1
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
2
|
Jenks JD, Hoenigl M, Thompson GR. Study protocol: A randomized, double-blind, placebo-controlled trial of isavuconazole prophylaxis for the prevention of covid-19-associated pulmonary aspergillosis. Contemp Clin Trials Commun 2024; 39:101310. [PMID: 38832095 PMCID: PMC11144754 DOI: 10.1016/j.conctc.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, those with severe COVID-19 infection were at risk for a number of opportunistic infections including COVID-19-associated pulmonary aspergillosis (CAPA). We initiated a randomized clinical trial to evaluate whether isavuconazole, a triazole antifungal, could prevent CAPA and improve survival in patients admitted to the ICU with severe COVID-19 infection. Methods We designed a phase III/IV randomized, double-blind, two-arm, placebo-controlled trial evaluating standard of care (SOC) plus isavuconazole versus SOC plus placebo and were to enroll participants admitted to the ICU with severe COVID-19 infection at three medical centers in California, United States. The projected sample size was 162 participants. Results Due to poor enrollment and the declining number of COVID-19 cases over time, the study was terminated after 7 participants were enrolled, all enrolled at one study site (UC San Diego Health). CAPA was suspected in two participants and they were started on open-label isavuconazole. One was withdrawn due to possible isavuconazole-related adverse side effects. Conclusion Enrollment was slower-than-expected due to multiple factors, including competing COVID-19-related studies and hesitancy from potential study participants or their families to join the study. Our experience highlights some of the difficulties in planning and running a clinical trial focused on fungal superinfections involving severely ill patients during the height of the COVID-19 pandemic. Lessons learned from this study will help in the design of proposed studies examining antifungal prophylaxis against aspergillosis following other severe respiratory viral infections.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Aerts R, Autier B, Gornicec M, Prattes J, Lagrou K, Gangneux JP, Hoenigl M. Point-of-care testing for viral-associated pulmonary aspergillosis. Expert Rev Mol Diagn 2024; 24:231-243. [PMID: 37688631 DOI: 10.1080/14737159.2023.2257597] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/11/2023]
Abstract
INTRODUCTION Over the last years, severe respiratory viral infections, particularly those caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the influenza virus, have emerged as risk factor for viral-associated pulmonary aspergillosis (VAPA) among critically ill patients. Delays in diagnosis of VAPA are associated with increased mortality. Point-of-care-tests may play an important role in earlier diagnosis of VAPA and thus improve patient outcomes. AREAS COVERED The following review will give an update on point-of-care tests for VAPA, analyzing performances in respiratory and blood specimens. EXPERT OPINION Point-of-care tests have emerged, and particularly the IMMY Aspergillus galactomannan lateral flow assay (LFA) shows performances comparable to the galactomannan ELISA for diagnosis of VAPA. Notably, nearly all evaluations of POC tests for VAPA have been performed in COVID-19 patients, with very limited data in influenza patients. For early diagnosis of COVID associated pulmonary aspergillosis (CAPA), the LFA has shown promising performances in respiratory samples, particularly in bronchoalveolar lavage fluid, and may thereby help in improving patient outcomes. In contrast, serum LFA testing may not be useful for early diagnosis of disease, except in cases with invasive tracheobronchial aspergillosis.
Collapse
Affiliation(s)
- Robina Aerts
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
| | - Brice Autier
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratory of Parasitology and Mycology, European Excellence Center in Medical Mycology (ECMM-EC), National Reference Center on mycology and antifungals (LA-AspC Chronic aspergillosis and A. fumigatus resistance), Rennes, France
| | - Maximilian Gornicec
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, KU Leuven, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Jean-Pierre Gangneux
- Univ Rennes, CHU Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR_S 1085, Rennes, France
- Centre Hospitalier Universitaire de Rennes, Laboratory of Parasitology and Mycology, European Excellence Center in Medical Mycology (ECMM-EC), National Reference Center on mycology and antifungals (LA-AspC Chronic aspergillosis and A. fumigatus resistance), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
4
|
Frost J, Gornicec M, Reisinger AC, Eller P, Hoenigl M, Prattes J. COVID-19 associated Pulmonary Aspergillosis in Patients Admitted to the Intensive Care Unit: Impact of Antifungal Prophylaxis. Mycopathologia 2024; 189:3. [PMID: 38217742 PMCID: PMC10787678 DOI: 10.1007/s11046-023-00809-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/07/2023] [Indexed: 01/15/2024]
Abstract
Early after the beginning of the coronavirus disease 2019 (COVID-19)-pandemic, it was observed that critically ill patients in the intensive care unit (ICU) were susceptible to developing secondary fungal infections, particularly COVID-19 associated pulmonary aspergillosis (CAPA). Here we report our local experience on the impact of mold active antifungal prophylaxis on CAPA occurrence in critically ill COVID-19 patients. This is a monocentric, prospective cohort study including all consecutive patients with COVID-19 associated acute respiratory failure who were admitted to our local medical ICU. Based on the treating physician's discretion, patients may have received antifungal prophylaxis or not. All patients were retrospectively characterized as having CAPA according to the 2020 ECMM/ISHAM consensus definitions. Seventy-seven patients were admitted to our medical ICU during April 2020 and May 2021 and included in the study. The majority of patients received invasive-mechanical ventilation (61%). Fifty-three patients (68.8%) received posaconazole prophylaxis. Six cases of probable CAPA were diagnosed within clinical routine management. All six cases were diagnosed in the non-prophylaxis group. The incidence of CAPA in the overall study cohort was 0.57 events per 100 ICU days and 2.20 events per 100 ICU days in the non-prophylaxis group. No difference of cumulative 84-days survival could be observed between the two groups (p = 0.115). In this monocentric cohort, application of posaconazole prophylaxis in patients with COVID-19 associated respiratory failure did significantly reduce the rate of CAPA.
Collapse
Affiliation(s)
- Jonas Frost
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Maximilian Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Alexander C Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
5
|
Kosmidis C, Hoenigl M. COVID-19-associated pulmonary aspergillosis in mechanically ventilated patients: a deadly complication. Thorax 2023; 79:9-10. [PMID: 37940199 DOI: 10.1136/thorax-2023-220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Chris Kosmidis
- National Aspergillosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|