1
|
Chiang MH, Lin YC, Wu T, Wu CL. Thermosensation and Temperature Preference: From Molecules to Neuronal Circuits in Drosophila. Cells 2023; 12:2792. [PMID: 38132112 PMCID: PMC10741703 DOI: 10.3390/cells12242792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Temperature has a significant effect on all physiological processes of animals. Suitable temperatures promote responsiveness, movement, metabolism, growth, and reproduction in animals, whereas extreme temperatures can cause injury or even death. Thus, thermosensation is important for survival in all animals. However, mechanisms regulating thermosensation remain unexplored, mostly because of the complexity of mammalian neural circuits. The fruit fly Drosophila melanogaster achieves a desirable body temperature through ambient temperature fluctuations, sunlight exposure, and behavioral strategies. The availability of extensive genetic tools and resources for studying Drosophila have enabled scientists to unravel the mechanisms underlying their temperature preference. Over the past 20 years, Drosophila has become an ideal model for studying temperature-related genes and circuits. This review provides a comprehensive overview of our current understanding of thermosensation and temperature preference in Drosophila. It encompasses various aspects, such as the mechanisms by which flies sense temperature, the effects of internal and external factors on temperature preference, and the adaptive strategies employed by flies in extreme-temperature environments. Understanding the regulating mechanisms of thermosensation and temperature preference in Drosophila can provide fundamental insights into the underlying molecular and neural mechanisms that control body temperature and temperature-related behavioral changes in other animals.
Collapse
Affiliation(s)
- Meng-Hsuan Chiang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Yu-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; (M.-H.C.); (Y.-C.L.)
| | - Tony Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
| | - Chia-Lin Wu
- Department of Neurology, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital, New Taipei City 23652, Taiwan;
- Department of Biochemistry, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
2
|
He J, Li B, Han S, Zhang Y, Liu K, Yi S, Liu Y, Xiu M. Drosophila as a Model to Study the Mechanism of Nociception. Front Physiol 2022; 13:854124. [PMID: 35418874 PMCID: PMC8996152 DOI: 10.3389/fphys.2022.854124] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 12/15/2022] Open
Abstract
Nociception refers to the process of encoding and processing noxious stimuli, which allow animals to detect and avoid potentially harmful stimuli. Several types of stimuli can trigger nociceptive sensory transduction, including thermal, noxious chemicals, and harsh mechanical stimulation that depend on the corresponding nociceptors. In view of the high evolutionary conservation of the mechanisms that govern nociception from Drosophila melanogaster to mammals, investigation in the fruit fly Drosophila help us understand how the sensory nervous system works and what happen in nociception. Here, we present an overview of currently identified conserved genetics of nociception, the nociceptive sensory neurons responsible for detecting noxious stimuli, and various assays for evaluating different nociception. Finally, we cover development of anti-pain drug using fly model. These comparisons illustrate the value of using Drosophila as model for uncovering nociception mechanisms, which are essential for identifying new treatment goals and developing novel analgesics that are applicable to human health.
Collapse
Affiliation(s)
- Jianzheng He
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
| | - Botong Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shuzhen Han
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yuan Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- College of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Kai Liu
- College of Integrated Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Simeng Yi
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- *Correspondence: Yongqi Liu,
| | - Minghui Xiu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and University, Gansu University of Chinese Medicine, Lanzhou, China
- Key Laboratory for Transfer of Dunhuang Medicine at the Provincial and Ministerial Level, Gansu University of Chinese Medicine, Lanzhou, China
- College of Public Health, Gansu University of Chinese Medicine, Lanzhou, China
- Minghui Xiu,
| |
Collapse
|
3
|
Kolosov D, O'Donnell MJ. Blending physiology and RNAseq to provide new insights into regulation of epithelial transport: switching between ion secretion and reabsorption. J Exp Biol 2022; 225:274251. [PMID: 35119072 DOI: 10.1242/jeb.243293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This Review addresses the means by which epithelia change the direction of vectorial ion transport. Recent studies have revealed that insect Malpighian (renal) tubules can switch from secreting to reabsorbing K+. When the gut of larval lepidopterans is empty (during the moult cycle) or when the larvae are reared on K+-deficient diet, the distal ileac plexus segment of the tubule secretes K+ from the haemolymph into the tubule lumen. By contrast, in larvae reared on K+-rich diet, ions and fluid are reabsorbed from the rectal lumen into the perinephric space surrounding the cryptonephridial tubules of the rectal complex. Ions and fluid are then transported from the perinephric space into the lumen of the cryptonephridial tubules, thus supplying the free segments of the tubule downstream. Under these conditions, some of the K+ and water in the tubule lumen is reabsorbed across the cells of the distal ileac plexus, allowing for expansion of haemolymph volume in the rapidly growing larvae, as well as recycling of K+ and base equivalents. RNA sequencing data reveal large-scale changes in gene transcription that are associated with the switch between ion secretion and ion reabsorption by the distal ileac plexus. An unexpected finding is the presence of voltage-gated, ligand-gated and mechanosensitive ion channels, normally seen in excitable cells, in Malpighian tubules. Transcriptomic surveys indicate that these types of channels are also present in multiple other types of vertebrate and invertebrate epithelia, suggesting that they may play novel roles in epithelial cell signalling and regulation of epithelial ion transport.
Collapse
Affiliation(s)
- Dennis Kolosov
- Department of Biological Sciences, California State University San Marcos, 333 S Twin Oaks Valley Road, San Marcos, CA 92096, USA
| | - Michael J O'Donnell
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4K1
| |
Collapse
|
4
|
Oren-Suissa M, Gattegno T, Kravtsov V, Podbilewicz B. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans. Genetics 2017; 206:215-230. [PMID: 28283540 PMCID: PMC5419471 DOI: 10.1534/genetics.116.196386] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 03/07/2017] [Indexed: 11/18/2022] Open
Abstract
Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries.
Collapse
Affiliation(s)
- Meital Oren-Suissa
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Tamar Gattegno
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Veronika Kravtsov
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Benjamin Podbilewicz
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
5
|
Dale RP, Jones AK, Tamborindeguy C, Davies TGE, Amey JS, Williamson S, Wolstenholme A, Field LM, Williamson MS, Walsh TK, Sattelle DB. Identification of ion channel genes in the Acyrthosiphon pisum genome. INSECT MOLECULAR BIOLOGY 2010; 19 Suppl 2:141-53. [PMID: 20482646 DOI: 10.1111/j.1365-2583.2009.00975.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Aphids are major pests of crops, causing hundreds of millions of dollars worth of damage annually. Ion channel proteins are often the targets of modern insecticides and mutations in ion channel genes can lead to resistance to many leading classes of insecticides. The sequencing of the pea aphid, Acyrthosiphon pisum, genome has now allowed detailed in silico analysis of the aphid ion channels. The study has revealed significant differences in the composition of the ion channel families between the aphid and other insects. For example A. pisum does not appear to contain a homologue of the nACh receptor alpha 5 gene whilst the calcium channel beta subunit has been duplicated. These variations could result in differences in function or sensitivity to insecticides. The genome sequence will allow the study of aphid ion channels to be accelerated, leading to a better understanding of the function of these economically important channels. The potential for identifying novel insecticide targets within the aphid is now a step closer.
Collapse
Affiliation(s)
- R P Dale
- Syngenta, Jealotts Hill Research Centre, Bracknell, Berkshire, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Simon A, Shenton F, Hunter I, Banks RW, Bewick GS. Amiloride-sensitive channels are a major contributor to mechanotransduction in mammalian muscle spindles. J Physiol 2009; 588:171-85. [PMID: 19917568 DOI: 10.1113/jphysiol.2009.182683] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
We investigated whether channels of the epithelial sodium/amiloride-sensitive degenerin (ENaC/DEG) family are a major contributor to mechanosensory transduction in primary mechanosensory afferents, using adult rat muscle spindles as a model system. Stretch-evoked afferent discharge was reduced in a dose-dependent manner by amiloride and three analogues - benzamil, 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and hexamethyleneamiloride (HMA), reaching > or = 85% inhibition at 1 mm. Moreover, firing was slightly but significantly increased by ENaC delta subunit agonists (icilin and capsazepine). HMA's profile of effects was distinct from that of the other drugs. Amiloride, benzamil and EIPA significantly decreased firing (P < 0.01 each) at 1 microm, while 10 microm HMA was required for highly significant inhibition (P < 0.0001). Conversely, amiloride, benzamil and EIPA rarely blocked firing entirely at 1 mm, whereas 1 mm HMA blocked 12 of 16 preparations. This pharmacology suggests low-affinity ENaCs are the important spindle mechanotransducer. In agreement with this, immunoreactivity to ENaC alpha, beta and gamma subunits was detected both by Western blot and immunocytochemistry. Immunofluorescence intensity ratios for ENaC alpha, beta or gamma relative to the vesicle marker synaptophysin in the same spindle all significantly exceeded controls (P < 0.001). Ratios for the related brain sodium channel ASIC2 (BNaC1alpha) were also highly significantly greater (P < 0.005). Analysis of confocal images showed strong colocalisation within the terminal of ENaC/ASIC2 subunits and synaptophysin. This study implicates ENaC and ASIC2 in mammalian mechanotransduction. Moreover, within the terminals they colocalise with synaptophysin, a marker for the synaptic-like vesicles which regulate afferent excitability in these mechanosensitive endings.
Collapse
Affiliation(s)
- Anna Simon
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Tominaga M. The Role of TRP Channels in Thermosensation. TRP ION CHANNEL FUNCTION IN SENSORY TRANSDUCTION AND CELLULAR SIGNALING CASCADES 2006. [DOI: 10.1201/9781420005844.ch20] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Park CK, Kim MS, Fang Z, Li HY, Jung SJ, Choi SY, Lee SJ, Park K, Kim JS, Oh SB. Functional expression of thermo-transient receptor potential channels in dental primary afferent neurons: implication for tooth pain. J Biol Chem 2006; 281:17304-17311. [PMID: 16595689 DOI: 10.1074/jbc.m511072200] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Temperature signaling can be initiated by members of transient receptor potential family (thermo-TRP) channels. Hot and cold substances applied to teeth usually elicit pain sensation. This study investigated the expression of thermo-TRP channels in dental primary afferent neurons of the rat identified by retrograde labeling with a fluorescent dye in maxillary molars. Single cell reverse transcription-PCR and immunohistochemistry revealed expression of TRPV1, TRPM8, and TRPA1 in subsets of such neurons. Capsaicin (a TRPV1 agonist), menthol (a TRPM8 agonist), and icilin (a TRPM8 and TRPA1 agonist) increased intracellular calcium and evoked cationic currents in subsets of neurons, as did the appropriate temperature changes (>43 degrees , <25 degrees , and <17 degrees C, respectively). Some neurons expressed more than one TRP channel and responded to two or three corresponding stimuli (ligands or thermal stimuli). Immunohistochemistry and single cell reverse transcription-PCR following whole cell recordings provided direct evidence for the association between the responsiveness to thermo-TRP ligands and expression of thermo-TRP channels. The results suggest that activation of thermo-TRP channels expressed by dental afferent neurons contributes to tooth pain evoked by temperature stimuli. Accordingly, blockade of thermo-TRP channels will provide a novel therapeutic intervention for the treatment of tooth pain.
Collapse
Affiliation(s)
- Chul-Kyu Park
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Mi Sun Kim
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Zhi Fang
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Hai Ying Li
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - Se-Young Choi
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Sung Joong Lee
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Kyungpyo Park
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Joong Soo Kim
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749
| | - Seog Bae Oh
- Department of Physiology and Molecular and Cellular Neuroscience Program, College of Dentistry and Dental Research Institute, Seoul National University, 28-2 Yeongeon-Dong Chongno-Ku, Seoul 110-749.
| |
Collapse
|
10
|
Abstract
We feel a wide range of temperatures spanning from cold to heat. Within this range, temperatures over about 43 degrees C and below about 15 degrees C evoke not only a thermal sensation, but also a feeling of pain. In mammals, six thermosensitive ion channels have been reported, all of which belong to the TRP (transient receptor potential) superfamily. These include TRPV1 (VR1), TRPV2 (VRL-1), TRPV3, TRPV4, TRPM8 (CMR1), and TRPA1 (ANKTM1). These channels exhibit distinct thermal activation thresholds (>43 degrees C for TRPV1, >52 degrees C for TRPV2, > approximately 34-38 degrees C for TRPV3, > approximately 27-35 degrees C for TRPV4, < approximately 25-28 degrees C for TRPM8 and <17 degrees C for TRPA1), and are expressed in primary sensory neurons as well as other tissues. The involvement of TRPV1 in thermal nociception has been demonstrated by multiple methods, including the analysis of TRPV1-deficient mice. TRPV2, TRPM8, and TRPA1 are also very likely to be involved in thermal nociception, because their activation thresholds are within the noxious range of temperatures.
Collapse
Affiliation(s)
- Makoto Tominaga
- Section of Cell Signaling, Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.
| | | |
Collapse
|