1
|
Česnek M, Šafránek M, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Hayes MP, Watts VJ, Janeba Z. Halogen-Dance-Based Synthesis of Phosphonomethoxyethyl (PME) Substituted 2-Aminothiazoles as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2022; 17:e202100568. [PMID: 34636150 PMCID: PMC8741643 DOI: 10.1002/cmdc.202100568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/11/2021] [Indexed: 01/07/2023]
Abstract
A series of acyclic nucleoside phosphonates (ANPs) was designed as inhibitors of bacterial adenylate cyclases (ACs), where adenine was replaced with 2-amino-4-arylthiazoles. The target compounds were prepared using the halogen dance reaction. Final AC inhibitors were evaluated in cell-based assays (prodrugs) and cell-free assays (phosphono diphosphates). Novel ANPs were potent inhibitors of adenylate cyclase toxin (ACT) from Bordetella pertussis and edema factor (EF) from Bacillus anthracis, with substantial selectivity over mammalian enzymes AC1, AC2, and AC5. Six of the new ANPs were more potent or equipotent ACT inhibitors (IC50 =9-18 nM), and one of them was more potent EF inhibitor (IC50 =12 nM), compared to adefovir diphosphate (PMEApp) with IC50 =18 nM for ACT and IC50 =36 nM for EF. Thus, these compounds represent the most potent ACT/EF inhibitors based on ANPs reported to date. The potency of the phosphonodiamidates to inhibit ACT activity in J774A.1 macrophage cells was somewhat weaker, where the most potent derivative had IC50 =490 nM compared to IC50 =150 nM of the analogous adefovir phosphonodiamidate. The results suggest that more efficient type of phosphonate prodrugs would be desirable to increase concentrations of the ANP-based active species in the cells in order to proceed with the development of ANPs as potential antitoxin therapeutics.
Collapse
Affiliation(s)
- Michal Česnek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michal Šafránek
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| | - Michael P. Hayes
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular
Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West
Lafayette, IN – 47907 (USA)
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the
Czech Academy of Sciences, Flemingovo nám. 542/2, 16000, Prague 6 (Czech
Republic
| |
Collapse
|
2
|
Břehová P, Chaloupecká E, Česnek M, Skácel J, Dračínský M, Tloušťová E, Mertlíková-Kaiserová H, Soto-Velasquez MP, Watts VJ, Janeba Z. Acyclic nucleoside phosphonates with 2-aminothiazole base as inhibitors of bacterial and mammalian adenylate cyclases. Eur J Med Chem 2021; 222:113581. [PMID: 34102377 PMCID: PMC8373703 DOI: 10.1016/j.ejmech.2021.113581] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/22/2021] [Accepted: 05/22/2021] [Indexed: 11/17/2022]
Abstract
A series of novel acyclic nucleoside phosphonates (ANPs) was synthesized as potential adenylate cyclase inhibitors, where the adenine nucleobase of adefovir (PMEA) was replaced with a 5-substituted 2-aminothiazole moiety. The design was based on the structure of MB05032, a potent and selective inhibitor of fructose 1,6-bisphosphatase and a good mimic of adenosine monophosphate (AMP). From the series of eighteen novel ANPs, which were prepared as phosphoroamidate prodrugs, fourteen compounds were potent (single digit micromolar or submicromolar) inhibitors of Bordetella pertussis adenylate cyclase toxin (ACT), mostly without observed cytotoxicity in J774A.1 macrophage cells. Selected phosphono diphosphates (nucleoside triphosphate analogues) were potent inhibitors of ACT (IC50 as low as 37 nM) and B. anthracis edema factor (IC50 as low as 235 nM) in enzymatic assays. Furthermore, several ANPs were found to be selective mammalian AC1 inhibitors in HEK293 cell-based assays (although with some associated cytotoxicity) and one compound exhibited selective inhibition of mammalian AC2 (only 12% of remaining adenylate cyclase activity) but no observed cytotoxicity. The mammalian AC1 inhibitors may represent potential leads in development of agents for treatment of human inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Petra Břehová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Ema Chaloupecká
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43, Prague 2, Czech Republic
| | - Michal Česnek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic
| | - Monica P Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA.
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, 16610, Prague 6, Czech Republic.
| |
Collapse
|
3
|
Pitard I, Malliavin TE. Structural Biology and Molecular Modeling to Analyze the Entry of Bacterial Toxins and Virulence Factors into Host Cells. Toxins (Basel) 2019; 11:toxins11060369. [PMID: 31238550 PMCID: PMC6628625 DOI: 10.3390/toxins11060369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the functions and mechanisms of biological systems is an outstanding challenge. One way to overcome it is to combine together several approaches such as molecular modeling and experimental structural biology techniques. Indeed, the interplay between structural and dynamical properties of the system is crucial to unravel the function of molecular machinery’s. In this review, we focus on how molecular simulations along with structural information can aid in interpreting biological data. Here, we examine two different cases: (i) the endosomal translocation toxins (diphtheria, tetanus, botulinum toxins) and (ii) the activation of adenylyl cyclase inside the cytoplasm (edema factor, CyA, ExoY).
Collapse
Affiliation(s)
- Irène Pitard
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
- Sorbonne Université, Collège Doctoral, Ecole Doctorale Complexité du Vivant, 75005 Paris, France.
| | - Thérèse E Malliavin
- Unité de Bioinformatique Structurale, Institut Pasteur and CNRS UMR3528, 75015 Paris, France.
- Centre de Bioinformatique, Biostatistique et Biologie Intégrative, Institut Pasteur and CNRS USR3756, 75015 Paris, France.
| |
Collapse
|
4
|
Frydrych J, Skácel J, Šmídková M, Mertlíková-Kaiserová H, Dračínský M, Gnanasekaran R, Lepšík M, Soto-Velasquez M, Watts VJ, Janeba Z. Synthesis of α-Branched Acyclic Nucleoside Phosphonates as Potential Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2018; 13:199-206. [PMID: 29235265 DOI: 10.1002/cmdc.201700715] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/11/2017] [Indexed: 12/24/2022]
Abstract
Inhibition of Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF), key virulence factors with adenylate cyclase activity, represents a potential method for treating or preventing toxemia related to whooping cough and anthrax, respectively. Novel α-branched acyclic nucleoside phosphonates (ANPs) having a hemiaminal ether moiety were synthesized as potential inhibitors of bacterial adenylate cyclases. ANPs prepared as bisamidates were not cytotoxic, but did not exhibit any profound activity (IC50 >10 μm) toward ACT in J774A.1 macrophages. The apparent lack of activity of the bisamidates is speculated to be due to the inefficient formation of the biologically active species (ANPpp) in the cells. Conversely, two 5-haloanthraniloyl-substituted ANPs in the form of diphosphates were shown to be potent ACT and EF inhibitors with IC50 values ranging from 55 to 362 nm.
Collapse
Affiliation(s)
- Jan Frydrych
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Skácel
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Markéta Šmídková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Ramachandran Gnanasekaran
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic.,Current address: Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Monica Soto-Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
5
|
Molecular Modeling of the Catalytic Domain of CyaA Deepened the Knowledge of Its Functional Dynamics. Toxins (Basel) 2017; 9:toxins9070199. [PMID: 28672846 PMCID: PMC5535146 DOI: 10.3390/toxins9070199] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Although CyaA has been studied for over three decades and revealed itself to be a very good prototype for developing various biotechnological applications, only a little is known about its functional dynamics and about the conformational landscape of this protein. Molecular dynamics simulations helped to clarify the view on these points in the following way. First, the model of interaction between AC and calmodulin (CaM) has evolved from an interaction centered on the surface between C-CaM hydrophobic patch and the α helix H of AC, to a more balanced view, in which the C-terminal tail of AC along with the C-CaM Calcium loops play an important role. This role has been confirmed by the reduction of the affinity of AC for calmodulin in the presence of R338, D360 and N347 mutations. In addition, enhanced sampling studies have permitted to propose a representation of the conformational space for the isolated AC. It remains to refine this representation using structural low resolution information measured on the inactive state of AC. Finally, due to a virtual screening study on another adenyl cyclase from Bacillus anthracis, weak inhibitors of AC have been discovered.
Collapse
|
6
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
7
|
Břehová P, Šmídková M, Skácel J, Dračínský M, Mertlíková-Kaiserová H, Velasquez MPS, Watts VJ, Janeba Z. Design and Synthesis of Fluorescent Acyclic Nucleoside Phosphonates as Potent Inhibitors of Bacterial Adenylate Cyclases. ChemMedChem 2016; 11:2534-2546. [PMID: 27775243 PMCID: PMC5198786 DOI: 10.1002/cmdc.201600439] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/05/2016] [Indexed: 12/20/2022]
Abstract
Bordetella pertussis adenylate cyclase toxin (ACT) and Bacillus anthracis edema factor (EF) are key virulence factors with adenylate cyclase (AC) activity that substantially contribute to the pathogenesis of whooping cough and anthrax, respectively. There is an urgent need to develop potent and selective inhibitors of bacterial ACs with prospects for the development of potential antibacterial therapeutics and to study their molecular interactions with the target enzymes. Novel fluorescent 5-chloroanthraniloyl-substituted acyclic nucleoside phosphonates (Cl-ANT-ANPs) were designed and synthesized in the form of their diphosphates (Cl-ANT-ANPpp) as competitive ACT and EF inhibitors with sub-micromolar potency (IC50 values: 11-622 nm). Fluorescence experiments indicated that Cl-ANT-ANPpp analogues bind to the ACT active site, and docking studies suggested that the Cl-ANT group interacts with Phe306 and Leu60. Interestingly, the increase in direct fluorescence with Cl-ANT-ANPpp having an ester linker was strictly calmodulin (CaM)-dependent, whereas Cl-ANT-ANPpp analogues with an amide linker, upon binding to ACT, increased the fluorescence even in the absence of CaM. Such a dependence of binding on structural modification could be exploited in the future design of potent inhibitors of bacterial ACs. Furthermore, one Cl-ANT-ANP in the form of a bisamidate prodrug was able to inhibit B. pertussis ACT activity in macrophage cells with IC50 =12 μm.
Collapse
Affiliation(s)
- Petra Břehová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Markéta Šmídková
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Jan Skácel
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Martin Dračínský
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| | - Monica P Soto Velasquez
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Val J Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Zlatko Janeba
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10, Prague 6, Czech Republic
| |
Collapse
|
8
|
Selwa E, Davi M, Chenal A, Sotomayor-Pérez AC, Ladant D, Malliavin TE. Allosteric activation of Bordetella pertussis adenylyl cyclase by calmodulin: molecular dynamics and mutagenesis studies. J Biol Chem 2015; 289:21131-41. [PMID: 24907274 DOI: 10.1074/jbc.m113.530410] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Adenylyl cyclase (AC) toxin is an essential toxin that allows Bordetella pertussis to invade eukaryotic cells, where it is activated after binding to calmodulin (CaM). Based on the crystal structure of the AC catalytic domain in complex with the C-terminal half of CaM (C-CaM), our previous molecular dynamics simulations (Selwa, E., Laine, E., and Malliavin, T. (2012) Differential role of calmodulin and calcium ions in the stabilization of the catalytic domain of adenyl cyclase CyaA from Bordetella pertussis. Proteins 80, 1028–1040) suggested that three residues (i.e. Arg(338), Asn(347), and Asp(360)) might be important for stabilizing the AC/CaM interaction. These residues belong to a loop-helix-loop motif at the C-terminal end of AC, which is located at the interface between CaM and the AC catalytic loop. In the present study, we conducted the in silico and in vitro characterization of three AC variants, where one (Asn(347); ACm1A), two (Arg(338) and Asp(360); ACm2A), or three residues (Arg(338), Asn(347), and Asp(360); ACm3A) were substituted with Ala. Biochemical studies showed that the affinities of ACm1A and ACm2A for CaM were not affected significantly, whereas that of ACm3A was reduced dramatically. To understand the effects of these modifications, molecular dynamics simulations were performed based on the modified proteins. The molecular dynamics trajectories recorded for the ACm3AC-CaM complex showed that the calcium-binding loops of C-CaM exhibited large fluctuations, which could be related to the weakened interaction between ACm3A and its activator. Overall, our results suggest that the loop-helix-loop motif at the C-terminal end of AC is crucial during CaM binding for stabilizing the AC catalytic loop in an active configuration.
Collapse
|
9
|
Seifert R, Schneider EH, Bähre H. From canonical to non-canonical cyclic nucleotides as second messengers: pharmacological implications. Pharmacol Ther 2014; 148:154-84. [PMID: 25527911 DOI: 10.1016/j.pharmthera.2014.12.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 02/07/2023]
Abstract
This review summarizes our knowledge on the non-canonical cyclic nucleotides cCMP, cUMP, cIMP, cXMP and cTMP. We place the field into a historic context and discuss unresolved questions and future directions of research. We discuss the implications of non-canonical cyclic nucleotides for experimental and clinical pharmacology, focusing on bacterial infections, cardiovascular and neuropsychiatric disorders and reproduction medicine. The canonical cyclic purine nucleotides cAMP and cGMP fulfill the criteria of second messengers. (i) cAMP and cGMP are synthesized by specific generators, i.e. adenylyl and guanylyl cyclases, respectively. (ii) cAMP and cGMP activate specific effector proteins, e.g. protein kinases. (iii) cAMP and cGMP exert specific biological effects. (iv) The biological effects of cAMP and cGMP are terminated by phosphodiesterases and export. The effects of cAMP and cGMP are mimicked by (v) membrane-permeable cyclic nucleotide analogs and (vi) bacterial toxins. For decades, the existence and relevance of cCMP and cUMP have been controversial. Modern mass-spectrometric methods have unequivocally demonstrated the existence of cCMP and cUMP in mammalian cells. For both, cCMP and cUMP, the criteria for second messenger molecules are now fulfilled as well. There are specific patterns by which nucleotidyl cyclases generate cNMPs and how they are degraded and exported, resulting in unique cNMP signatures in biological systems. cNMP signaling systems, specifically at the level of soluble guanylyl cyclase, soluble adenylyl cyclase and ExoY from Pseudomonas aeruginosa are more promiscuous than previously appreciated. cUMP and cCMP are evolutionary new molecules, probably reflecting an adaption to signaling requirements in higher organisms.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| | - Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
10
|
Seifert R. Is cIMP a second messenger with functions opposite to those of cGMP? Naunyn Schmiedebergs Arch Pharmacol 2014; 387:897-9. [PMID: 25017018 DOI: 10.1007/s00210-014-1013-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022]
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany,
| |
Collapse
|
11
|
ExoY from Pseudomonas aeruginosa is a nucleotidyl cyclase with preference for cGMP and cUMP formation. Biochem Biophys Res Commun 2014; 450:870-4. [PMID: 24971548 DOI: 10.1016/j.bbrc.2014.06.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/21/2022]
Abstract
In addition to the well known second messengers cAMP and cGMP, mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. Soluble guanylyl cyclase and soluble adenylyl cyclase produce all four cNMPs. Several bacterial toxins exploit mammalian cyclic nucleotide signaling. The type III secretion protein ExoY from Pseudomonas aeruginosa induces severe lung damage and effectively produces cGMP. Here, we show that transfection of mammalian cells with ExoY or infection with ExoY-expressing P. aeruginosa not only massively increases cGMP but also cUMP levels. In contrast, the structurally related CyaA from Bordetella pertussis and edema factor from Bacillus anthracis exhibit a striking preference for cAMP increases. Thus, ExoY is a nucleotidyl cyclase with preference for cGMP and cUMP production. The differential effects of bacterial toxins on cNMP levels suggest that cUMP plays a distinct second messenger role.
Collapse
|
12
|
Selwa E, Huynh T, Ciccotti G, Maragliano L, Malliavin TE. Temperature-accelerated molecular dynamics gives insights into globular conformations sampled in the free state of the AC catalytic domain. Proteins 2014; 82:2483-96. [PMID: 24863163 DOI: 10.1002/prot.24612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 05/05/2014] [Accepted: 05/13/2014] [Indexed: 01/16/2023]
Abstract
The catalytic domain of the adenyl cyclase (AC) toxin from Bordetella pertussis is activated by interaction with calmodulin (CaM), resulting in cAMP overproduction in the infected cell. In the X-ray crystallographic structure of the complex between AC and the C terminal lobe of CaM, the toxin displays a markedly elongated shape. As for the structure of the isolated protein, experimental results support the hypothesis that more globular conformations are sampled, but information at atomic resolution is still lacking. Here, we use temperature-accelerated molecular dynamics (TAMD) simulations to generate putative all-atom models of globular conformations sampled by CaM-free AC. As collective variables, we use centers of mass coordinates of groups of residues selected from the analysis of standard molecular dynamics (MD) simulations. Results show that TAMD allows extended conformational sampling and generates AC conformations that are more globular than in the complexed state. These structures are then refined via energy minimization and further unrestrained MD simulations to optimize inter-domain packing interactions, thus resulting in the identification of a set of hydrogen bonds present in the globular conformations.
Collapse
Affiliation(s)
- Edithe Selwa
- Institut Pasteur and CNRS UMR 3528, rue du Dr Roux, Unité de Bioinformatique Structurale, 75015, Paris, France; Université Pierre et Marie Curie, Cellule Pasteur UPMC, rue du Dr Roux, 75015, Paris, France
| | | | | | | | | |
Collapse
|
13
|
Dove S, Danker KY, Stasch JP, Kaever V, Seifert R. Structure/activity relationships of (M)ANT- and TNP-nucleotides for inhibition of rat soluble guanylyl cyclase α1β1. Mol Pharmacol 2014; 85:598-607. [PMID: 24470063 DOI: 10.1124/mol.113.091017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Soluble guanylyl cyclase (sGC) plays an important role in cardiovascular function and catalyzes formation of cGMP. sGC is activated by nitric oxide and allosteric stimulators and activators. However, despite its therapeutic relevance, the regulatory mechanisms of sGC are still incompletely understood. A major reason for this situation is that no crystal structures of active sGC have been resolved so far. An important step toward this goal is the identification of high-affinity ligands that stabilize an sGC conformation resembling the active, "fully closed" state. Therefore, we examined inhibition of rat sGCα1β1 by 38 purine- and pyrimidine-nucleotides with 2,4,6,-trinitrophenyl and (N-methyl)anthraniloyl substitutions at the ribosyl moiety and compared the data with that for the structurally related membranous adenylyl cyclases (mACs) 1, 2, 5 and the purified mAC catalytic subunits VC1:IIC2. TNP-GTP [2',3'-O-(2,4,6-trinitrophenyl)-GTP] was the most potent sGCα1β1 inhibitor (Ki, 10.7 nM), followed by 2'-MANT-3'-dATP [2'-O-(N-methylanthraniloyl)-3'-deoxy-ATP] (Ki, 16.7 nM). Docking studies on an sGCαcat/sGCβcat model derived from the inactive heterodimeric crystal structure of the catalytic domains point to similar interactions of (M)ANT- and TNP-nucleotides with sGCα1β1 and mAC VC1:IIC2. Reasonable binding modes of 2'-MANT-3'-dATP and bis-(M)ANT-nucleotides at sGC α1β1 require a 3'-endo ribosyl conformation (versus 3'-exo in 3'-MANT-2'-dATP). Overall, inhibitory potencies of nucleotides at sGCα1β1 versus mACs 1, 2, 5 correlated poorly. Collectively, we identified highly potent sGCα1β1 inhibitors that may be useful for future crystallographic and fluorescence spectroscopy studies. Moreover, it may become possible to develop mAC inhibitors with selectivity relative to sGC.
Collapse
Affiliation(s)
- Stefan Dove
- Department of Medicinal Chemistry II, University of Regensburg, Regensburg, Germany (S.D.); Institute of Pharmacology,(K.Y.D., V.K., R.S.) and Research Core Unit Metabolomics (V.K.), Hannover Medical School, Hannover, Germany; and Institute of Cardiovascular Research, Bayer HealthCare, Wuppertal, Germany (J.-P.S.)
| | | | | | | | | |
Collapse
|
14
|
Nucleotidyl cyclase activity of particulate guanylyl cyclase A: comparison with particulate guanylyl cyclases E and F, soluble guanylyl cyclase and bacterial adenylyl cyclases CyaA and edema factor. PLoS One 2013; 8:e70223. [PMID: 23922959 PMCID: PMC3726482 DOI: 10.1371/journal.pone.0070223] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 06/17/2013] [Indexed: 11/19/2022] Open
Abstract
Guanylyl cyclases (GCs) regulate many physiological processes by catalyzing the synthesis of the second messenger cGMP. The GC family consists of seven particulate GCs (pGCs) and a nitric oxide-activated soluble GC (sGC). Rat sGC α1β1 possesses much broader substrate specificity than previously assumed. Moreover, the exotoxins CyaA from Bordetella pertussis and edema factor (EF) from Bacillus anthracis possess nucleotidyl cyclase (NC) activity. pGC-A is a natriuretic peptide-activated homodimer with two catalytic sites that act cooperatively. Here, we studied the NC activity of rat pGC-A in membranes of stably transfected HEK293 cells using a highly sensitive and specific HPLC-MS/MS technique. GTP and ITP were effective, and ATP and XTP were only poor, pGC-A substrates. In contrast to sGC, pGC-A did not use CTP and UTP as substrates. pGC-E and pGC-F expressed in bovine rod outer segment membranes used only GTP as substrate. In intact HEK293 cells, pGC-A generated only cGMP. In contrast to pGCs, EF and CyaA showed very broad substrate-specificity. In conclusion, NCs exhibit different substrate-specificities, arguing against substrate-leakiness of enzymes and pointing to distinct physiological functions of cyclic purine and pyrimidine nucleotides.
Collapse
|
15
|
Seifert R, Dove S. Inhibitors of Bacillus anthracis edema factor. Pharmacol Ther 2013; 140:200-12. [PMID: 23850654 DOI: 10.1016/j.pharmthera.2013.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 06/17/2013] [Indexed: 01/09/2023]
Abstract
Edema factor (EF) is a calmodulin (CaM)-activated adenylyl cyclase (AC) toxin from Bacillus anthracis that contributes to anthrax pathogenesis. Anthrax is an important medical problem, but treatment of B. anthracis infections is still unsatisfying. Thus, selective EF inhibitors could be valuable drugs in the treatment of anthrax infection, most importantly shock. The catalytic site of EF, the EF/CaM interaction site and allosteric sites constitute potential drug targets. To this end, most efforts have been directed towards targeting the catalytic site. A major challenge in the field is to obtain compounds with high selectivity for AC toxins relative to mammalian membranous ACs (mACs). 3'-(N-methyl)anthraniloyl-2'-deoxyadenosine-5'-triphosphate is the most potent EF inhibitor known so far (Ki, 10nM), but selectivity relative to mACs needs to be improved (currently ~5-50-fold, depending on the specific mAC isoform considered). AC toxin inhibitors can be identified in virtual screening studies based on available EF crystal structures and examined in cellular test systems or at the level of purified toxin using classic radioisotopic or non-radioactive fluorescence assays. Binding of certain MANT-nucleotides to AC toxins elicits large direct fluorescence- or fluorescence resonance energy transfer signals upon interaction with CaM, and these signals can be used to identify toxin inhibitors in competition binding studies. Collectively, potent EF inhibitors are available, but before they can be used clinically, selectivity against mACs must be improved. However, several methodological approaches, complementing each other, are now available to direct the development of potent, selective, orally applicable and clinically useful EF inhibitors.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | | |
Collapse
|