1
|
Rinaldi T. The action and role of carbonatogenic microorganisms in bioconsolidation of stones. J Appl Microbiol 2025; 136:lxaf105. [PMID: 40302015 DOI: 10.1093/jambio/lxaf105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/14/2025] [Accepted: 04/28/2025] [Indexed: 05/01/2025]
Abstract
AIMS Biomineralization is one of the first microbial strategies to cope with a changing environment during the evolution of life on Earth. Indeed, the coevolution of rocks and microorganisms induced massive microbial calcium carbonate precipitation, which played a fundamental role in shaping the Earth as we know it today. In the search for microbial strategies that can be developed to counteract global warming and meet the needs of the world's population, bacterial enzymes and metabolic activities have emerged as promising solutions. METHODS AND RESULTS Microbially induced calcium carbonate precipitation has received much attention for biotechnological applications such as carbon sequestration, the improvement of building materials and drug delivery. Thus, biomineralization covers many areas of interest from engineering to medicine, but curiously, we are far from knowing the biological dynamics that underlie this phenomenon. CONCLUSIONS This review discusses the role of microbes in calcium carbonate precipitation, with emphasis on carbonatogenic bacteria used in Cultural Heritage for sustainable bioconsolidation.
Collapse
Affiliation(s)
- Teresa Rinaldi
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
2
|
Malos IG, Ghizdareanu AI, Vidu L, Matei CB, Pasarin D. The Role of Whey in Functional Microorganism Growth and Metabolite Generation: A Biotechnological Perspective. Foods 2025; 14:1488. [PMID: 40361571 PMCID: PMC12071764 DOI: 10.3390/foods14091488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/19/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
The valorization of cheese whey, a rich by-product of the dairy industry that is rich in lactose (approx. 70%), proteins (14%), and minerals (9%), represents a promising approach for microbial fermentation. With global whey production exceeding 200 million tons annually, the high biochemical oxygen demand underlines the important need for sustainable processing alternatives. This review explores the biotechnological potential of whey as a fermentation medium by examining its chemical composition, microbial interactions, and ability to support the synthesis of valuable metabolites. Functional microorganisms such as lactic acid bacteria (Lactobacillus helveticus, L. acidophilus), yeasts (Kluyveromyces marxianus), actinobacteria, and filamentous fungi (Aspergillus oryzae) have demonstrated the ability to efficiently convert whey into a wide range of bioactive compounds, including organic acids, exopolysaccharides (EPSs), bacteriocins, enzymes, and peptides. To enhance microbial growth and metabolite production, whey fermentation can be carried out using various techniques, including batch, fed-batch, continuous and immobilized cell fermentation, and membrane bioreactors. These bioprocessing methods improve substrate utilization and metabolite yields, contributing to the efficient utilization of whey. These bioactive compounds have diverse applications in food, pharmaceuticals, agriculture, and biofuels and strengthen the role of whey as a sustainable biotechnological resource. Patents and clinical studies confirm the diverse bioactivities of whey-derived metabolites and their industrial potential. Whey peptides provide antihypertensive, antioxidant, immunomodulatory, and antimicrobial benefits, while bacteriocins and EPSs act as natural preservatives in foods and pharmaceuticals. Also, organic acids such as lactic acid and propionic acid act as biopreservatives that improve food safety and provide health-promoting formulations. These results emphasize whey's significant industrial relevance as a sustainable, cost-efficient substrate for the production of high-quality bioactive compounds in the food, pharmaceutical, agricultural, and bioenergy sectors.
Collapse
Affiliation(s)
- Iuliu Gabriel Malos
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Andra-Ionela Ghizdareanu
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Livia Vidu
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania; (I.G.M.)
| | - Catalin Bogdan Matei
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| | - Diana Pasarin
- National Research and Development Institute for Chemistry and Petrochemistry—ICECHIM, 202 Splaiul Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Sharma P, Kalra A, Tripathi AD, Chaturvedi VK, Chouhan B. Antimicrobial Proficiency of Amlodipine: Investigating its Impact on Pseudomonas spp. in Urinary Tract Infections. Indian J Microbiol 2025; 65:347-358. [PMID: 40371041 PMCID: PMC12069773 DOI: 10.1007/s12088-024-01280-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/04/2024] [Indexed: 05/16/2025] Open
Abstract
Antibiotic resistance in urinary tract infections (UTIs) is a growing concern due to extensive antibiotic use. The study explores a drug repurposing approach to find non-antibiotic drugs with antibacterial activity. In the present study, 8 strains of Pseudomonas spp. were used that were clinically isolated from UTI-infected patients. Amlodipine, a cardiovascular drug used in this study, has shown potential antimicrobial effect in reducing the various virulence factors, including swimming and twitching motility, biofilm, rhamnolipid, pyocyanin, and oxidative stress resistance against all the strains. Amlodipine exhibited the most potent antimicrobial activity with MIC in the range of 6.25 to 25 µg/ml. Significant inhibition in biofilm production was seen in the range of 45.75 to 76.70%. A maximum decrease of 54.66% and 59.45% in swimming and twitching motility was observed, respectively. Maximum inhibition of 65.87% of pyocyanin pigment was observed with the effect of amlodipine. Moreover, a significant decrease in rhamnolipids production observed after amlodipine treatment was between 16.5 and 0.001 mg/ml as compared to the control. All bacterial strains exhibited leakage of proteins and nucleic acids from their cell membranes when exposed to amlodipine which suggests the damage of the structural integrity. In conclusion, amlodipine exhibited good antimicrobial activity and can be used as a potential candidate to be repurposed for the treatment of urinary tract infections.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| | - Aakanksha Kalra
- Dr. B. Lal Institute of Biotechnology, University of Rajasthan, Jaipur, Rajasthan 302017 India
| | - Abhay Dev Tripathi
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005 India
| | - Vivek K. Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences (BHU), Varanasi, 221005 India
| | - Bharti Chouhan
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan 302004 India
| |
Collapse
|
4
|
Mo B, Ding Y, Ji Q. NLRP3 inflammasome in cardiovascular diseases: an update. Front Immunol 2025; 16:1550226. [PMID: 40079000 PMCID: PMC11896874 DOI: 10.3389/fimmu.2025.1550226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/11/2025] [Indexed: 03/14/2025] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of mortality worldwide. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in numerous types of CVD. As part of innate immunity, the NLRP3 inflammasome plays a vital role, requiring priming and activation signals to trigger inflammation. The NLRP3 inflammasome leads both to the release of IL-1 family cytokines and to a distinct form of programmed cell death called pyroptosis. Inflammation related to CVD has been extensively investigated in relation to the NLRP3 inflammasome. In this review, we describe the pathways triggering NLRP3 priming and activation and discuss its pathogenic effects on CVD. This study also provides an overview of potential therapeutic approaches targeting the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Binhai Mo
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yudi Ding
- First People’s Hospital of Nanning, Nanning, Guangxi, China
| | - Qingwei Ji
- People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
5
|
Flemming HC, van Hullebusch ED, Little BJ, Neu TR, Nielsen PH, Seviour T, Stoodley P, Wingender J, Wuertz S. Microbial extracellular polymeric substances in the environment, technology and medicine. Nat Rev Microbiol 2025; 23:87-105. [PMID: 39333414 DOI: 10.1038/s41579-024-01098-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 09/29/2024]
Abstract
Microbial biofilms exhibit a self-produced matrix of extracellular polymeric substances (EPS), including polysaccharides, proteins, extracellular DNA and lipids. EPS promote interactions of the biofilm with other cells and sorption of organics, metals and chemical pollutants, and they facilitate cell adhesion at interfaces and ensure matrix cohesion. EPS have roles in various natural environments, such as soils, sediments and marine habitats. In addition, EPS are relevant in technical environments, such as wastewater and drinking water treatment facilities, and water distribution systems, and they contribute to biofouling and microbially influenced corrosion. In medicine, EPS protect pathogens within the biofilm against the host immune system and antimicrobials, and emerging evidence suggests that EPS can represent potential virulence factors. By contrast, EPS yield a wide range of valuable products that include their role in self-repairing concrete. In this Review, we aim to explore EPS as a functional unit of biofilms in the environment, in technology and in medicine.
Collapse
Affiliation(s)
- Hans-Curt Flemming
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore.
- Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao, China.
| | | | | | - Thomas R Neu
- Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Magdeburg, Germany
| | - Per H Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Thomas Seviour
- Aarhus University Centre for Water Technology, Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Paul Stoodley
- Department of Microbial Infection and Immunity and the Department of Orthopaedics, the Ohio State University, Columbus, OH, USA
- National Centre for Advanced Tribology at Southampton (nCATS), National Biofilm Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton, UK
| | - Jost Wingender
- University of Duisburg-Essen, Faculty of Chemistry, Environmental Microbiology and Biotechnology, Essen, Germany
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
6
|
Zhou H, Hu YY, Tang ZX, Jiang ZB, Huang J, Zhang T, Shen HY, Ye XP, Huang XY, Wang X, Zhou T, Bai XL, Zhu Q, Shi LE. Calcium Transport and Enrichment in Microorganisms: A Review. Foods 2024; 13:3612. [PMID: 39594028 PMCID: PMC11593130 DOI: 10.3390/foods13223612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/31/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
Calcium is a vital trace element for the human body, and its deficiency can result in a range of pathological conditions, including rickets and osteoporosis. Despite the numerous types of calcium supplements currently available on the market, these products are afflicted with a number of inherent deficiencies, such as low calcium content, poor aqueous solubility, and low human absorption rate. Many microorganisms, particularly beneficial microorganisms, including edible fungi, lactic acid bacteria, and yeast, are capable of absorbing and enriching calcium, a phenomenon that has been widely documented. This opens the door to the potential utilization of microorganisms as novel calcium enrichment carriers. However, the investigation of calcium-rich foods from microorganisms still faces many obstacles, including a poor understanding of calcium metabolic pathways in microorganisms, a relatively low calcium enrichment rate, and the slow growth of strains. Therefore, in order to promote the development of calcium-rich products from microorganisms, this paper provides an overview of the impacts of calcium addition on strain growth, calcium enrichment rate, antioxidant system, and secondary metabolite production. Additionally, it highlights calcium transport and enrichment mechanisms in microorganism cells and offers a detailed account of the progress made on calcium-binding proteins, calcium transport pathways, and calcium storage and release. This paper offers insights for further research on the relevant calcium enrichment in microorganism cells.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Yan-Yu Hu
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou 311231, China
| | - Zhong-Bao Jiang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Jie Huang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Tian Zhang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Hui-Yang Shen
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xin-Pei Ye
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xuan-Ya Huang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xiang Wang
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Ting Zhou
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Xue-Lian Bai
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Qin Zhu
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| | - Lu-E Shi
- Department of Biotechnology, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China; (H.Z.); (Y.-Y.H.); (Z.-B.J.); (J.H.); (T.Z.); (H.-Y.S.); (X.-P.Y.); (X.-Y.H.); (X.W.); (T.Z.); (X.-L.B.); (Q.Z.)
| |
Collapse
|
7
|
Dolphen R, Treesubsuntorn C, Kanjanapokin C, Chonjoho N, Anusaraporn S, Julpanwattana P, Praditsmanont A. Exploring bioluminescence in Aglaonema: Investigating Vibrio campbellii translocation and plant responses under CaCl₂ stimulation. ENVIRONMENTAL RESEARCH 2024; 257:119414. [PMID: 38871271 DOI: 10.1016/j.envres.2024.119414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
The feasibility of creating light-emitting plants by immobilizing Vibrio campbellii RMT1 on the rhizospheric zone of Aglaonema sp. 'Banlangngoen' was investigated in depth, including bacteria translocation and plant response. Results from scanning electron microscope showed that an inorganic salt-containing medium affected the root. However, transmission electron microscope results displayed bacteria translocation through the root to the leaf and colonized in the cytosol of vascular tissues. Bacteria cell counts exhibited high colonization in the root zone, approximately 3.65 × 106 CFU/mL, resulting in a light-emitting intensity increase of 23.68-fold higher than the control after the first week. Nevertheless, light microscope revealed that inorganic salts in the culture medium led to enlarged air spaces, resulting in leaf and stalk withering. Notably, spraying plants with calcium chloride (CaCl2) solution effectively mitigated salt stress, activated luminescence, and facilitated bacterial movement from roots to leaves. Additionally, CaCl2 contributed to ongoing salinity reduction in the culture medium, as evidenced by reduced malondialdehyde levels, alongside increased indole-3-acetic acid and salicylic acid concentrations, indicating plant defense responses. The interaction between plants and luminescent bacteria demonstrated the potential for producing glowing plants following CaCl2 application, addressing salinity stress, enhancing luminescence, and maintaining plant growth.
Collapse
Affiliation(s)
- Rujira Dolphen
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand.
| | - Chairat Treesubsuntorn
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Chutipa Kanjanapokin
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Nattida Chonjoho
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Siraphatsorn Anusaraporn
- Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Panpisu Julpanwattana
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| | - Apichat Praditsmanont
- Research and Innovation for Sustainability Center (RISC), Magnolia Quality Development Corporation Limited (MQDC), Thailand
| |
Collapse
|
8
|
Jiang L, Dai J, Wang L, Chen L, Zeng G, Liu E, Zhou X, Yao H, Xiao Y, Fang J. Ca(H 2PO 4) 2 and MgSO 4 activated nitrogen-related bacteria and genes in thermophilic stage of compost. Appl Microbiol Biotechnol 2024; 108:331. [PMID: 38734749 PMCID: PMC11088556 DOI: 10.1007/s00253-024-13167-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
This study was conducted to investigate the effects of Ca(H2PO4)2 and MgSO4 on the bacterial community and nitrogen metabolism genes in the aerobic composting of pig manure. The experimental treatments were set up as control (C), 1% Ca(H2PO4)2 + 2% MgSO4 (CaPM1), and 1.5% Ca(H2PO4)2 + 3% MgSO4 (CaPM2), which were used at the end of composting for potting trials. The results showed that Ca(H2PO4)2 and MgSO4 played an excellent role in retaining nitrogen and increasing the alkali-hydrolyzed nitrogen (AN), available phosphorus (AP), and available potassium (AK) contents of the composts. Adding Ca(H2PO4)2 and MgSO4 changed the microbial community structure of the compost. The microorganisms associated with nitrogen retention were activated. The complexity of the microbial network was enhanced. Genetic prediction analysis showed that the addition of Ca(H2PO4)2 and MgSO4 reduced the accumulation of nitroso-nitrogen and the process of denitrification. At the same time, despite the reduction of genes related to nitrogen fixation, the conversion of ammonia to nitrogenous organic compounds was promoted and the stability of nitrogen was increased. Mantel test analysis showed that Ca(H2PO4)2 and MgSO4 can affect nitrogen transformation-related bacteria and thus indirectly affect nitrogen metabolism genes by influencing the temperature, pH, and organic matter (OM) of the compost and also directly affected nitrogen metabolism genes through PO43- and Mg2+. The pot experiment showed that composting with 1.5% Ca(H2PO4)2 + 3% MgSO4 produced the compost product that improved the growth yield and nutrient content of cilantro and increased the fertility of the soil. In conclusion, Ca(H2PO4)2 and MgSO4 reduces the loss of nitrogen from compost, activates nitrogen-related bacteria and genes in the thermophilic phase of composting, and improves the fertilizer efficiency of compost products. KEY POINTS: • Ca(H2PO4)2 and MgSO4 reduced the nitrogen loss and improved the compost effect • Activated nitrogen-related bacteria and altered nitrogen metabolism genes • Improved the yield and quality of cilantro and fertility of soil.
Collapse
Affiliation(s)
- Lihong Jiang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China
| | - Jiapeng Dai
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Lutong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Liang Chen
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Guangxi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Erlun Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Xiangdan Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Yao
- Board of Directors Department, Changsha IMADEK Intelligent Technology Company Limited, Changsha, 410137, China
| | - Yunhua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
- Hunan Engineering Laboratory for Pollution Control and Waste, Utilization in Swine Production, Changsha, 410128, China.
| |
Collapse
|
9
|
Fan L, Dai H, Zhou W, Yuan L, Yang J, Yang Z, Jiao XA. Unraveling the significance of calcium as a biofilm promotion signal for Bacillus licheniformis strains isolated from dairy products. Food Res Int 2024; 182:114145. [PMID: 38519175 DOI: 10.1016/j.foodres.2024.114145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/24/2024]
Abstract
Bacillus licheniformis, a quick and strong biofilm former, is served as a persistent microbial contamination in the dairy industry. Its biofilm formation process is usually regulated by environmental factors including the divalent cation Ca2+. This work aims to investigate how different concentrations of Ca2+ change biofilm-related phenotypes (bacterial motility, biofilm-forming capacity, biofilm structures, and EPS production) of dairy B. licheniformis strains. The Ca2+ ions dependent regulation mechanism for B. licheniformis biofilm formation was further investigated by RNA-sequencing analysis. Results revealed that supplementation of Ca2+ increased B. licheniformis biofilm formation in a dose-dependent way, and enhanced average coverage and thickness of biofilms with complex structures were observed by confocal laser scanning microscopy. Bacterial mobility of B. licheniformis was increased by the supplementation of Ca2+ except the swarming ability at 20 mM of Ca2+. The addition of Ca2+ decreased the contents of polysaccharides but promoted proteins production in EPS, and the ratio of proteins/polysaccharides content was significantly enhanced with increasing Ca2+ concentrations. RNA-sequencing results clearly indicated the variation in regulating biofilm formation under different Ca2+ concentrations, as 939 (671 upregulated and 268 downregulated) and 951 genes (581 upregulated and 370 downregulated) in B. licheniformis BL2-11 were induced by 10 and 20 mM of Ca2+, respectively. Differential genes were annotated in various KEGG pathways, including flagellar assembly, two-component system, quorum sensing, ABC transporters, and related carbohydrate and amino acid metabolism pathways. Collectively, the results unravel the significance of Ca2+ as a biofilm-promoting signal for B. licheniformis in the dairy industry.
Collapse
Affiliation(s)
- Luyao Fan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hongchao Dai
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Wenyuan Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China; Key Laboratory of Dairy Science (Northeast Agricultural University), Ministry of Education, Harbin, Heilongjiang 150030, China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China.
| | - Jia Yang
- Yangzhou Institute for Food and Drug Control, Yangzhou, Jiangsu 225106, China
| | - Zhenquan Yang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
10
|
Dong C, Liu Z, Zhu C, Zhang Y, Yang X, Xu X, Guan Q, Xia Y. Contribution of serum elements to blood pressure during pregnancy by impacting gut microbiota: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133383. [PMID: 38160557 DOI: 10.1016/j.jhazmat.2023.133383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/07/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Exposure to environmental elements can alter gut microbiota, further affecting host health. Exploring the interrelationships among element exposure, gut microbiota and blood pressure (BP) during pregnancy, as well as the mediating roles of gut microbiota, is warranted, which holds implications for maternal and offspring health. In a prospective cohort study between 2017-2018, 733 pregnant women were included. The serum elements and gut microbiota during the second trimester were assessed, and BP was collected during the second and third trimester and before delivery. Fourteen associations were identified between serum elements and BP, including positive associations of zinc (Zn) and thallium (Tl) with systolic BP during the second trimester. Rubidium (Rb) showed a positive association with Pielou's evenness. Serum elements, such as Tl and Rb, were significantly associated with the relative abundance of bacteria and co-abundance groups (CAGs). Alpha diversity was negatively associated with BP levels and trajectories. Moreover, 15 associations between gut microbiota and BP were shown. Finally, mediation analysis confirmed that CAG2 and Pielou's evenness mediated the associations of Tl and Rb with BP, respectively. We concluded that serum elements can contribute to BP changes during pregnancy through gut microbiota, suggesting gut microbiota-targeted approach as a potential intervention.
Collapse
Affiliation(s)
- Chao Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Zhaofeng Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Chun Zhu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Yuepei Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Xu Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Xiaoyu Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Quanquan Guan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine and Offspring Health, Institute of Toxicology, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing 211166, China.
| |
Collapse
|
11
|
Chen M, Trotter VV, Walian PJ, Chen Y, Lopez R, Lui LM, Nielsen TN, Malana RG, Thorgersen MP, Hendrickson AJ, Carion H, Deutschbauer AM, Petzold CJ, Smith HJ, Arkin AP, Adams MWW, Fields MW, Chakraborty R. Molecular mechanisms and environmental adaptations of flagellar loss and biofilm growth of Rhodanobacter under environmental stress. THE ISME JOURNAL 2024; 18:wrae151. [PMID: 39113613 PMCID: PMC11410051 DOI: 10.1093/ismejo/wrae151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/20/2024]
Abstract
Biofilms aid bacterial adhesion to surfaces via direct and indirect mechanisms, and formation of biofilms is considered as an important strategy for adaptation and survival in suboptimal environmental conditions. However, the molecular underpinnings of biofilm formation in subsurface sediment/groundwater ecosystems where microorganisms often experience fluctuations in nutrient input, pH, and nitrate or metal concentrations are underexplored. We examined biofilm formation under different nutrient, pH, metal, and nitrate regimens of 16 Rhodanobacter strains isolated from subsurface groundwater wells spanning diverse levels of pH (3.5 to 5) and nitrates (13.7 to 146 mM). Eight Rhodanobacter strains demonstrated significant biofilm growth under low pH, suggesting adaptations for survival and growth at low pH. Biofilms were intensified under aluminum stress, particularly in strains possessing fewer genetic traits associated with biofilm formation, findings warranting further investigation. Through random barcode transposon-site sequencing (RB-TnSeq), proteomics, use of specific mutants, and transmission electron microscopy analysis, we discovered flagellar loss under aluminum stress, indicating a potential relationship between motility, metal tolerance, and biofilm growth. Comparative genomic analyses revealed the absence of flagella and chemotaxis genes and the presence of a putative type VI secretion system in the highly biofilm-forming strain FW021-MT20. In this study we identified genetic determinants associated with biofilm growth under metal stress in a predominant environmental genus, Rhodanobacter, and identified traits aiding survival and adaptation to contaminated subsurface environments.
Collapse
Affiliation(s)
- Mingfei Chen
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Valentine V Trotter
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter J Walian
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yan Chen
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Romario Lopez
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Lauren M Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Torben N Nielsen
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ria Gracielle Malana
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Andrew J Hendrickson
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Héloïse Carion
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Adam M Deutschbauer
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Heidi J Smith
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - Romy Chakraborty
- Department of Ecology, Earth & Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|