1
|
Zhao Q, Han L, Chu C, Wang L, Zhuang L, Yuan R. Biological characterization and complete genome analysis of the newly isolated Serratia liquefaciens phage vB_SlqS_ZDD2. Arch Virol 2024; 169:104. [PMID: 38634934 DOI: 10.1007/s00705-024-06026-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
A novel lytic phage named vB_SlqS_ZDD2 was isolated from hospital sewage using the double-layer agar method with Serratia liquefaciens ATCC 27592 as the host. BLASTn analysis showed that the genome sequence of phage vB_SlqS_ZDD2 did not resemble any other phages in the NCBI database. Phenotype and phylogeny analysis indicated that this phage might be a new member of the class Caudoviricetes. Phage vB_SlqS_ZDD2 has a dsDNA genome of 49,178 bp with 55% GC content and has 73 open reading frames. This phage exhibited strong lytic activity and a wide range of pH (3-12) and temperature tolerance (below 70℃).
Collapse
Affiliation(s)
- Qian Zhao
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Linzi Han
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Chen Chu
- School of Stomatology, Qingdao University, Qingdao, 266003, China
| | - Lili Wang
- Central Laboratories, Qingdao Municipal Hospital Affiliated to University of Health and Rehabilitation Sciences, #5 Donghai Middle Road, Qingdao, 266071, China
| | - Likun Zhuang
- Central Laboratories, Qingdao Municipal Hospital Affiliated to University of Health and Rehabilitation Sciences, #5 Donghai Middle Road, Qingdao, 266071, China
| | - Rongtao Yuan
- School of Stomatology, Qingdao University, Qingdao, 266003, China.
- The Center of Stomaology, Qingdao Municipal Hospital, Affiliated to University of Health and Rehabilitation Sciences, #5 Donghai Middle Road, Qingdao, 266071, China.
| |
Collapse
|
2
|
do Socorro Fôro Ramos E, Bahia SL, de Oliveira Ribeiro G, Villanova F, de Pádua Milagres FA, Brustulin R, Pandey RP, Deng X, Delwart E, da Costa AC, Leal É. Characterization of Phietavirus Henu 2 in the virome of individuals with acute gastroenteritis. Virus Genes 2023; 59:464-472. [PMID: 37004601 DOI: 10.1007/s11262-023-01990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/15/2023] [Indexed: 04/04/2023]
Abstract
There is a growing interest in phages as potential biotechnological tools in human health owing to the antibacterial activity of these viruses. In this study, we characterized a new member (named PhiV_005_BRA/2016) of the recently identified phage species Phietavirus Henu 2. PhiV_005_BRA/2016 was detected through metagenomic analysis of stool samples of individuals with acute gastroenteritis. PhiV_005_BRA/2016 contains double-stranded linear DNA (dsDNA), it has a genome of 43,513 base pairs (bp), with a high identity score (99%) with phage of the genus Phietavirus, species of Phietavirus Henu 2. Life style prediction indicated that PhiV_005_BRA/2016 is a lysogenic phage whose the main host is methicillin-resistant Staphylococcus aureus (MRSA). Indeed, we found PhiV_005_BRA/2016 partially integrated in the genome of distinct MRSA strains. Our findings highlights the importance of large-scale screening of bacteriophages to better understand the emergence of multi-drug resistant bacterial.
Collapse
Affiliation(s)
- Endrya do Socorro Fôro Ramos
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Santana Lobato Bahia
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Geovani de Oliveira Ribeiro
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Fabiola Villanova
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil
| | - Flávio Augusto de Pádua Milagres
- Secretaria de Saúde do Tocantins, Palmas, Tocantins, 77453-000, Brazil
- Laboratório Central de Saúde Pública do Tocantins (LACEN/TO), Palmas, Tocantins, 77016-330, Brazil
| | - Rafael Brustulin
- Secretaria de Saúde do Tocantins, Palmas, Tocantins, 77453-000, Brazil
- Laboratório Central de Saúde Pública do Tocantins (LACEN/TO), Palmas, Tocantins, 77016-330, Brazil
| | - Ramendra Pati Pandey
- Centre for Drug Design Discovery and Development (C4D), SRM University Delhi-NCR, Rajiv Gandhi Education City, Sonepat, Haryana, 131029, India
| | - Xutao Deng
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Eric Delwart
- Vitalant Research Institute, 270 Masonic Avenue, San Francisco, CA, 94118-4417, USA
- Department Laboratory Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | | | - Élcio Leal
- Laboratório de Diversidade Viral, Instituto de Ciências Biológicais, Universidade Federal do Pará, Belém, Pará, 66075-000, Brazil.
| |
Collapse
|
3
|
MDR Pumps as Crossroads of Resistance: Antibiotics and Bacteriophages. Antibiotics (Basel) 2022; 11:antibiotics11060734. [PMID: 35740141 PMCID: PMC9220107 DOI: 10.3390/antibiotics11060734] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 01/27/2023] Open
Abstract
At present, antibiotic resistance represents a global problem in modern medicine. In the near future, humanity may face a situation where medicine will be powerless against resistant bacteria and a post-antibiotic era will come. The development of new antibiotics is either very expensive or ineffective due to rapidly developing bacterial resistance. The need to develop alternative approaches to the treatment of bacterial infections, such as phage therapy, is beyond doubt. The cornerstone of bacterial defense against antibiotics are multidrug resistance (MDR) pumps, which are involved in antibiotic resistance, toxin export, biofilm, and persister cell formation. MDR pumps are the primary non-specific defense of bacteria against antibiotics, while drug target modification, drug inactivation, target switching, and target sequestration are the second, specific line of their defense. All bacteria have MDR pumps, and bacteriophages have evolved along with them and use the bacteria’s need for MDR pumps to bind and penetrate into bacterial cells. The study and understanding of the mechanisms of the pumps and their contribution to the overall resistance and to the sensitivity to bacteriophages will allow us to either seriously delay the onset of the post-antibiotic era or even prevent it altogether due to phage-antibiotic synergy.
Collapse
|
4
|
Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:2759-2771. [PMID: 33824633 PMCID: PMC8017513 DOI: 10.1007/s10311-021-01224-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/12/2021] [Indexed: 05/06/2023]
Abstract
Prevention is better than cure. A milestone of the anthropocene is the emergence of a series of epidemics and pandemics often characterized by the transmission of a pathogen from animals to human in the past two decades. In particular, the coronavirus disease 2019 (COVID-19) has made a profound impact on emergency responding and policy-making in a public health crisis. Classical solutions for controlling the virus, such as travel restrictions, lockdowns, repurposed drugs and vaccines, are socially unpopular and medically limited by the fast mutation and adaptation of the virus. This is exacerbated by microbial resistance to therapeutic drugs and the slowness of vaccine development. In other words, microbial pathogens are somehow 'smarter' and faster than us, thus calling for more intelligent cures to combat future pandemics. Here, we compare therapeutics for COVID-19 such as synthetic drugs, vaccines, antibodies and phages. We present the strength and limitations of antibiotic and antiviral drugs, vaccines, and antibody-based therapeutics. We describe smarter, cheaper and preventive cures such as bacteriophages, food medicine using probiotics and prebiotics, sports, healthy diet, music, yoga, Tai Chi, dance, reading, knitting, cooking and outdoor activities. Some of these preventive cures have been intuitively developed since thousands of years ago, as illustrated by the fascinating similarity of the Chinese characters for 'music' and 'herbal medicine.'
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille University, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
5
|
Podlevsky JD, Hudson CM, Timlin JA, Williams KP. CasCollect: targeted assembly of CRISPR-associated operons from high-throughput sequencing data. NAR Genom Bioinform 2021; 2:lqaa063. [PMID: 33575613 PMCID: PMC7671303 DOI: 10.1093/nargab/lqaa063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 07/20/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
CRISPR arrays and CRISPR-associated (Cas) proteins comprise a widespread adaptive immune system in bacteria and archaea. These systems function as a defense against exogenous parasitic mobile genetic elements that include bacteriophages, plasmids and foreign nucleic acids. With the continuous spread of antibiotic resistance, knowledge of pathogen susceptibility to bacteriophage therapy is becoming more critical. Additionally, gene-editing applications would benefit from the discovery of new cas genes with favorable properties. While next-generation sequencing has produced staggering quantities of data, transitioning from raw sequencing reads to the identification of CRISPR/Cas systems has remained challenging. This is especially true for metagenomic data, which has the highest potential for identifying novel cas genes. We report a comprehensive computational pipeline, CasCollect, for the targeted assembly and annotation of cas genes and CRISPR arrays—even isolated arrays—from raw sequencing reads. Benchmarking our targeted assembly pipeline demonstrates significantly improved timing by almost two orders of magnitude compared with conventional assembly and annotation, while retaining the ability to detect CRISPR arrays and cas genes. CasCollect is a highly versatile pipeline and can be used for targeted assembly of any specialty gene set, reconfigurable for user provided Hidden Markov Models and/or reference nucleotide sequences.
Collapse
Affiliation(s)
- Joshua D Podlevsky
- Molecular and Microbiology, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Corey M Hudson
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jerilyn A Timlin
- Computational Biology and Biophysics, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Kelly P Williams
- Systems Biology, Sandia National Laboratories, Livermore, CA 94550, USA
| |
Collapse
|