1
|
Favale N, Costa S, Summa D, Sabbioni S, Mamolini E, Tamburini E, Scapoli C. Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100383. [PMID: 40255248 PMCID: PMC12008556 DOI: 10.1016/j.crmicr.2025.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study analysed the effect of the different lignocellulose composition of two crop substrates on the structure and dynamics of bacterial communities during anaerobic digestion (AD) processes for biogas production. To this end, cereal grains and grape pomace biomasses were analysed in parallel in an experimental AD bench-scale system to define and compare their metagenomic profiles for different experimental time intervals. The bacterial community structure and dynamics during the AD process were detected and characterised using high-resolution whole metagenomic shotgun analyses. Statistical evaluation identified 15 strains as specific to two substrates. Some strains, like Clostridium isatidis, Methanothermobacter wolfeii, and Methanobacter sp. MB1 in cereal grains, and Acetomicrobium hydrogeniformans and Acetomicrobium thermoterrenum in grape pomace, were never before detected in biogas reactors. The presence of bacteria such as Acetomicrobium sp. and Petrimonas mucosa, which degrade lipids and protein-rich substrates, along with Methanosarcina sp. and Peptococcaceae bacterium 1109, which tolerate high hydrogen pressures and ammonia concentrations, suggests a complex syntrophic community in lignin-cellulose-enriched substrates. This finding could help develop new strategies for the production of a tailor-made microbial consortium to be inoculated from the beginning of the digestion process of specific lignocellulosic biomass.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Daniela Summa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology – Section of Pathology and Applied Microbiology, University of Ferrara, Italy
| | - Elisabetta Mamolini
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| |
Collapse
|
2
|
Jagadeesan Y, Meenakshisundaram S, Pichaimuthu S, Balaiah A. A scientific version of understanding "Why did the chickens cross the road"? - A guided journey through Bacillus spp. towards sustainable agriculture, circular economy and biofortification. ENVIRONMENTAL RESEARCH 2024; 244:117907. [PMID: 38109965 DOI: 10.1016/j.envres.2023.117907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.
Collapse
Affiliation(s)
- Yogeswaran Jagadeesan
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Shanmugapriya Meenakshisundaram
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| | - Suthakaran Pichaimuthu
- Genprotic Biopharma Private Limited, SPIC Bioprocess Laboratory, Anna University, Taramani Campus, Taramani, Chennai, Tamilnadu, 600113, India.
| | - Anandaraj Balaiah
- Department of Biotechnology, University College of Engineering, Anna University - BIT Campus, Tiruchirappalli, Tamilnadu, 620 024, India.
| |
Collapse
|
3
|
Heyer R, Hellwig P, Maus I, Walke D, Schlüter A, Hassa J, Sczyrba A, Tubbesing T, Klocke M, Mächtig T, Schallert K, Seick I, Reichl U, Benndorf D. Breakdown of hardly degradable carbohydrates (lignocellulose) in a two-stage anaerobic digestion plant is favored in the main fermenter. WATER RESEARCH 2024; 250:121020. [PMID: 38128305 DOI: 10.1016/j.watres.2023.121020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
The yield and productivity of biogas plants depend on the degradation performance of their microbiomes. The spatial separation of the anaerobic digestion (AD) process into a separate hydrolysis and a main fermenter should improve cultivation conditions of the microorganisms involved in the degradation of complex substrates like lignocellulosic biomass (LCB) and, thus, the performance of anaerobic digesters. However, relatively little is known about such two-stage processes. Here, we investigated the process performance of a two-stage agricultural AD over one year, focusing on chemical and technical process parameters and metagenome-centric metaproteomics. Technical and chemical parameters indicated stable operation of the main fermenter but varying conditions for the open hydrolysis fermenter. Matching this, the microbiome in the hydrolysis fermenter has a higher dynamic than in the main fermenter. Metaproteomics-based microbiome analysis revealed a partial separation between early and common steps in carbohydrate degradation and primary fermentation in the hydrolysis fermenter but complex carbohydrate degradation, secondary fermentation, and methanogenesis in the main fermenter. Detailed metagenomics and metaproteomics characterization of the single metagenome-assembled genomes showed that the species focus on specific substrate niches and do not utilize their full genetic potential to degrade, for example, LCB. Overall, it seems that a separation of AD in a hydrolysis and a main fermenter does not improve the cleavage of complex substrates but significantly improves the overall process performance. In contrast, the remaining methanogenic activity in the hydrolysis fermenter may cause methane losses.
Collapse
Affiliation(s)
- Robert Heyer
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany; Multidimensional Omics Analyses Group, Faculty of Technology, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany.
| | - Patrick Hellwig
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Irena Maus
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany.
| | - Daniel Walke
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Otto von Guericke University, Database and Software Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany.
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany.
| | - Alexander Sczyrba
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Research Center Jülich GmbH, Institute of Bio- and Geosciences (IBG), IBG-5: Computational Metagenomics, Leo-Brandt-Str., 52428 Jülich, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Tom Tubbesing
- Center for Biotechnology (CeBiTec), Bielefeld University, Genome Research of Industrial Microorganisms, Universitätsstraße 27, 33615 Bielefeld, Germany; Faculty of Technology, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany.
| | - Michael Klocke
- Institute of Agricultural and Urban Ecological Projects affiliated to Berlin Humboldt University (IASP), Philippstraße 13, 10115 Berlin, Germany.
| | - Torsten Mächtig
- Christian-Albrechts-Universität Kiel, Institute of Agricultural Engineering, Olshausenstr. 40, 24098 Kiel, Germany.
| | - Kay Schallert
- Multidimensional Omics Analyses Group, Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany.
| | - Ingolf Seick
- Urban Water Management/Wastewater, Hochschule Magdeburg-Stendal, Breitscheidstrasse 2, 39114 Magdeburg, Germany.
| | - Udo Reichl
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
| | - Dirk Benndorf
- Otto von Guericke University, Bioprocess Engineering, Universitätsplatz 2, 39106 Magdeburg, Germany; Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany; Applied Biosciences and Process Engineering, Anhalt University of Applied Sciences, Microbiology, Bernburger Straße 55, 06354 Köthen, Germany.
| |
Collapse
|
4
|
Xu J, Shi Z, Xu L, Zheng X, Zong Y, Luo G, Zhang C, Liu M, Xie L. Recovery capability of anaerobic digestion from ammonia stress: Metabolic activity, energy generation, and genome-centric metagenomics. BIORESOURCE TECHNOLOGY 2024; 394:130203. [PMID: 38109977 DOI: 10.1016/j.biortech.2023.130203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
Excessive ammonia stresses anaerobic digestion (AD) significantly. Although there has been progress in understanding AD under ammonia exposure, investigations on AD liberated from ammonia exposure are limited. Here, the recovery capability of AD from ammonia stress was evaluated, by examining specific methanogenic activity, energy-conserving capability, microbial community succession, and metabolic pathway reconstruction. The findings demonstrated that ammonia stress relief resulted in < 50% methane recovery, with propionate conversion identified as the critical impediment to AD reactivation. Energy generation could not recovered either. Efforts to mitigate ammonia stress failed to restore acetoclastic methanogens, e.g., Methanothrix soehngenii, and proved futile in awakening propionate oxidizers, e.g., Desulfobulbus. Interestingly, a symbiotic metabolism emerged, prevailing in stress-relieved AD due to its energy-conserving advantage. This study underscores the importance of targeted interventions, including stimulating acetoclastic methanogenesis, propionate oxidation, and energy generation, as priorities for AD recovery following ammonia stress, rather than focusing solely on ammonia level management.
Collapse
Affiliation(s)
- Jun Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhijian Shi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, PR China
| | - Ling Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaomei Zheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Chen Zhang
- Shanghai Municipal Engineering Design Institute (Group) Co., LTD., Shanghai 200092, PR China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Li Xie
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
5
|
Zhang X, Wang Y, Jiao P, Zhang M, Deng Y, Jiang C, Liu XW, Lou L, Li Y, Zhang XX, Ma L. Microbiome-functionality in anaerobic digesters: A critical review. WATER RESEARCH 2024; 249:120891. [PMID: 38016221 DOI: 10.1016/j.watres.2023.120891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency. This study presents a holistic review of research on the microbial and metabolic "black box" of AD processes. Recent research on microbiology, functional traits, and metabolic pathways in AD, as well as the responses of functional microbiota and metabolic capabilities to optimization strategies are reviewed. The diverse ecophysiological traits and cooperation/competition interactions of the functional guilds and the biomanipulation of microbial ecology to generate valuable products other than methane during AD are outlined. The results show that AD communities prioritize cooperation to improve functional redundancy, and the dominance of specific microbes can be explained by thermodynamics, resource allocation models, and metabolic division of labor during cross-feeding. In addition, the multi-omics approaches used to decipher the ecological principles of AD consortia are summarized in detail. Lastly, future microbial research and engineering applications of AD are proposed. This review presents an in-depth understanding of microbiome-functionality mechanisms of AD and provides critical guidance for the directional and efficient bioconversion of biowastes into methane and other valuable products.
Collapse
Affiliation(s)
- Xingxing Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yiwei Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Pengbo Jiao
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ming Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ye Deng
- CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing 100101, PR China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Liping Lou
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, PR China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Liping Ma
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Shanghai 200062, PR China.
| |
Collapse
|
6
|
Bucci L, Ghiotto G, Zampieri G, Raga R, Favaro L, Treu L, Campanaro S. Adaptation of Anaerobic Digestion Microbial Communities to High Ammonium Levels: Insights from Strain-Resolved Metagenomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:580-590. [PMID: 38114447 PMCID: PMC10785762 DOI: 10.1021/acs.est.3c07737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023]
Abstract
Ammonia release from proteinaceous feedstocks represents the main inhibitor of the anaerobic digestion (AD) process, which can result in a decreased biomethane yield or even complete failure of the process. The present study focused on the adaptation of mesophilic AD communities to a stepwise increase in the concentration of ammonium chloride in synthetic medium with casein used as the carbon source. An adaptation process occurring over more than 20 months allowed batch reactors to reach up to 20 g of NH4+ N/L without collapsing in acidification nor ceasing methane production. To decipher the microbial dynamics occurring during the adaptation and determine the genes mostly exposed to selective pressure, a combination of biochemical and metagenomics analyses was performed, reconstructing the strains of key species and tracking them over time. Subsequently, the adaptive metabolic mechanisms were delineated by following the single nucleotide variants (SNVs) characterizing the strains and prioritizing the associated genes according to their function. An in-depth exploration of the archaeon Methanoculleus bourgensis vb3066 and the putative syntrophic acetate-oxidizing bacteria Acetomicrobium sp. ma133 identified positively selected SNVs on genes involved in stress adaptation. The intraspecies diversity with multiple coexisting strains in a temporal succession pattern allows us to detect the presence of an additional level of diversity within the microbial community beyond the species level.
Collapse
Affiliation(s)
- Luca Bucci
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gabriele Ghiotto
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Guido Zampieri
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Roberto Raga
- Department
of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, Via Marzolo 9, 35131 Padova, Italy
| | - Lorenzo Favaro
- Department
of Agronomy Food Natural Resources Animals and Environment (DAFNAE), University of Padova,
Campus Agripolis, Viale dell’Università
16, 35020 Legnaro, Italy
| | - Laura Treu
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Stefano Campanaro
- Department
of Biology (DIBIO), University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
7
|
Liang M, Qin X, Chang Q, Wang C, Guo G, Lu X, Wu X, Zan F. Achieving efficient methane production from protein-rich organic waste in anaerobic digestion: Using conductive materials or regulating inoculum-to-substrate ratios? BIORESOURCE TECHNOLOGY 2023; 385:129473. [PMID: 37429550 DOI: 10.1016/j.biortech.2023.129473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
The contribution of inoculum-to-substrate ratios (ISRs) and conductive materials (CMs) on the productivity of anaerobic digestion (AD) remains unclear, particularly for protein-rich organic waste. This study investigated whether the addition of CMs, i.e., biochar and iron powder, can overcome the limitations imposed by varying ISRs for the AD of protein as the sole substrate. Results indicate the ISR plays a decisive role in hydrolysis, acidification, and methanogenesis for protein conversion, irrespective of CMs addition. Methane production increased stepwise as the ISR escalated to 3:1. The addition of CMs provided limited improvement, and iron powder even inhibited methanogenesis at a low ISR. Bacterial community variations were contingent on the ISR, while iron powder supplementation significantly elevates the proportion of hydrogenotrophic methanogen. This study demonstrates that the addition of CMs could affect methanogenic efficiency but can not overcome the limitation of ISRs for the AD of protein.
Collapse
Affiliation(s)
- Muxiang Liang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohai Qin
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Chang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Wang
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Guo
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiejuan Lu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Low-Carbon Water Environment Technology Center (HUST-SUKE), and Key Laboratory of Water and Wastewater Treatment, MOHURD, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Supplemental Sewage Scum and Organic Municipal Solid Waste Addition to the Anaerobic Digestion of Thickened Waste Activated Sludge: Biomethane Potential and Microbiome Analysis. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Sewage scum (SS) is collected from sedimentation tanks in wastewater treatment plants (WWTPs). Despite its huge biogas potential, there is limited information on its potential as a co-substrate and microbial ecology, especially during anaerobic co-digestion (ACo-D) of the organic fraction of municipal solid waste (OFMSW) and thickened waste activated sludge (TWAS). In this biomethane potential (BMP) study, the bioenergy yield achieved by the supplemental addition of SS and OFMSW to TWAS was investigated, along with the microbial ecology. Compared with the digestion of TWAS alone, which produced 184.6 mLCH4 gVS−1, biomethane yield was enhanced by as much as 32.4–121.6% in trinary mixtures with SS and OFMSW, mainly due to the positive synergistic effect. Furthermore, a mixture of 40%SS + 10%TWAS + 50%OFMSW produced the highest biogas yield of 407 mLCH4 gVS−1, which is proof that existing WWTPs can produce additional energy by incorporating external bioresources, thereby reducing greenhouse gas emissions. Modified Gompertz and logistic function estimates showed that methane production rate improved by as much as 60% in a trinary mixture compared with the digestion of TWAS alone. The genus Methanosaeta, capable of generating methane by the acetoclastic methanogenic pathway among all the archaeal communities, was the most prominent, followed by hydrogenotrophic methanogen Methanospirillum.
Collapse
|
9
|
Wang Z, Wang S, Hu Y, Du B, Meng J, Wu G, Liu H, Zhan X. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures. WATER RESEARCH 2022; 224:119029. [PMID: 36099760 DOI: 10.1016/j.watres.2022.119029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/14/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
A shift from the acetoclastic to the hydrogenotrophic pathway in methanogenesis under ammonia inhibition is a common observation in anaerobic digestion. However, there are still considerable knowledge gaps concerning the differential ammonia tolerance of acetoclastic and hydrogenotrophic methanogens (AMs and HMs), their responses to different ammonia species (NH4+, NH3), and their recoverability after ammonia inhibition. With the successful enrichment of mesophilic AMs and HMs cultures, this study aimed at addressing the above knowledge gaps through batch inhibition/recovery tests and kinetic modeling under varying total ammonia (TAN, 0.2-10 g N/L) and pH (7.0-8.5) conditions. The results showed that the tolerance level of HMs to free ammonia (FAN, IC50=1345 mg N/L) and NH4+ (IC50=6050 mg N/L) was nearly 11 times and 3 times those of AMs (NH3, IC50=123 mg N/L; NH4+, IC50=2133 mg N/L), respectively. Consistent with general belief, the AMs were more impacted by FAN. However, the HMs were more adversely affected by NH4+ when the pH was ≤8.0. A low TAN (1.0-4.0 g N/L) could cause irreversible inhibition of the AMs due to significant cell death, whereas the activity of HMs could be fully or even over recovered from severe ammonia stress (FAN≤ 0.9 g N/L or TAN≤10 g N/L; pH ≤8.0). The different tolerance responses of AMs and HMs might be associated with the cell morphology, multiple energy-converting systems, and Gibbs free energy from substrate-level phosphorylation.
Collapse
Affiliation(s)
- Zhongzhong Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland
| | - Yuansheng Hu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland.
| | - Bang Du
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland
| | - Guangxue Wu
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, Jiangsu Province, PR China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, National University of Ireland, Galway, Ireland; Ryan Institute, National University of Ireland, Galway, Ireland; MaREI Center for Marine and Renewable Energy, National University of Ireland, Galway, Ireland.
| |
Collapse
|