1
|
Pothula R, Lee MW, Patricia Stock S. Type 6 Secretion System components hcp and vgrG support mutualistic partnership between Xenorhabdus bovienii symbiont and Steinernema jollieti host. J Invertebr Pathol 2023; 198:107925. [PMID: 37087093 DOI: 10.1016/j.jip.2023.107925] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/24/2023]
Abstract
Xenorhabdus, like other Gram-negative bacteria, possesses a Type 6 Secretion System (T6SS) which acts as a contact-dependent molecular syringe, delivering diverse proteins (effectors) directly into other cells. The number of T6SS loci encoded in Xenorhabdus genomes are variable both at the inter and intraspecific level. Some environmental isolates of Xenorhabdus bovienii, encode at least one T6SS locus while others possess two loci. Previous work conducted by our team demonstrated that X. bovienii [Jollieti strain SS-2004], which has two T6SSs (T6SS-1 and T6SS-2), hcp genes are required for biofilm formation. Additionally, while T6SS-1 hcp gene plays a role in the antibacterial competition, T6SS-2 hcp does not. In this study, we tested the hypothesis that vgrG genes are also involved in mutualistic and pathogenic interactions. For this purpose, targeted mutagenesis together with wet lab experiments including colonization, competition, biofilm, and virulence experiments, were carried out to assess the role of vgrG in the mutualistic and antagonistic interactions in the life cycle of XBJ. Our results revealed that vgrG genes are not required for biofilm formation but play a role in outcompeting other Xenorhabdus bacteria. Additionally, both vgrG and hcp genes are required to fully colonize the nematode host. We also demonstrated that hcp and vgrG genes in both T6SS clusters are needed to support the reproductive fitness of the nematodes. Overall, results from this study revealed that in X. bovieni jollieti strain, the twoT6SS clusters play an important role in the fitness of the nematodes in relation to colonization and reproduction. These results lay a foundation for further investigations on the functional significance of T6SSs in the mutualistic and pathogenic lifecycle of Xenorhabdus spp.
Collapse
Affiliation(s)
- Ratnasri Pothula
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Min-Woo Lee
- Corn, Soybean, and Wheat Quality Research Lab, USDA-ARS Wooster, OH, United States
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States; College of Agriculture, California State University, Chico, CA, United States.
| |
Collapse
|
2
|
An ADP-ribosyltransferase toxin kills bacterial cells by modifying structured non-coding RNAs. Mol Cell 2022; 82:3484-3498.e11. [PMID: 36070765 DOI: 10.1016/j.molcel.2022.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022]
Abstract
ADP-ribosyltransferases (ARTs) were among the first identified bacterial virulence factors. Canonical ART toxins are delivered into host cells where they modify essential proteins, thereby inactivating cellular processes and promoting pathogenesis. Our understanding of ARTs has since expanded beyond protein-targeting toxins to include antibiotic inactivation and DNA damage repair. Here, we report the discovery of RhsP2 as an ART toxin delivered between competing bacteria by a type VI secretion system of Pseudomonas aeruginosa. A structure of RhsP2 reveals that it resembles protein-targeting ARTs such as diphtheria toxin. Remarkably, however, RhsP2 ADP-ribosylates 2'-hydroxyl groups of double-stranded RNA, and thus, its activity is highly promiscuous with identified cellular targets including the tRNA pool and the RNA-processing ribozyme, ribonuclease P. Consequently, cell death arises from the inhibition of translation and disruption of tRNA processing. Overall, our data demonstrate a previously undescribed mechanism of bacterial antagonism and uncover an unprecedented activity catalyzed by ART enzymes.
Collapse
|
3
|
Li W, Liu X, Tsui W, Xu A, Li D, Zhang X, Li P, Bian X, Zhang J. Identification and Comparative Genomic Analysis of Type VI Secretion Systems and Effectors in Klebsiella pneumoniae. Front Microbiol 2022; 13:853744. [PMID: 35633723 PMCID: PMC9134191 DOI: 10.3389/fmicb.2022.853744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/14/2022] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a nosocomial opportunistic pathogen that can cause pneumonia, liver abscesses, and infections of the bloodstream. The resistance and pathogenicity of K. pneumoniae pose major challenges to clinical practice. However, the ecology and pathogenic mechanisms of K. pneumoniae have not been fully elucidated. Among these mechanisms, the secretion systems encoded by strains of the bacteria confer adaptive advantages depending on the niche occupied. The type VI secretion system (T6SS) is a multi-protein complex that delivers effector proteins to the extracellular environment or directly to eukaryotic or prokaryotic cells. T6SSs are widely distributed in Gram-negative bacteria and play an important role in bacterial virulence and the interactions between bacteria and other microorganisms or the environment. This study aimed to enhance the understanding of the characteristics of T6SSs in K. pneumoniae through an in-depth comparative genomic analysis of the T6SS in 241 sequenced strains of K. pneumoniae. We identified the T6SS loci, the synteny of the loci in different species, as well as the effectors and core T6SS-related genes in K. pneumoniae. The presence of a T6SS was a common occurrence in K. pneumoniae, and two T6SS clusters are the most prevalent. The variable region downstream of the gene vgrG usually encodes effector proteins. Conserved domain analysis indicated that the identified putative effectors in K. pneumoniae had the functions of lipase, ribonuclease, deoxyribonuclease, and polysaccharide hydrolase. However, some effectors did not contain predicted functional domains, and their specific functions have yet to be elucidated. This in silico study represents a detailed analysis of T6SS-associated genes in K. pneumoniae and provides a foundation for future studies on the mechanism(s) of T6SSs, especially effectors, which may generate new insights into pathogenicity and lead to the identification of proteins with novel antimicrobial properties.
Collapse
Affiliation(s)
- Wanzhen Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaofen Liu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Waitang Tsui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, China
| | - An Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xuefei Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Pei Li
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingchen Bian
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jing Zhang
- Institute of Antibiotics, Huashan Hospital, Fudan University, Shanghai, China
- Key Laboratory of Clinical Pharmacology of Antibiotics, Shanghai, China
- National Health Commission and National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
- Phase I Unit, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Jing Zhang,
| |
Collapse
|
4
|
Monjarás Feria J, Valvano MA. An Overview of Anti-Eukaryotic T6SS Effectors. Front Cell Infect Microbiol 2020; 10:584751. [PMID: 33194822 PMCID: PMC7641602 DOI: 10.3389/fcimb.2020.584751] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/22/2020] [Indexed: 12/24/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane multiprotein nanomachine employed by many Gram-negative bacterial species to translocate, in a contact-dependent manner, effector proteins into adjacent prokaryotic or eukaryotic cells. Typically, the T6SS gene cluster encodes at least 13 conserved core components for the apparatus assembly and other less conserved accessory proteins and effectors. It functions as a contractile tail machine comprising a TssB/C sheath and an expelled puncturing device consisting of an Hcp tube topped by a spike complex of VgrG and PAAR proteins. Contraction of the sheath propels the tube out of the bacterial cell into a target cell and leads to the injection of toxic proteins. Different bacteria use the T6SS for specific roles according to the niche and versatility of the organism. Effectors are present both as cargo (by non-covalent interactions with one of the core components) or specialized domains (fused to structural components). Although several anti-prokaryotic effectors T6SSs have been studied, recent studies have led to a substantial increase in the number of characterized anti-eukaryotic effectors. Against eukaryotic cells, the T6SS is involved in modifying and manipulating diverse cellular processes that allows bacteria to colonize, survive and disseminate, including adhesion modification, stimulating internalization, cytoskeletal rearrangements and evasion of host innate immune responses.
Collapse
Affiliation(s)
| | - Miguel A. Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Kochanowsky RM, Bradshaw C, Forlastro I, Stock SP. Xenorhabdus bovienii strain jolietti uses a type 6 secretion system to kill closely related Xenorhabdus strains. FEMS Microbiol Ecol 2020; 96:fiaa073. [PMID: 32558899 PMCID: PMC7353953 DOI: 10.1093/femsec/fiaa073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/21/2020] [Indexed: 01/25/2023] Open
Abstract
Xenorhabdus bovienii strain jolietti (XBJ) is a Gram-negative bacterium that interacts with several organisms as a part of its life cycle. It is a beneficial symbiont of nematodes, a potent pathogen of a wide range of soil-dwelling insects and also has the ability to kill soil- and insect-associated microbes. Entomopathogenic Steinernema nematodes vector XBJ into insects, releasing the bacteria into the insect body cavity. There, XBJ produce a variety of insecticidal toxins and antimicrobials. XBJ's genome also encodes two separate Type Six Secretion Systems (T6SSs), structures that allow bacteria to inject specific proteins directly into other cells, but their roles in the XBJ life cycle are mostly unknown. To probe the function of these T6SSs, we generated mutant strains lacking the key structural protein Hcp from each T6SS and assessed phenotypes related to different parts of XBJ's life cycle. Here we demonstrate that one of the T6SSs is more highly expressed in in vitro growth conditions and has antibacterial activity against other Xenorhabdus strains, and that the two T6SSs have a redundant role in biofilm formation.
Collapse
Affiliation(s)
- Rebecca M Kochanowsky
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
- Center for Insect Science, University of Arizona, 1007 E. Lowell St., Tucson, AZ 85721, USA
| | - Christine Bradshaw
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - Isabel Forlastro
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| | - S Patricia Stock
- School of Animal and Comparative Biomedical Sciences, University of Arizona, 1117 E. Lowell St., Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Effector⁻Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules 2018; 23:molecules23051009. [PMID: 29701633 PMCID: PMC6099711 DOI: 10.3390/molecules23051009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
Type VI protein secretion systems (T6SSs) are specialized transport apparatus which can target both eukaryotic and prokaryotic cells and play key roles in host⁻pathogen⁻microbiota interactions. Therefore, T6SSs have attracted much attention as a research topic during the past ten years. In this review, we particularly summarized the T6SS antibacterial function, which involves an interesting offensive and defensive mechanism of the effector⁻immunity (E⁻I) pairs. The three main categories of effectors that target the cell wall, membranes, and nucleic acids during bacterial interaction, along with their corresponding immunity proteins are presented. We also discuss structural analyses of several effectors and E⁻I pairs, which explain the offensive and defensive mechanisms underpinning T6SS function during bacterial competition for niche-space, as well as the bioinformatics, proteomics, and protein⁻protein interaction (PPI) methods used to identify and characterize T6SS mediated E⁻I pairs. Additionally, we described PPI methods for verifying E⁻I pairs.
Collapse
|
7
|
Zoued A, Durand E, Santin YG, Journet L, Roussel A, Cambillau C, Cascales E. TssA: The cap protein of the Type VI secretion system tail. Bioessays 2017; 39. [DOI: 10.1002/bies.201600262] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Abdelrahim Zoued
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM); Aix-Marseille Université - CNRS; Marseille France
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM); Aix-Marseille Université - CNRS; Marseille France
| | - Yoann G. Santin
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM); Aix-Marseille Université - CNRS; Marseille France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM); Aix-Marseille Université - CNRS; Marseille France
| | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique; Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Marseille France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques; Centre National de la Recherche Scientifique; Marseille France
- Architecture et Fonction des Macromolécules Biologiques; Aix-Marseille Université; Marseille France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM); Aix-Marseille Université - CNRS; Marseille France
| |
Collapse
|
8
|
Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 2016; 113:E5044-51. [PMID: 27503894 DOI: 10.1073/pnas.1608858113] [Citation(s) in RCA: 248] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.
Collapse
|
9
|
Sana TG, Berni B, Bleves S. The T6SSs of Pseudomonas aeruginosa Strain PAO1 and Their Effectors: Beyond Bacterial-Cell Targeting. Front Cell Infect Microbiol 2016; 6:61. [PMID: 27376031 PMCID: PMC4899435 DOI: 10.3389/fcimb.2016.00061] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/23/2016] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen responsible for many diseases such as chronic lung colonization in cystic fibrosis patients and acute infections in hospitals. The capacity of P. aeruginosa to be pathogenic toward several hosts is notably due to different secretion systems. Amongst them, P. aeruginosa encodes three Type Six Secretion Systems (T6SS), named H1- to H3-T6SS, that act against either prokaryotes and/or eukaryotic cells. They are independent from each other and inject diverse toxins that interact with different components in the host cell. Here we summarize the roles of these T6SSs in the PAO1 strain, as well as the toxins injected and their targets. While H1-T6SS is only involved in antiprokaryotic activity through at least seven different toxins, H2-T6SS and H3-T6SS are also able to target prokaryotic as well as eukaryotic cells. Moreover, recent studies proposed that H2- and H3-T6SS have a role in epithelial cells invasion by injecting at least three different toxins. The diversity of T6SS effectors is astounding and other effectors still remain to be discovered. In this review, we present a table with other putative P. aeruginosa strain PAO1 T6SS-dependent effectors. Altogether, the T6SSs of P. aeruginosa are important systems that help fight other bacteria for their ecological niche, and are important in the pathogenicity process.
Collapse
Affiliation(s)
- Thibault G Sana
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, Centre National de la Recherche Scientifique and Aix-Marseille UniversityMarseille, France; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford UniversityStanford, CA, USA
| | - Benjamin Berni
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, Centre National de la Recherche Scientifique and Aix-Marseille University Marseille, France
| | - Sophie Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (UMR7255), IMM, Centre National de la Recherche Scientifique and Aix-Marseille University Marseille, France
| |
Collapse
|
10
|
Internalization of Pseudomonas aeruginosa Strain PAO1 into Epithelial Cells Is Promoted by Interaction of a T6SS Effector with the Microtubule Network. mBio 2015; 6:e00712. [PMID: 26037124 PMCID: PMC4453011 DOI: 10.1128/mbio.00712-15] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Invasion of nonphagocytic cells through rearrangement of the actin cytoskeleton is a common immune evasion mechanism used by most intracellular bacteria. However, some pathogens modulate host microtubules as well by a still poorly understood mechanism. In this study, we aim at deciphering the mechanisms by which the opportunistic bacterial pathogen Pseudomonas aeruginosa invades nonphagocytic cells, although it is considered mainly an extracellular bacterium. Using confocal microscopy and immunofluorescence, we show that the evolved VgrG2b effector of P. aeruginosa strain PAO1 is delivered into epithelial cells by a type VI secretion system, called H2-T6SS, involving the VgrG2a component. An in vivo interactome of VgrG2b in host cells allows the identification of microtubule components, including the γ-tubulin ring complex (γTuRC), a multiprotein complex catalyzing microtubule nucleation, as the major host target of VgrG2b. This interaction promotes a microtubule-dependent internalization of the bacterium since colchicine and nocodazole, two microtubule-destabilizing drugs, prevent VgrG2b-mediated P. aeruginosa entry even if the invasion still requires actin. We further validate our findings by demonstrating that the type VI injection step can be bypassed by ectopic production of VgrG2b inside target cells prior to infection. Moreover, such uncoupling between VgrG2b injection and bacterial internalization also reveals that they constitute two independent steps. With VgrG2b, we provide the first example of a bacterial protein interacting with the γTuRC. Our study offers key insight into the mechanism of self-promoting invasion of P. aeruginosa into human cells via a directed and specific effector-host protein interaction. Innate immunity and specifically professional phagocytic cells are key determinants in the ability of the host to control P. aeruginosa infection. However, among various virulence strategies, including attack, this opportunistic bacterial pathogen is able to avoid host clearance by triggering its own internalization in nonphagocytic cells. We previously showed that a protein secretion/injection machinery, called the H2 type VI secretion system (H2-T6SS), promotes P. aeruginosa uptake by epithelial cells. Here we investigate which H2-T6SS effector enables P. aeruginosa to enter nonphagocytic cells. We show that VgrG2b is delivered by the H2-T6SS machinery into epithelial cells, where it interacts with microtubules and, more particularly, with the γ-tubulin ring complex (γTuRC) known as the microtubule-nucleating center. This interaction precedes a microtubule- and actin-dependent internalization of P. aeruginosa. We thus discovered an unprecedented target for a bacterial virulence factor since VgrG2b constitutes, to our knowledge, the first example of a bacterial protein interacting with the γTuRC.
Collapse
|