1
|
Parra RG, Komives EA, Wolynes PG, Ferreiro DU. Frustration in physiology and molecular medicine. Mol Aspects Med 2025; 103:101362. [PMID: 40273505 DOI: 10.1016/j.mam.2025.101362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/26/2025]
Abstract
Molecules provide the ultimate language in terms of which physiology and pathology must be understood. Myriads of proteins participate in elaborate networks of interactions and perform chemical activities coordinating the life of cells. To perform these often amazing tasks, proteins must move and we must think of them as dynamic ensembles of three dimensional structures formed first by folding the polypeptide chains so as to minimize the conflicts between the interactions of their constituent amino acids. It is apparent however that, even when completely folded, not all conflicting interactions have been resolved so the structure remains 'locally frustrated'. Over the last decades it has become clearer that this local frustration is not just a random accident but plays an essential part of the inner workings of protein molecules. We will review here the physical origins of the frustration concept and review evidence that local frustration is important for protein physiology, protein-protein recognition, catalysis and allostery. Also, we highlight examples showing how alterations in the local frustration patterns can be linked to distinct pathologies. Finally we explore the extensions of the impact of frustration in higher order levels of organization of systems including gene regulatory networks and the neural networks of the brain.
Collapse
Affiliation(s)
- R Gonzalo Parra
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Spain
| | | | - Peter G Wolynes
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.
| | - Diego U Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina; Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina.
| |
Collapse
|
2
|
Morling KL, ElGhazaly M, Milne RSB, Towers GJ. HIV capsids: orchestrators of innate immune evasion, pathogenesis and pandemicity. J Gen Virol 2025; 106. [PMID: 39804283 DOI: 10.1099/jgv.0.002057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection. Central to this process is the HIV capsid. The last 10 years have seen a transformation in the way we understand HIV capsid structure and function. We review key discoveries and present our latest thoughts on the capsid as a dynamic regulator of innate immune evasion and chromatin targeting. We also consider the accessory proteins Vpr and Vpx because they are incorporated into particles where they collaborate with capsids to manipulate defensive cellular responses to infection. We argue that effective regulation of capsid uncoating and evasion of innate immunity define pandemic potential and viral pathogenesis, and we review how comparison of different HIV lineages can reveal what makes pandemic lentiviruses special.
Collapse
Affiliation(s)
- Kate L Morling
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| | | | | | - Greg J Towers
- Division of Infection and Immunity, UCL, London, WC1E 6BT, UK
| |
Collapse
|
3
|
Wroblewski E, Patel N, Javed A, Mata CP, Chandler-Bostock R, Lekshmi BG, Ulamec SM, Clark S, Phillips SEV, Ranson NA, Twarock R, Stockley PG. Visualizing Viral RNA Packaging Signals in Action. J Mol Biol 2024; 436:168765. [PMID: 39214281 DOI: 10.1016/j.jmb.2024.168765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Here we confirm, using genome-scale RNA fragments in assembly competition assays, that multiple sub-sites (Packaging Signals, PSs) across the 5' two-thirds of the gRNA of Satellite Tobacco Necrosis Virus-1 make sequence-specific contacts to the viral CPs helping to nucleate formation of its T = 1 virus-like particle (VLP). These contacts explain why natural virions only package their positive-sense genomes. Asymmetric cryo-EM reconstructions of these VLPs suggest that interactions occur between amino acid residues in the N-terminal ends of the CP subunits and the gRNA PS loop sequences. The base-paired stems of PSs also act non-sequence-specifically by electrostatically promoting the assembly of CP trimers. Importantly, alterations in PS-CP affinity result in an asymmetric distribution of bound PSs inside VLPs, with fuller occupation of the higher affinity 5' PS RNAs around one vertex, decreasing to an RNA-free opposite vertex within the VLP shell. This distribution suggests that gRNA folding regulates cytoplasmic genome extrusion so that the weakly bound 3' end of the gRNA, containing the RNA polymerase binding site, extrudes first. This probably occurs after cation-loss induced swelling of the CP-shell, weakening contacts between CP subunits. These data reveal for the first time in any virus how differential PS folding propensity and CP affinities support the multiple roles genomes play in virion assembly and infection. The high degree of conservation between the CP fold of STNV-1 and those of the CPs of many other viruses suggests that these aspects of genome function will be widely shared.
Collapse
Affiliation(s)
- Emma Wroblewski
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Abid Javed
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Carlos P Mata
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Chandler-Bostock
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - B G Lekshmi
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sam Clark
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom
| | - Simon E V Phillips
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Reidun Twarock
- York Centre for Complex Systems Analysis, University of York, YO10 5DD, United Kingdom; Departments of Mathematics and Biology, University of York, YO10 5DD, United Kingdom.
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
4
|
Bukina V, Božič A. Context-dependent structure formation of hairpin motifs in bacteriophage MS2 genomic RNA. Biophys J 2024; 123:3397-3407. [PMID: 39118324 PMCID: PMC11480767 DOI: 10.1016/j.bpj.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/17/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Many functions of ribonucleic acid (RNA) rely on its ability to assume specific sequence-structure motifs. Packaging signals found in certain RNA viruses are one such prominent example of functional RNA motifs. These signals are short hairpin loops that interact with coat proteins and drive viral self-assembly. As they are found in different positions along the much longer genomic RNA, the formation of their correct structure occurs as a part of a larger context. Any changes to this context can consequently lead to changes in the structure of the motifs themselves. In fact, previous studies have shown that structure and function of RNA motifs can be highly context sensitive to the flanking sequence surrounding them. However, in what ways different flanking sequences influence the structure of an RNA motif they surround has yet to be studied in detail. We focus on a hairpin-rich region of the RNA genome of bacteriophage MS2-a well-studied RNA virus with a wide potential for use in biotechnology-and systematically examine context-dependent structural stability of 14 previously identified hairpin motifs, which include putative and confirmed packaging signals. Combining secondary and tertiary RNA structure prediction of the hairpin motifs placed in different contexts, ranging from the native genomic sequence to random RNA sequences and unstructured poly-U sequences, we determine different measures of motif structural stability. In this way, we show that while some motif structures can be stable in any context, others require specific context provided by the genome. Our results demonstrate the importance of context in RNA structure formation and how changes in the flanking sequence of an RNA motif sometimes lead to drastic changes in its structure. Structural stability of a motif in different contexts could provide additional insights into its functionality as well as assist in determining whether it remains functional when intentionally placed in other contexts.
Collapse
Affiliation(s)
- Veronika Bukina
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia; Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Anže Božič
- Department of Theoretical Physics, Jožef Stefan Institute, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Sung PY, Phelan JE, Luo D, Kulasegaran-Shylini R, Bohn P, Smyth RP, Roy P. Recruitment of multi-segment genomic RNAs by Bluetongue virus requires a preformed RNA network. Nucleic Acids Res 2024; 52:8500-8514. [PMID: 38769067 DOI: 10.1093/nar/gkae404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
How do segmented RNA viruses correctly recruit their genome has yet to be clarified. Bluetongue virus is a double-stranded RNA virus with 10 segments of different sizes, but it assembles its genome in single-stranded form through a series of specific RNA-RNA interactions prior to packaging. In this study, we determined the structure of each BTV transcript, individually and in different combinations, using 2'-hydroxyl acylation analysed by primer extension and mutational profiling (SHAPE-MaP). SHAPE-MaP identified RNA structural changes during complex formation and putative RNA-RNA interaction sites. Our data also revealed a core RNA-complex of smaller segments which serves as the foundation ('anchor') for the assembly of a complete network composed of ten ssRNA segments. The same order of core RNA complex formation was identified in cells transfected with viral RNAs. No viral protein was required for these assembly reactions. Further, substitution mutations in the interacting bases within the core assemblies, altered subsequent segment addition and affected virus replication. These data identify a wholly RNA driven reaction that may offer novel opportunities for designed attenuation or antiviral therapeutics.
Collapse
Affiliation(s)
- Po-Yu Sung
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Jody E Phelan
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Dongsheng Luo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Patrick Bohn
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
| | - Redmond P Smyth
- Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|