1
|
Nakayama T, Nomura M, Takano Y, Tanifuji G, Shiba K, Inaba K, Inagaki Y, Kawata M. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc Natl Acad Sci U S A 2019; 116:15973-15978. [PMID: 31235587 PMCID: PMC6689939 DOI: 10.1073/pnas.1902538116] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteria are one of the most important contributors to oceanic primary production and survive in a wide range of marine habitats. Much effort has been made to understand their ecological features, diversity, and evolution, based mainly on data from free-living cyanobacterial species. In addition, symbiosis has emerged as an important lifestyle of oceanic microbes and increasing knowledge of cyanobacteria in symbiotic relationships with unicellular eukaryotes suggests their significance in understanding the global oceanic ecosystem. However, detailed characteristics of these cyanobacteria remain poorly described. To gain better insight into marine cyanobacteria in symbiosis, we sequenced the genome of cyanobacteria collected from a cell of a pelagic dinoflagellate that is known to host cyanobacterial symbionts within a specialized chamber. Phylogenetic analyses using the genome sequence revealed that the cyanobacterium represents an underdescribed lineage within an extensively studied, ecologically important group of marine cyanobacteria. Metagenomic analyses demonstrated that this cyanobacterial lineage is globally distributed and strictly coexists with its host dinoflagellates, suggesting that the intimate symbiotic association allowed the cyanobacteria to escape from previous metagenomic studies. Furthermore, a comparative analysis of the protein repertoire with related species indicated that the lineage has independently undergone reductive genome evolution to a similar extent as Prochlorococcus, which has the most reduced genomes among free-living cyanobacteria. Discovery of this cyanobacterial lineage, hidden by its symbiotic lifestyle, provides crucial insights into the diversity, ecology, and evolution of marine cyanobacteria and suggests the existence of other undiscovered cryptic cyanobacterial lineages.
Collapse
Affiliation(s)
- Takuro Nakayama
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Mami Nomura
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Yoshihito Takano
- Faculty of Science and Technology, Kochi University, Nankoku 783-8502, Japan
| | - Goro Tanifuji
- Department of Zoology, National Museum of Nature and Science, Tsukuba 305-0005, Japan
| | - Kogiku Shiba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shimoda 415-0025, Japan
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Masakado Kawata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
2
|
Asexual Amoebae Escape Muller's Ratchet through Polyploidy. Trends Parasitol 2016; 32:855-862. [PMID: 27599632 DOI: 10.1016/j.pt.2016.08.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/23/2022]
Abstract
While some amoebae reproduce sexually, many amoebae (e.g., Acanthamoeba, Naegleria) reproduce asexually and therefore, according to popular doctrine, are likely to have been genetically disadvantaged as a consequence. In the absence of sex, mutations are proposed to accumulate by a mechanism known as Muller's ratchet. I hypothesise that amoebae can escape the ravages of accumulated mutation by virtue of their being polyploid. The polyploid state reduces spontaneous mutation accumulation by gene conversion, the freshly mutated copy being corrected by the presence of the many other wild-type copies. In this manner these amoebae reap the benefits of an asexual reproductive existence: principally, that it is rapid and convenient. Evidence for this mechanism comes from polyploid plants, bacteria, and archaea.
Collapse
|
3
|
Belda E, Silva FJ, Peretó J, Moya A. Metabolic networks of Sodalis glossinidius: a systems biology approach to reductive evolution. PLoS One 2012; 7:e30652. [PMID: 22292008 PMCID: PMC3265509 DOI: 10.1371/journal.pone.0030652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/22/2011] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius. RESULTS The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association. CONCLUSIONS Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.
Collapse
Affiliation(s)
- Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Departament de Genètica, Universitat de València, València, Spain
| | - Francisco J. Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Departament de Genètica, Universitat de València, València, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles), Universitat de València, València, Spain
| | - Juli Peretó
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat de València, València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Departament de Genètica, Universitat de València, València, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles), Universitat de València, València, Spain
| |
Collapse
|
4
|
Kuwahara H, Takaki Y, Shimamura S, Yoshida T, Maeda T, Kunieda T, Maruyama T. Loss of genes for DNA recombination and repair in the reductive genome evolution of thioautotrophic symbionts of Calyptogena clams. BMC Evol Biol 2011; 11:285. [PMID: 21966992 PMCID: PMC3202245 DOI: 10.1186/1471-2148-11-285] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 10/03/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Two Calyptogena clam intracellular obligate symbionts, Ca. Vesicomyosocius okutanii (Vok; C. okutanii symbiont) and Ca. Ruthia magnifica (Rma; C. magnifica symbiont), have small genomes (1.02 and 1.16 Mb, respectively) with low G+C contents (31.6% and 34.0%, respectively) and are thought to be in an ongoing stage of reductive genome evolution (RGE). They lack recA and some genes for DNA repair, including mutY. The loss of recA and mutY is thought to contribute to the stabilization of their genome architectures and GC bias, respectively. To understand how these genes were lost from the symbiont genomes, we surveyed these genes in the genomes from 10 other Calyptogena clam symbionts using the polymerase chain reaction (PCR). RESULTS Phylogenetic trees reconstructed using concatenated 16S and 23S rRNA gene sequences showed that the symbionts formed two clades, clade I (symbionts of C. kawamurai, C. laubieri, C. kilmeri, C. okutanii and C. soyoae) and clade II (those of C. pacifica, C. fausta, C. nautilei, C. stearnsii, C. magnifica, C. fossajaponica and C. phaseoliformis). recA was detected by PCR with consensus primers for recA in the symbiont of C. phaseoliformis. A detailed homology search revealed a remnant recA in the Rma genome. Using PCR with a newly designed primer set, intact recA or its remnant was detected in clade II symbionts. In clade I symbionts, the recA coding region was found to be mostly deleted.In the Rma genome, a pseudogene of mutY was found. Using PCR with newly designed primer sets, mutY was not found in clade I symbionts but was found in clade II symbionts. The G+C content of 16S and 23S rRNA genes in symbionts lacking mutY was significantly lower than in those with mutY. CONCLUSIONS The extant Calyptogena clam symbionts in clade II were shown to have recA and mutY or their remnants, while those in clade I did not. The present results indicate that the extant symbionts are losing these genes in RGE, and that the loss of mutY contributed to the GC bias of the genomes during their evolution.
Collapse
Affiliation(s)
- Hirokazu Kuwahara
- Marine Biodiversity Research Program, Japan Agency for Marine-Earth Science and Technology, Natsushima-cho, Yokosuka, Kanagawa 237-0061, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Biochemical and cellular characterization of Helicobacter pylori RecA, a protein with high-level constitutive expression. J Bacteriol 2011; 193:6490-7. [PMID: 21949074 DOI: 10.1128/jb.05646-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a bacterial pathogen colonizing half of the world's human population. It has been implicated in a number of gastric diseases, from asymptomatic gastritis to cancer. It is characterized by an amazing genetic variability that results from high mutation rates and efficient DNA homologous recombination and transformation systems. Here, we report the characterization of H. pylori RecA (HpRecA), a protein shown to be involved in DNA repair, transformation, and mouse colonization. The biochemical characterization of the purified recombinase reveals activities similar to those of Escherichia coli RecA (EcRecA). We show that in H. pylori, HpRecA is present in about 80,000 copies per cell during exponential growth and decreases to about 50,000 copies in stationary phase. The amount of HpRecA remains unchanged after induction of DNA lesions, suggesting that HpRecA is always expressed at a high level in order to repair DNA damage or facilitate recombination. We performed HpRecA localization analysis by adding a Flag tag to the protein, revealing two different patterns of localization. During exponential growth, RecA-Flag presents a diffuse pattern, overlapping with the DAPI (4',6-diamidino-2-phenylindole) staining of DNA, whereas during stationary phase, the protein is present in more defined areas devoid of DAPI staining. These localizations are not affected by inactivation of competence or DNA recombination genes. Neither UV irradiation nor gamma irradiation modified HpRecA localization, suggesting the existence of a constitutive DNA damage adaptation system.
Collapse
|
6
|
Lamelas A, Gosalbes MJ, Moya A, Latorre A. New clues about the evolutionary history of metabolic losses in bacterial endosymbionts, provided by the genome of Buchnera aphidicola from the aphid Cinara tujafilina. Appl Environ Microbiol 2011; 77:4446-4454. [PMID: 21571878 PMCID: PMC3127723 DOI: 10.1128/aem.00141-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/02/2011] [Indexed: 02/07/2023] Open
Abstract
The symbiotic association between aphids (Homoptera) and Buchnera aphidicola (Gammaproteobacteria) started about 100 to 200 million years ago. As a consequence of this relationship, the bacterial genome has undergone a prominent size reduction. The downsize genome process starts when the bacterium enters the host and will probably end with its extinction and replacement by another healthier bacterium or with the establishment of metabolic complementation between two or more bacteria. Nowadays, several complete genomes of Buchnera aphidicola from four different aphid species (Acyrthosiphon pisum, Schizaphis graminum, Baizongia pistacea, and Cinara cedri) have been fully sequenced. C. cedri belongs to the subfamily Lachninae and harbors two coprimary bacteria that fulfill the metabolic needs of the whole consortium: B. aphidicola with the smallest genome reported so far and "Candidatus Serratia symbiotica." In addition, Cinara tujafilina, another member of the subfamily Lachninae, closely related to C. cedri, also harbors "Ca. Serratia symbiotica" but with a different phylogenetic status than the one from C. cedri. In this study, we present the complete genome sequence of B. aphidicola from C. tujafilina and the phylogenetic analysis and comparative genomics with the other Buchnera genomes. Furthermore, the gene repertoire of the last common ancestor has been inferred, and the evolutionary history of the metabolic losses that occurred in the different lineages has been analyzed. Although stochastic gene loss plays a role in the genome reduction process, it is also clear that metabolism, as a functional constraint, is also a powerful evolutionary force in insect endosymbionts.
Collapse
Affiliation(s)
- Araceli Lamelas
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
| | - María José Gosalbes
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
| | - Amparo Latorre
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València, València, Spain
- Unidad Mixta de Investigación en Genómica y Salud-Centro Superior Investigación Salud Pública (Generalitat Valenciana)/Instituto Cavanilles de Biodiversidad y Biologia Evolutiva (Universidad Valencia), València, Spain
| |
Collapse
|
7
|
Ayora S, Carrasco B, Cárdenas PP, César CE, Cañas C, Yadav T, Marchisone C, Alonso JC. Double-strand break repair in bacteria: a view from Bacillus subtilis. FEMS Microbiol Rev 2011; 35:1055-81. [PMID: 21517913 DOI: 10.1111/j.1574-6976.2011.00272.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In all living organisms, the response to double-strand breaks (DSBs) is critical for the maintenance of chromosome integrity. Homologous recombination (HR), which utilizes a homologous template to prime DNA synthesis and to restore genetic information lost at the DNA break site, is a complex multistep response. In Bacillus subtilis, this response can be subdivided into five general acts: (1) recognition of the break site(s) and formation of a repair center (RC), which enables cells to commit to HR; (2) end-processing of the broken end(s) by different avenues to generate a 3'-tailed duplex and RecN-mediated DSB 'coordination'; (3) loading of RecA onto single-strand DNA at the RecN-induced RC and concomitant DNA strand exchange; (4) branch migration and resolution, or dissolution, of the recombination intermediates, and replication restart, followed by (5) disassembly of the recombination apparatus formed at the dynamic RC and segregation of sister chromosomes. When HR is impaired or an intact homologous template is not available, error-prone nonhomologous end-joining directly rejoins the two broken ends by ligation. In this review, we examine the functions that are known to contribute to DNA DSB repair in B. subtilis, and compare their properties with those of other bacterial phyla.
Collapse
Affiliation(s)
- Silvia Ayora
- Departmento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Belda E, Moya A, Bentley S, Silva FJ. Mobile genetic element proliferation and gene inactivation impact over the genome structure and metabolic capabilities of Sodalis glossinidius, the secondary endosymbiont of tsetse flies. BMC Genomics 2010; 11:449. [PMID: 20649993 PMCID: PMC3091646 DOI: 10.1186/1471-2164-11-449] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/22/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Genome reduction is a common evolutionary process in symbiotic and pathogenic bacteria. This process has been extensively characterized in bacterial endosymbionts of insects, where primary mutualistic bacteria represent the most extreme cases of genome reduction consequence of a massive process of gene inactivation and loss during their evolution from free-living ancestors. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, contains one of the few complete genomes of bacteria at the very beginning of the symbiotic association, allowing to evaluate the relative impact of mobile genetic element proliferation and gene inactivation over the structure and functional capabilities of this bacterial endosymbiont during the transition to a host dependent lifestyle. RESULTS A detailed characterization of mobile genetic elements and pseudogenes reveals a massive presence of different types of prophage elements together with five different families of IS elements that have proliferated across the genome of Sodalis glossinidius at different levels. In addition, a detailed survey of intergenic regions allowed the characterization of 1501 pseudogenes, a much higher number than the 972 pseudogenes described in the original annotation. Pseudogene structure reveals a minor impact of mobile genetic element proliferation in the process of gene inactivation, with most of pseudogenes originated by multiple frameshift mutations and premature stop codons. The comparison of metabolic profiles of Sodalis glossinidius and tsetse fly primary endosymbiont Wiglesworthia glossinidia based on their whole gene and pseudogene repertoires revealed a novel case of pathway inactivation, the arginine biosynthesis, in Sodalis glossinidius together with a possible case of metabolic complementation with Wigglesworthia glossinidia for thiamine biosynthesis. CONCLUSIONS The complete re-analysis of the genome sequence of Sodalis glossinidius reveals novel insights in the evolutionary transition from a free-living ancestor to a host-dependent lifestyle, with a massive proliferation of mobile genetic elements mainly of phage origin although with minor impact in the process of gene inactivation that is taking place in this bacterial genome. The metabolic analysis of the whole endosymbiotic consortia of tsetse flies have revealed a possible phenomenon of metabolic complementation between primary and secondary endosymbionts that can contribute to explain the co-existence of both bacterial endosymbionts in the context of the tsetse host.
Collapse
Affiliation(s)
- Eugeni Belda
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
| | - Andrés Moya
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| | | | - Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València. Apartat 22085, València E-46071, Spain
- CIBER en Epidemiología y Salud Pública (CIBEResp), Barcelona, Spain
- Unidad Mixta de Investigación de Genómica y Salud (Centro Superior de Investigación en Salud Pública, CSISP/Institut Cavanilles, Universitat de València, Spain
| |
Collapse
|