomics 2016; 17:158. [PMID: 26926518 PMCID: PMC4772301 DOI: 10.1186/s12864-016-2501-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Background Sponges (Porifera) harbor distinct microbial consortia within their mesohyl interior. We herein analysed the hologenomes of Stylissa carteri and Xestospongia testudinaria, which notably differ in their microbiome content. Results Our analysis revealed that S. carteri has an expanded repertoire of immunological domains, specifically Scavenger Receptor Cysteine-Rich (SRCR)-like domains, compared to X. testudinaria. On the microbial side, metatranscriptome analyses revealed an overrepresentation of potential symbiosis-related domains in X. testudinaria. Conclusions Our findings provide genomic insights into the molecular mechanisms underlying host-symbiont coevolution and may serve as a roadmap for future hologenome analyses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2501-0) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Shavit R, Lebendiker M, Pasternak Z, Burdman S, Helman Y. The vapB-vapC Operon of Acidovorax citrulli Functions as a Bona-fide Toxin-Antitoxin Module. Front Microbiol 2016; 6:1499. [PMID: 26779154 PMCID: PMC4701950 DOI: 10.3389/fmicb.2015.01499] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 12/11/2015] [Indexed: 01/01/2023] Open
Abstract
Toxin-antitoxin systems are commonly found on plasmids and chromosomes of bacteria and archaea. These systems appear as biscystronic genes encoding a stable toxin and a labile antitoxin, which protects the cells from the toxin's activity. Under specific, mostly stressful conditions, the unstable antitoxin is degraded, the toxin becomes active and growth is arrested. Using genome analysis we identified a putative toxin-antitoxin encoding system in the genome of the plant pathogen Acidovorax citrulli. The system is homologous to vapB-vapC systems from other bacterial species. PCR and phylogenetic analyses suggested that this locus is unique to group II strains of A. citrulli. Using biochemical and molecular analyses we show that A. citrulli VapBC module is a bona-fide toxin-antitoxin module in which VapC is a toxin with ribonuclease activity that can be counteracted by its cognate VapB antitoxin. We further show that transcription of the A. citrulli vapBC locus is induced by amino acid starvation, chloramphenicol and during plant infection. Due to the possible role of TA systems in both virulence and dormancy of human pathogenic bacteria, studies of these systems are gaining a lot of attention. Conversely, studies characterizing toxin-antitoxin systems in plant pathogenic bacteria are lacking. The study presented here validates the activity of VapB and VapC proteins in A. citrulli and suggests their involvement in stress response and host-pathogen interactions.
Collapse
Affiliation(s)
- Reut Shavit
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Mario Lebendiker
- Protein Purification Facility, Wolfson Centre for Applied Structural Biology, Edmund J. Safra Campus, The Hebrew University of JerusalemJerusalem, Israel
| | - Zohar Pasternak
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| | - Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of JerusalemRehovot, Israel
| |
Collapse
|
31
|
Abstract
Most bacterial toxins derived from chromosomally encoded toxin-antitoxin (TA) systems that have been studied to date appear to protect cells from relatively short pulses of stress by triggering a reversible state of growth arrest. In contrast to many bacterial toxins that are produced as defense mechanisms and secreted from their hosts, TA toxins exert their protective effect from within the cell that produces them. TA toxin-mediated growth arrest is most frequently achieved through their ability to selectively cleave RNA species that participate in protein synthesis. Until very recently, it was thought that the primary conduit for toxin-mediated translation inhibition was cleavage of a single class of RNA, mRNA, thus depleting transcripts and precluding production of essential proteins. This minireview focuses on how the development and implementation of a specialized RNA-seq method to study Mycobacterium tuberculosis TA systems enabled the identification of unexpected RNA targets for toxins, i.e. a handful of tRNAs that are cleaved into tRNA halves. Our result brings to light a new perspective on how these toxins may act in this pathogen and uncovers a striking parallel to signature features of the eukaryotic stress response.
Collapse
Affiliation(s)
- Jonathan W Cruz
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Nancy A Woychik
- Department of Biochemistry and Molecular Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
32
|
The Mycobacterium tuberculosis relBE toxin:antitoxin genes are stress-responsive modules that regulate growth through translation inhibition. J Microbiol 2015; 53:783-95. [PMID: 26502963 DOI: 10.1007/s12275-015-5333-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
Toxin-antitoxin (TA) genes are ubiquitous among bacteria and are associated with persistence and dormancy. Following exposure to unfavorable environmental stimuli, several species (Escherichia coli, Staphylococcus aureus, Myxococcus xanthus) employ toxin proteins such as RelE and MazF to downregulate growth or initiate cell death. Mycobacterium tuberculosis possesses three Rel TA modules (Rel Mtb ): RelBE Mtb , RelFG Mtb and RelJK Mtb (Rv1246c-Rv1247c, Rv2865-Rv2866, and Rv3357-Rv3358, respectively), which inhibit mycobacterial growth when the toxin gene (relE, relG, relK) is expressed independently of the antitoxin gene (relB, relF, relJ). In the present study, we examined the in vivo mechanism of the RelE Mtb toxin protein, the impact of RelE Mtb on M. tuberculosis physiology and the environmental conditions that regulate all three rel Mtb modules. RelE Mtb negatively impacts growth and the structural integrity of the mycobacterial envelope, generating cells with aberrant forms that are prone to extensive aggregation. At a time coincident with growth defects, RelE Mtb mediates mRNA degradation in vivo resulting in significant changes to the proteome. We establish that rel Mtb modules are stress responsive, as all three operons are transcriptionally activated following mycobacterial exposure to oxidative stress or nitrogen-limiting growth environments. Here we present evidence that the rel Mtb toxin:antitoxin family is stress-responsive and, through the degradation of mRNA, the RelE Mtb toxin influences the growth, proteome and morphology of mycobacterial cells.
Collapse
|
33
|
Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat Commun 2015; 6:7480. [PMID: 26158745 DOI: 10.1038/ncomms8480] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/13/2015] [Indexed: 11/09/2022] Open
Abstract
Toxin-antitoxin (TA) systems are implicated in the downregulation of bacterial cell growth associated with stress survival and latent tuberculosis infection, yet the activities and intracellular targets of these TA toxins are largely uncharacterized. Here, we use a specialized RNA-seq approach to identify targets of a Mycobacterium tuberculosis VapC TA toxin, VapC-mt4 (also known as VapC4), which have eluded detection using conventional approaches. Distinct from the one other characterized VapC toxin in M. tuberculosis that cuts 23S rRNA at the sarcin-ricin loop, VapC-mt4 selectively targets three of the 45 M. tuberculosis tRNAs (tRNA(Ala2), tRNA(Ser26) and tRNA(Ser24)) for cleavage at, or adjacent to, their anticodons, resulting in the generation of tRNA halves. While tRNA cleavage is sometimes enlisted as a bacterial host defense mechanism, VapC-mt4 instead alters specific tRNAs to inhibit translation and modulate growth. This stress-linked activity of VapC-mt4 mirrors basic features of eukaryotic tRNases that also generate tRNA halves and inhibit translation in response to stress.
Collapse
|
34
|
Lee IG, Lee SJ, Chae S, Lee KY, Kim JH, Lee BJ. Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides. Nucleic Acids Res 2015; 43:7624-37. [PMID: 26150422 PMCID: PMC4551927 DOI: 10.1093/nar/gkv689] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 06/24/2015] [Indexed: 12/21/2022] Open
Abstract
Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis VapC30 toxin regulates cellular growth through both magnesium and manganese ion-dependent ribonuclease activity and is inhibited by the cognate VapB30 antitoxin. We also determined the 2.7-Å resolution crystal structure of the M. tuberculosis VapBC30 complex, which revealed a novel process of inactivation of the VapC30 toxin via swapped blocking by the VapB30 antitoxin. Our study on M. tuberculosis VapBC30 leads us to design two kinds of VapB30 and VapC30-based novel peptides which successfully disrupt the toxin-antitoxin complex and thus activate the ribonuclease activity of the VapC30 toxin. Our discovery herein possibly paves the way to treat tuberculosis for next generation.
Collapse
Affiliation(s)
- In-Gyun Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Sang Jae Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Susanna Chae
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ki-Young Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hun Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
35
|
Andrews ESV, Arcus VL. The mycobacterial PhoH2 proteins are type II toxin antitoxins coupled to RNA helicase domains. Tuberculosis (Edinb) 2015; 95:385-94. [PMID: 25999286 DOI: 10.1016/j.tube.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/29/2015] [Indexed: 11/25/2022]
Abstract
PhoH2 proteins are found in a diverse range of organisms that span the bacterial tree and little is known about this large protein family. PhoH2 proteins have two domains: An N-terminal PIN domain fused to a C-terminal PhoH domain. The genome of Mycobacterium tuberculosis encodes 48 PIN domains and 47 of these constitute the VapC components of the 47 VapBC toxin-antitoxins. The 48th member of the M. tuberculosis PIN domain array is found in the single PhoH2 protein encoded in the genome. All characterized PIN domain proteins are RNases and the PhoH domains are predicted ATPases. This fusion of a PIN domain with an ATPase reflects a much wider association between PIN domains and PhoH domains across many prokaryote genomes. Here, we examine PhoH2 proteins from M. tuberculosis, Mycobacterium smegmatis and a thermophilic homologue from Thermobispora bispora and we show that PhoH2 is a sequence-specific RNA helicase and RNAse. In addition, phoH2 from M. tuberculosis and M. smegmatis is part of a longer mRNA transcript which includes a small, unannotated open reading frame (ORF) upstream of the phoH2 gene. This small gene overlaps with the beginning of the phoH2 gene in a manner similar to the PIN domain toxin-antitoxin operons. We have annotated the upstream gene as phoAT and its putative promoter elements satisfy previously characterized consensus sequences at the -10 site. Conditional growth experiments carried out in M. smegmatis revealed a negative effect on growth by the expression of M. tuberculosis PhoH2 that was alleviated by co-expression of the PhoAT peptide. Thus in M. tuberculosis, PhoH2 represents a new variation on a type II PIN domain toxin-antitoxin systems such that the toxin-antitoxin is now coupled to an RNA helicase whose predicted biological function is to unwind and cleave RNA in a sequence specific manner.
Collapse
Affiliation(s)
- Emma S V Andrews
- School of Science, University of Waikato, Hamilton 3240, New Zealand
| | - Vickery L Arcus
- School of Science, University of Waikato, Hamilton 3240, New Zealand.
| |
Collapse
|
36
|
Cut to the chase--Regulating translation through RNA cleavage. Biochimie 2015; 114:10-7. [PMID: 25633441 DOI: 10.1016/j.biochi.2015.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/19/2015] [Indexed: 11/23/2022]
Abstract
Activation of toxin-antitoxin (TA) systems provides an important mechanism for bacteria to adapt to challenging and ever changing environmental conditions. Known TA systems are classified into five families based on the mechanisms of antitoxin inhibition and toxin activity. For type II TA systems, the toxin is inactivated in exponentially growing cells by tightly binding its antitoxin partner protein, which also serves to regulate cellular levels of the complex through transcriptional auto-repression. During cellular stress, however, the antitoxin is degraded thus freeing the toxin, which is then able to regulate central cellular processes, primarily protein translation to adjust cell growth to the new conditions. In this review, we focus on the type II TA pairs that regulate protein translation through cleavage of ribosomal, transfer, or messenger RNA.
Collapse
|
37
|
Hamilton B, Manzella A, Schmidt K, DiMarco V, Butler JS. Analysis of non-typeable Haemophilous influenzae VapC1 mutations reveals structural features required for toxicity and flexibility in the active site. PLoS One 2014; 9:e112921. [PMID: 25391136 PMCID: PMC4229260 DOI: 10.1371/journal.pone.0112921] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/21/2014] [Indexed: 02/06/2023] Open
Abstract
Bacteria have evolved mechanisms that allow them to survive in the face of a variety of stresses including nutrient deprivation, antibiotic challenge and engulfment by predator cells. A switch to dormancy represents one strategy that reduces energy utilization and can render cells resistant to compounds that kill growing bacteria. These persister cells pose a problem during treatment of infections with antibiotics, and dormancy mechanisms may contribute to latent infections. Many bacteria encode toxin-antitoxin (TA) gene pairs that play an important role in dormancy and the formation of persisters. VapBC gene pairs comprise the largest of the Type II TA systems in bacteria and they produce a VapC ribonuclease toxin whose activity is inhibited by the VapB antitoxin. Despite the importance of VapBC TA pairs in dormancy and persister formation, little information exists on the structural features of VapC proteins required for their toxic function in vivo. Studies reported here identified 17 single mutations that disrupt the function of VapC1 from non-typeable H. influenzae in vivo. 3-D modeling suggests that side chains affected by many of these mutations sit near the active site of the toxin protein. Phylogenetic comparisons and secondary mutagenesis indicate that VapC1 toxicity requires an alternative active site motif found in many proteobacteria. Expression of the antitoxin VapB1 counteracts the activity of VapC1 mutants partially defective for toxicity, indicating that the antitoxin binds these mutant proteins in vivo. These findings identify critical chemical features required for the biological function of VapC toxins and PIN-domain proteins.
Collapse
Affiliation(s)
- Brooke Hamilton
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Alexander Manzella
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Karyn Schmidt
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Victoria DiMarco
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - J. Scott Butler
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Ramakrishnan G, Ochoa-Montaño B, Raghavender US, Mudgal R, Joshi AG, Chandra NR, Sowdhamini R, Blundell TL, Srinivasan N. Enriching the annotation of Mycobacterium tuberculosis H37Rv proteome using remote homology detection approaches: insights into structure and function. Tuberculosis (Edinb) 2014; 95:14-25. [PMID: 25467293 DOI: 10.1016/j.tube.2014.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/01/2022]
Abstract
The availability of the genome sequence of Mycobacterium tuberculosis H37Rv has encouraged determination of large numbers of protein structures and detailed definition of the biological information encoded therein; yet, the functions of many proteins in M. tuberculosis remain unknown. The emergence of multidrug resistant strains makes it a priority to exploit recent advances in homology recognition and structure prediction to re-analyse its gene products. Here we report the structural and functional characterization of gene products encoded in the M. tuberculosis genome, with the help of sensitive profile-based remote homology search and fold recognition algorithms resulting in an enhanced annotation of the proteome where 95% of the M. tuberculosis proteins were identified wholly or partly with information on structure or function. New information includes association of 244 proteins with 205 domain families and a separate set of new association of folds to 64 proteins. Extending structural information across uncharacterized protein families represented in the M. tuberculosis proteome, by determining superfamily relationships between families of known and unknown structures, has contributed to an enhancement in the knowledge of structural content. In retrospect, such superfamily relationships have facilitated recognition of probable structure and/or function for several uncharacterized protein families, eventually aiding recognition of probable functions for homologous proteins corresponding to such families. Gene products unique to mycobacteria for which no functions could be identified are 183. Of these 18 were determined to be M. tuberculosis specific. Such pathogen-specific proteins are speculated to harbour virulence factors required for pathogenesis. A re-annotated proteome of M. tuberculosis, with greater completeness of annotated proteins and domain assigned regions, provides a valuable basis for experimental endeavours designed to obtain a better understanding of pathogenesis and to accelerate the process of drug target discovery.
Collapse
Affiliation(s)
- Gayatri Ramakrishnan
- Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | | | - Upadhyayula S Raghavender
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vignyan Kendra Campus, Bangalore 560065, India.
| | - Richa Mudgal
- Indian Institute of Science Mathematics Initiative, Indian Institute of Science, Bangalore 560012, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| | - Adwait G Joshi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vignyan Kendra Campus, Bangalore 560065, India; Manipal University, Manipal, Karnataka 576104, India.
| | - Nagasuma R Chandra
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Gandhi Krishi Vignyan Kendra Campus, Bangalore 560065, India.
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | | |
Collapse
|
39
|
Das U, Pogenberg V, Subhramanyam UKT, Wilmanns M, Gourinath S, Srinivasan A. Crystal structure of the VapBC-15 complex from Mycobacterium tuberculosis reveals a two-metal ion dependent PIN-domain ribonuclease and a variable mode of toxin-antitoxin assembly. J Struct Biol 2014; 188:249-58. [PMID: 25450593 DOI: 10.1016/j.jsb.2014.10.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/29/2014] [Accepted: 10/06/2014] [Indexed: 12/11/2022]
Abstract
Although PIN (PilT N-terminal)-domain proteins are known to have ribonuclease activity, their specific mechanism of action remains unknown. VapCs form a family of ribonucleases that possess a PIN-domain assembly and are known as toxins. The activities of VapCs are impaired by VapB antitoxins. Here we present the crystal structure of the VapBC-15 toxin-antitoxin complex from Mycobacterium tuberculosis determined to 2.1Å resolution. The VapB-15 and VapC-15 components assemble into one heterotetramer (VapB2C2) and two heterotrimers (VapBC2) in each asymmetric unit of the crystal. The active site of VapC-15 toxin consists of a cluster of acidic amino acid residues and two divalent metal ions, forming a well organised ribonuclease active site. The distribution of the catalytic-site residues of the VapC-15 toxin is similar to that of T4 RNase H and of Methanococcus jannaschii FEN-1, providing strong evidence that these three proteins share a similar mechanism of activity. The presence of both VapB2C2 and VapBC2 emphasizes the fact that the same antitoxin can bind the toxin in 1:1 and 1:2 ratios. The crystal structure determination of the VapBC-15 complex reveals for the first time a PIN-domain ribonuclease protein that shows two metal ions at the active site and a variable mode of toxin-antitoxin assembly. The structure further shows that VapB-15 antitoxin binds to the same groove meant for the binding of putative substrate (RNA), resulting in the inhibition of VapC-15's toxicity.
Collapse
Affiliation(s)
- Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
40
|
Latent tuberculosis infection: What we know about its genetic control? Tuberculosis (Edinb) 2014; 94:462-8. [DOI: 10.1016/j.tube.2014.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/10/2014] [Accepted: 06/20/2014] [Indexed: 11/23/2022]
|
41
|
Prozorov AA, Fedorova IA, Bekker OB, Danilenko VN. The virulence factors of Mycobacterium tuberculosis: Genetic control, new conceptions. RUSS J GENET+ 2014. [DOI: 10.1134/s1022795414080055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
42
|
Haq IU, Graupner K, Nazir R, van Elsas JD. The genome of the fungal-interactive soil bacterium Burkholderia terrae BS001-a plethora of outstanding interactive capabilities unveiled. Genome Biol Evol 2014; 6:1652-68. [PMID: 24923325 PMCID: PMC4122924 DOI: 10.1093/gbe/evu126] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Burkholderia terrae strain BS001, obtained as an inhabitant of the mycosphere of Laccaria proxima (a close relative of Lyophyllum sp. strain Karsten), actively interacts with Lyophyllum sp. strain Karsten. We here summarize the remarkable ecological behavior of B. terrae BS001 in the mycosphere and add key data to this. Moreover, we extensively analyze the approximately 11.5-Mb five-replicon genome of B. terrae BS001 and highlight its remarkable features. Seventy-nine regions of genomic plasticity (RGP), that is, 16.48% of the total genome size, were found. One 70.42-kb RGP, RGP76, revealed a typical conjugal element structure, including a full type 4 secretion system. Comparative analyses across 24 related Burkholderia genomes revealed that 95.66% of the total BS001 genome belongs to the variable part, whereas the remaining 4.34% constitutes the core genome. Genes for biofilm formation and several secretion systems, under which a type 3 secretion system (T3SS), were found, which is consistent with the hypothesis that T3SSs play a role in the interaction with Lyophyllum sp. strain Karsten. The high number of predicted metabolic pathways and membrane transporters suggested that strain BS001 can take up and utilize a range of sugars, amino acids and organic acids. In particular, a unique glycerol uptake system was found. The BS001 genome further contains genetic systems for the degradation of complex organic compounds. Moreover, gene clusters encoding nonribosomal peptide synthetases (NRPS) and hybrid polyketide synthases/NRPS were found, highlighting the potential role of secondary metabolites in the ecology of strain BS001. The patchwork of genetic features observed in the genome is consistent with the notion that 1) horizontal gene transfer is a main driver of B. terrae BS001 adaptation and 2) the organism is very flexible in its ecological behavior in soil.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| | - Katharina Graupner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - Rashid Nazir
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Jan Dirk van Elsas
- Department of Microbial Ecology, Center for Ecological and Evolutionary Studies (CEES), University of Groningen, The Netherlands
| |
Collapse
|
43
|
Demidenok OI, Kaprelyants AS, Goncharenko AV. Toxin-antitoxinvapBClocus participates in formation of the dormant state inMycobacterium smegmatis. FEMS Microbiol Lett 2014; 352:69-77. [DOI: 10.1111/1574-6968.12380] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/31/2013] [Accepted: 12/31/2013] [Indexed: 01/01/2023] Open
Affiliation(s)
- Oksana I. Demidenok
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Arseny S. Kaprelyants
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| | - Anna V. Goncharenko
- Laboratory of Biochemistry of Stresses in Microorganisms; A.N. Bach Institute of Biochemistry Russian Academy of Sciences; Moscow Russia
| |
Collapse
|
44
|
A new microarray platform for whole-genome expression profiling of Mycobacterium tuberculosis. J Microbiol Methods 2013; 97:34-43. [PMID: 24365110 DOI: 10.1016/j.mimet.2013.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/30/2023]
Abstract
Microarrays have allowed gene expression profiling to progress from the gene level to the genome level, and oligonucleotide microarrays have become the platform of choice for large-scale, targeted gene expression studies. cDNA arrays and spotted oligonucleotide arrays have gradually given way to in situ synthesized oligonucleotide-based DNA microarrays for whole-genome expression profiling. With the identification of new coding and regulatory sequences, it is imperative that microarrays be updated to enable more complete expression profiling of genomes. We report here a new in situ synthesized oligonucleotide-based microarray platform for Mycobacterium tuberculosis that has been updated for the latest genome information and incorporates hitherto unannotated genes with described biological functions. This microarray has greater coverage of mycobacterial genes than any other array reported to date. We have also evaluated different labeled-target preparation methods and hybridization conditions for this new microarray to obtain high quality data and reproducible results. The new design has been rigorously validated for its specificity and performance using samples isolated from mycobacteria grown under different environment conditions. Further, the quality of the generated data has been compared with published data and is superior to that obtained using spotted oligonucleotide microarrays.
Collapse
|
45
|
Winther KS, Brodersen DE, Brown AK, Gerdes K. VapC20 of Mycobacterium tuberculosis cleaves the Sarcin–Ricin loop of 23S rRNA. Nat Commun 2013; 4:2796. [DOI: 10.1038/ncomms3796] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 10/18/2013] [Indexed: 11/09/2022] Open
|
46
|
Das U, Kumar N, Gourinath S, Srinivasan A. Preliminary crystallographic analysis of recombinant VapBC-15 toxin-antitoxin complex from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1242-5. [PMID: 24192359 PMCID: PMC3818043 DOI: 10.1107/s1744309113024822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 09/05/2013] [Indexed: 12/18/2022]
Abstract
The Mycobacterium tuberculosis vapBC15 locus encodes a toxin-antitoxin complex. VapC-15 is a toxin and possesses ribonuclease activity and VapB-15 is an antitoxin which both binds and inhibits the VapC-15 toxin. In this study, vapBC15 genes were cloned and co-expressed in Escherichia coli. The complex was purified to homogeneity by affinity and size-exclusion chromatography. The VapBC-15 complex was crystallized using the sitting-drop vapour-diffusion technique. The crystals diffracted to 2.6 Å resolution and belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 85.63, b = 139.09, c = 148.86 Å. The self-rotation function combined with Matthews coefficient and solvent-content calculations suggests the presence of either six or eight molecules of the complex in the asymmetric unit.
Collapse
Affiliation(s)
- Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Nitesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Alagiri Srinivasan
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
47
|
Demidenok OI, Goncharenko AV. Bacterial toxin-antitoxin systems and perspectives for their application in medicine. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813060070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Schuessler DL, Cortes T, Fivian-Hughes AS, Lougheed KEA, Harvey E, Buxton RS, Davis EO, Young DB. Induced ectopic expression of HigB toxin in Mycobacterium tuberculosis results in growth inhibition, reduced abundance of a subset of mRNAs and cleavage of tmRNA. Mol Microbiol 2013; 90:195-207. [PMID: 23927792 PMCID: PMC3912914 DOI: 10.1111/mmi.12358] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
In Mycobacterium tuberculosis, the genes Rv1954A-Rv1957 form an operon that includes Rv1955 and Rv1956 which encode the HigB toxin and the HigA antitoxin respectively. We are interested in the role and regulation of this operon, since toxin-antitoxin systems have been suggested to play a part in the formation of persister cells in mycobacteria. To investigate the function of the higBA locus, effects of toxin expression on mycobacterial growth and transcript levels were assessed in M. tuberculosis H37Rv wild type and in an operon deletion background. We show that expression of HigB toxin in the absence of HigA antitoxin arrests growth and causes cell death in M. tuberculosis. We demonstrate HigB expression to reduce the abundance of IdeR and Zur regulated mRNAs and to cleave tmRNA in M. tuberculosis, Escherichia coli and Mycobacterium smegmatis. This study provides the first identification of possible target transcripts of HigB in M. tuberculosis.
Collapse
Affiliation(s)
- Dorothée L Schuessler
- Division of Mycobacterial Research, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Murima P, de Sessions PF, Lim V, Naim ANM, Bifani P, Boshoff HIM, Sambandamurthy VK, Dick T, Hibberd ML, Schreiber M, Rao SPS. Exploring the mode of action of bioactive compounds by microfluidic transcriptional profiling in mycobacteria. PLoS One 2013; 8:e69191. [PMID: 23935951 PMCID: PMC3729944 DOI: 10.1371/journal.pone.0069191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/05/2013] [Indexed: 12/20/2022] Open
Abstract
Most candidate anti-bacterials are identified on the basis of their whole cell anti-bacterial activity. A critical bottleneck in the early discovery of novel anti-bacterials is tracking the structure activity relationship (SAR) of the novel compounds synthesized during the hit to lead and lead optimization stage. It is often very difficult for medicinal chemists to visualize if the novel compounds synthesized for understanding SAR of a particular scaffold have similar molecular mechanism of action (MoA) as that of the initial hit. The elucidation of the molecular MoA of bioactive inhibitors is critical. Here, a new strategy and routine assay for MoA de-convolution, using a microfluidic platform for transcriptional profiling of bacterial response to inhibitors with whole cell activity has been presented. First a reference transcriptome compendium of Mycobacterial response to various clinical and investigational drugs was built. Using feature reduction, it was demonstrated that subsets of biomarker genes representative of the whole genome are sufficient for MoA classification and deconvolution in a medium-throughput microfluidic format ultimately leading to a cost effective and rapid tool for routine antibacterial drug-discovery programs.
Collapse
Affiliation(s)
- Paul Murima
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Vivian Lim
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | | | - Pablo Bifani
- Novartis Institute for Tropical Diseases, Singapore, Singapore
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States
| | | | - Thomas Dick
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Department of Microbiology, National University of Singapore, Singapore, Singapore
| | | | - Mark Schreiber
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- Novartis Institutes For Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail: (SPSR); (MS)
| | - Srinivasa P. S. Rao
- Novartis Institute for Tropical Diseases, Singapore, Singapore
- * E-mail: (SPSR); (MS)
| |
Collapse
|
50
|
Reis FP, Pobre V, Silva IJ, Malecki M, Arraiano CM. The RNase II/RNB family of exoribonucleases: putting the 'Dis' in disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:607-15. [PMID: 23776156 DOI: 10.1002/wrna.1180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Important findings over the last years have shed new light onto the mechanistic details of RNA degradation by members of the RNase II/RNB family of exoribonucleases. Members of this family have been shown to be involved in growth, normal chloroplast biogenesis, mitotic control and cancer. Recently, different publications have linked human orthologs (Dis3 and Dis3L2) to important human diseases. This article describes the structural and biochemical characteristics of members of this family of enzymes, and the physiological implications that relate them with disease.
Collapse
Affiliation(s)
- Filipa P Reis
- Instituto de Tecnologia Química e Biológica-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|