1
|
Paquola C, Garber M, Frässle S, Royer J, Zhou Y, Tavakol S, Rodriguez-Cruces R, Cabalo DG, Valk S, Eickhoff SB, Margulies DS, Evans A, Amunts K, Jefferies E, Smallwood J, Bernhardt BC. The architecture of the human default mode network explored through cytoarchitecture, wiring and signal flow. Nat Neurosci 2025; 28:654-664. [PMID: 39875581 PMCID: PMC11893468 DOI: 10.1038/s41593-024-01868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/06/2024] [Indexed: 01/30/2025]
Abstract
The default mode network (DMN) is implicated in many aspects of complex thought and behavior. Here, we leverage postmortem histology and in vivo neuroimaging to characterize the anatomy of the DMN to better understand its role in information processing and cortical communication. Our results show that the DMN is cytoarchitecturally heterogenous, containing cytoarchitectural types that are variably specialized for unimodal, heteromodal and memory-related processing. Studying diffusion-based structural connectivity in combination with cytoarchitecture, we found the DMN contains regions receptive to input from sensory cortex and a core that is relatively insulated from environmental input. Finally, analysis of signal flow with effective connectivity models showed that the DMN is unique amongst cortical networks in balancing its output across the levels of sensory hierarchies. Together, our study establishes an anatomical foundation from which accounts of the broad role the DMN plays in human brain function and cognition can be developed.
Collapse
Affiliation(s)
- Casey Paquola
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada.
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany.
| | - Margaret Garber
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jessica Royer
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Yigu Zhou
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Shahin Tavakol
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Raul Rodriguez-Cruces
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Donna Gift Cabalo
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sofie Valk
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Max Planck Institute for Cognitive and Brain Sciences, Leipzig, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Simon B Eickhoff
- Institute for Neuroscience and Medicine (INM-7), Forschungszentrum Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine Universistät Dusseldorf, Dusseldorf, Germany
| | - Daniel S Margulies
- Integrative Neuroscience & Cognition Center (INCC - UMR 8002), University of Paris, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Alan Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Katrin Amunts
- Institute for Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | | | | | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
2
|
Miyashita Y. Cortical Layer-Dependent Signaling in Cognition: Three Computational Modes of the Canonical Circuit. Annu Rev Neurosci 2024; 47:211-234. [PMID: 39115926 DOI: 10.1146/annurev-neuro-081623-091311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The cerebral cortex performs computations via numerous six-layer modules. The operational dynamics of these modules were studied primarily in early sensory cortices using bottom-up computation for response selectivity as a model, which has been recently revolutionized by genetic approaches in mice. However, cognitive processes such as recall and imagery require top-down generative computation. The question of whether the layered module operates similarly in top-down generative processing as in bottom-up sensory processing has become testable by advances in the layer identification of recorded neurons in behaving monkeys. This review examines recent advances in laminar signaling in these two computations, using predictive coding computation as a common reference, and shows that each of these computations recruits distinct laminar circuits, particularly in layer 5, depending on the cognitive demands. These findings highlight many open questions, including how different interareal feedback pathways, originating from and terminating at different layers, convey distinct functional signals.
Collapse
Affiliation(s)
- Yasushi Miyashita
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan;
- Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
3
|
Yamane Y. Adaptation of the inferior temporal neurons and efficient visual processing. Front Behav Neurosci 2024; 18:1398874. [PMID: 39132448 PMCID: PMC11310006 DOI: 10.3389/fnbeh.2024.1398874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/16/2024] [Indexed: 08/13/2024] Open
Abstract
Numerous studies examining the responses of individual neurons in the inferior temporal (IT) cortex have revealed their characteristics such as two-dimensional or three-dimensional shape tuning, objects, or category selectivity. While these basic selectivities have been studied assuming that their response to stimuli is relatively stable, physiological experiments have revealed that the responsiveness of IT neurons also depends on visual experience. The activity changes of IT neurons occur over various time ranges; among these, repetition suppression (RS), in particular, is robustly observed in IT neurons without any behavioral or task constraints. I observed a similar phenomenon in the ventral visual neurons in macaque monkeys while they engaged in free viewing and actively fixated on one consistent object multiple times. This observation indicates that the phenomenon also occurs in natural situations during which the subject actively views stimuli without forced fixation, suggesting that this phenomenon is an everyday occurrence and widespread across regions of the visual system, making it a default process for visual neurons. Such short-term activity modulation may be a key to understanding the visual system; however, the circuit mechanism and the biological significance of RS remain unclear. Thus, in this review, I summarize the observed modulation types in IT neurons and the known properties of RS. Subsequently, I discuss adaptation in vision, including concepts such as efficient and predictive coding, as well as the relationship between adaptation and psychophysical aftereffects. Finally, I discuss some conceptual implications of this phenomenon as well as the circuit mechanisms and the models that may explain adaptation as a fundamental aspect of visual processing.
Collapse
Affiliation(s)
- Yukako Yamane
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:63. [PMID: 39013944 PMCID: PMC11252134 DOI: 10.1038/s41537-024-00480-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, USA.
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, USA.
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA.
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA.
| |
Collapse
|
5
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
6
|
Dugan C, Zikopoulos B, Yazdanbakhsh A. A neural modeling approach to study mechanisms underlying the heterogeneity of visual spatial frequency sensitivity in schizophrenia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563001. [PMID: 37904992 PMCID: PMC10614973 DOI: 10.1101/2023.10.18.563001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Patients with schizophrenia exhibit abnormalities in spatial frequency sensitivity, and it is believed that these abnormalities indicate more widespread dysfunction and dysregulation of bottom-up processing. The early visual system, including the first-order Lateral Geniculate Nucleus of the thalamus (LGN) and the primary visual cortex (V1), are key contributors to spatial frequency sensitivity. Medicated and unmedicated patients with schizophrenia exhibit contrasting changes in spatial frequency sensitivity, thus making it a useful probe for examining potential effects of the disorder and antipsychotic medications in neural processing. We constructed a parameterized, rate-based neural model of on-center/off-surround neurons in the early visual system to investigate the impacts of changes to the excitatory and inhibitory receptive field subfields. By incorporating changes in both the excitatory and inhibitory subfields that are associated with pathophysiological findings in schizophrenia, the model successfully replicated perceptual data from behavioral/functional studies involving medicated and unmedicated patients. Among several plausible mechanisms, our results highlight the dampening of excitation and/or increase in the spread and strength of the inhibitory subfield in medicated patients and the contrasting decreased spread and strength of inhibition in unmedicated patients. Given that the model was successful at replicating results from perceptual data under a variety of conditions, these elements of the receptive field may be useful markers for the imbalances seen in patients with schizophrenia.
Collapse
Affiliation(s)
- Caroline Dugan
- Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy & Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Arash Yazdanbakhsh
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Computational Neuroscience and Vision Laboratory, Department of Psychological and Brain Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
7
|
MIYASHITA Y. Operating principles of the cerebral cortex as a six-layered network in primates: beyond the classic canonical circuit model. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:93-111. [PMID: 35283409 PMCID: PMC8948418 DOI: 10.2183/pjab.98.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Abstract
The cerebral cortex performs its computations with many six-layered fundamental units, collectively spreading along the cortical sheet. What is the local network structure and the operating dynamics of such a fundamental unit? Previous investigations of primary sensory areas revealed a classic "canonical" circuit model, leading to an expectation of similar circuit organization and dynamics throughout the cortex. This review clarifies the different circuit dynamics at play in the higher association cortex of primates that implements computation for high-level cognition such as memory and attention. Instead of feedforward processing of response selectivity through Layers 4 to 2/3 that the classic canonical circuit stipulates, memory recall in primates occurs in Layer 5/6 with local backward projection to Layer 2/3, after which the retrieved information is sent back from Layer 6 to lower-level cortical areas for further retrieval of nested associations of target attributes. In this review, a novel "dynamic multimode module (D3M)" in the primate association cortex is proposed, as a new "canonical" circuit model performing this operation.
Collapse
Affiliation(s)
- Yasushi MIYASHITA
- Department of Physiology, The University of Tokyo School of Medicine, Tokyo, Japan
- Juntendo University, Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Liuzzi AG, Bruffaerts R, Vandenberghe R. The medial temporal written word processing system. Cortex 2019; 119:287-300. [DOI: 10.1016/j.cortex.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/14/2019] [Accepted: 05/08/2019] [Indexed: 10/26/2022]
|
9
|
Abstract
The perirhinal cortex (PRC) serves as the gateway to the hippocampus for episodic memory formation and plays a part in retrieval through its backward connectivity to various neocortical areas. First, I present the evidence suggesting that PRC neurons encode both experientially acquired object features and their associative relations. Recent studies have revealed circuit mechanisms in the PRC for the retrieval of cue-associated information, and have demonstrated that, in monkeys, PRC neuron-encoded information can be behaviourally read out. These studies, among others, support the theory that the PRC converts visual representations of an object into those of its associated features and initiates backward-propagating, interareal signalling for retrieval of nested associations of object features that, combined, extensionally represent the object meaning. I propose that the PRC works as the ventromedial hub of a 'two-hub model' at an apex of the hierarchy of a distributed memory network and integrates signals encoded in other downstream cortical areas that support diverse aspects of knowledge about an object.
Collapse
|
10
|
Martínez-Vázquez P, Gail A. Directed Interaction Between Monkey Premotor and Posterior Parietal Cortex During Motor-Goal Retrieval from Working Memory. Cereb Cortex 2019; 28:1866-1881. [PMID: 29481586 PMCID: PMC5907360 DOI: 10.1093/cercor/bhy035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 01/31/2018] [Indexed: 12/04/2022] Open
Abstract
Goal-directed behavior requires cognitive control of action, putatively by means of frontal-lobe impact on posterior brain areas. We investigated frontoparietal directed interaction (DI) in monkeys during memory-guided rule-based reaches, to test if DI supports motor-goal selection or working memory (WM) processes. We computed DI between the parietal reach region (PRR) and dorsal premotor cortex (PMd) with a Granger-causality measure of intracortical local field potentials (LFP). LFP mostly in the beta (12–32 Hz) and low-frequency (f≤10Hz) ranges contributed to DI. During movement withholding, beta-band activity in PRR had a Granger-causal effect on PMd independent of WM content. Complementary, low-frequency PMd activity had a transient Granger-causing effect on PRR specifically during WM retrieval of spatial motor goals, while no DI was associated with preliminary motor-goal selection. Our results support the idea that premotor and posterior parietal cortices interact functionally to achieve cognitive control during goal-directed behavior, in particular, that frontal-to-parietal interaction occurs during retrieval of motor-goal information from spatial WM.
Collapse
Affiliation(s)
- Pablo Martínez-Vázquez
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany
| | - Alexander Gail
- German Primate Center, Cognitive Neuroscience Lab, Kellnerweg 4, 37077 Göttingen, Germany.,Bernstein Center for Computational Neuroscience, Göttingen, Germany.,Faculty of Biology and Psychology, Georg-August-Universität, Göttingen, Germany
| |
Collapse
|
11
|
Hu X, Urhie O, Chang K, Hostetler R, Agmon A. A Novel Method for Training Mice in Visuo-Tactile 3-D Object Discrimination and Recognition. Front Behav Neurosci 2018; 12:274. [PMID: 30555307 PMCID: PMC6282041 DOI: 10.3389/fnbeh.2018.00274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
Perceiving, recognizing and remembering 3-dimensional (3-D) objects encountered in the environment has a very high survival value; unsurprisingly, this ability is shared among many animal species, including humans. The psychological, psychophysical and neural basis for object perception, discrimination, recognition and memory has been extensively studied in humans, monkeys, pigeons and rodents, but is still far from understood. Nearly all 3-D object recognition studies in the rodent used the "novel object recognition" paradigm, which relies on innate rather than learned behavior; however, this procedure has several important limitations. Recently, investigators have begun to recognize the power of behavioral tasks learned through reinforcement training (operant conditioning) to reveal the sensorimotor and cognitive abilities of mice and to elucidate their underlying neural mechanisms. Here, we describe a novel method for training and testing mice in visual and tactile object discrimination, recognition and memory, and use it to begin to examine the underlying sensory basis for these cognitive capacities. A custom-designed Y maze was used to train mice to associate one of two 3-D objects with a food reward. Out of nine mice trained in two cohorts, seven reached performance criterion in about 20-35 daily sessions of 20 trials each. The learned association was retained, or rapidly re-acquired, after a 6 weeks hiatus in training. When tested under low light conditions, individual animals differed in the degree to which they used tactile or visual cues to identify the objects. Switching to total darkness resulted only in a transient dip in performance, as did subsequent trimming of all large whiskers (macrovibrissae). Additional removal of the small whiskers (microvibrissae) did not degrade performance, but transiently increased the time spent inspecting the object. This novel method can be combined in future studies with the large arsenal of genetic tools available in the mouse, to elucidate the neural basis of object perception, recognition and memory.
Collapse
Affiliation(s)
- Xian Hu
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Ogaga Urhie
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kevin Chang
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Rachel Hostetler
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Ariel Agmon
- Department of Neuroscience, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
12
|
Rey HG, De Falco E, Ison MJ, Valentin A, Alarcon G, Selway R, Richardson MP, Quian Quiroga R. Encoding of long-term associations through neural unitization in the human medial temporal lobe. Nat Commun 2018; 9:4372. [PMID: 30348996 PMCID: PMC6197188 DOI: 10.1038/s41467-018-06870-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022] Open
Abstract
Besides decades of research showing the role of the medial temporal lobe (MTL) in memory and the encoding of associations, the neural substrates underlying these functions remain unknown. We identified single neurons in the human MTL that responded to multiple and, in most cases, associated stimuli. We observed that most of these neurons exhibit no differences in their spike and local field potential (LFP) activity associated with the individual response-eliciting stimuli. In addition, LFP responses in the theta band preceded single neuron responses by ~70 ms, with the single trial phase providing fine tuning of the spike response onset. We postulate that the finding of similar neuronal responses to associated items provides a simple and flexible way of encoding memories in the human MTL, increasing the effective capacity for memory storage and successful retrieval. In this work, the authors recorded single neurons and field potentials from the human medial temporal lobe (MTL) and show indistinguishable responses to associated stimuli. This coding mechanism provides a simple and flexible way of encoding memories in the human MTL.
Collapse
Affiliation(s)
- Hernan G Rey
- Centre for Systems Neuroscience, University of Leicester, Leicester, LE1 7RH, UK
| | - Emanuela De Falco
- Centre for Systems Neuroscience, University of Leicester, Leicester, LE1 7RH, UK
| | - Matias J Ison
- Centre for Systems Neuroscience, University of Leicester, Leicester, LE1 7RH, UK.,School of Psychology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Antonio Valentin
- Division of Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, SE5 9RS, UK
| | - Gonzalo Alarcon
- Division of Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.,Department of Clinical Neurophysiology, King's College Hospital NHS Trust, London, SE5 9RS, UK.,Comprehensive Epilepsy Center, Neuroscience Institute, Academic Health Systems, Hamad Medical Corporation, Doha, PO Box 3050, Qatar
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital NHS Trust, London, SE5 9RS, UK
| | - Mark P Richardson
- Division of Neuroscience, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | | |
Collapse
|
13
|
Veit L, Pidpruzhnykova G, Nieder A. Learning Recruits Neurons Representing Previously Established Associations in the Corvid Endbrain. J Cogn Neurosci 2017; 29:1712-1724. [PMID: 28557688 DOI: 10.1162/jocn_a_01152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Crows quickly learn arbitrary associations. As a neuronal correlate of this behavior, single neurons in the corvid endbrain area nidopallium caudolaterale (NCL) change their response properties during association learning. In crows performing a delayed association task that required them to map both familiar and novel sample pictures to the same two choice pictures, NCL neurons established a common, prospective code for associations. Here, we report that neuronal tuning changes during learning were not distributed equally in the recorded population of NCL neurons. Instead, such learning-related changes relied almost exclusively on neurons which were already encoding familiar associations. Only in such neurons did behavioral improvements during learning of novel associations coincide with increasing selectivity over the learning process. The size and direction of selectivity for familiar and newly learned associations were highly correlated. These increases in selectivity for novel associations occurred only late in the delay period. Moreover, NCL neurons discriminated correct from erroneous trial outcome based on feedback signals at the end of the trial, particularly in newly learned associations. Our results indicate that task-relevant changes during association learning are not distributed within the population of corvid NCL neurons but rather are restricted to a specific group of association-selective neurons. Such association neurons in the multimodal cognitive integration area NCL likely play an important role during highly flexible behavior in corvids.
Collapse
|
14
|
Combes RD, Shah AB. The use of in vivo, ex vivo, in vitro, computational models and volunteer studies in vision research and therapy, and their contribution to the Three Rs. Altern Lab Anim 2017; 44:187-238. [PMID: 27494623 DOI: 10.1177/026119291604400302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Much is known about mammalian vision, and considerable progress has been achieved in treating many vision disorders, especially those due to changes in the eye, by using various therapeutic methods, including stem cell and gene therapy. While cells and tissues from the main parts of the eye and the visual cortex (VC) can be maintained in culture, and many computer models exist, the current non-animal approaches are severely limiting in the study of visual perception and retinotopic imaging. Some of the early studies with cats and non-human primates (NHPs) are controversial for animal welfare reasons and are of questionable clinical relevance, particularly with respect to the treatment of amblyopia. More recently, the UK Home Office records have shown that attention is now more focused on rodents, especially the mouse. This is likely to be due to the perceived need for genetically-altered animals, rather than to knowledge of the similarities and differences of vision in cats, NHPs and rodents, and the fact that the same techniques can be used for all of the species. We discuss the advantages and limitations of animal and non-animal methods for vision research, and assess their relative contributions to basic knowledge and clinical practice, as well as outlining the opportunities they offer for implementing the principles of the Three Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
| | - Atul B Shah
- Ophthalmic Surgeon, National Eye Registry Ltd, Leicester, UK
| |
Collapse
|
15
|
Moll FW, Nieder A. Modality-invariant audio-visual association coding in crow endbrain neurons. Neurobiol Learn Mem 2017; 137:65-76. [DOI: 10.1016/j.nlm.2016.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
16
|
Koyano KW, Takeda M, Matsui T, Hirabayashi T, Ohashi Y, Miyashita Y. Laminar Module Cascade from Layer 5 to 6 Implementing Cue-to-Target Conversion for Object Memory Retrieval in the Primate Temporal Cortex. Neuron 2016; 92:518-529. [PMID: 27720482 DOI: 10.1016/j.neuron.2016.09.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 09/08/2016] [Indexed: 01/14/2023]
Abstract
The cerebral cortex computes through the canonical microcircuit that connects six stacked layers; however, how cortical processing streams operate in vivo, particularly in the higher association cortex, remains elusive. By developing a novel MRI-assisted procedure that reliably localizes recorded single neurons at resolution of six individual layers in monkey temporal cortex, we show that transformation of representations from a cued object to a to-be-recalled object occurs at the infragranular layer in a visual cued-recall task. This cue-to-target conversion started in layer 5 and was followed by layer 6. Finally, a subset of layer 6 neurons exclusively encoding the sought target became phase-locked to surrounding field potentials at theta frequency, suggesting that this coordinated cell assembly implements cortical long-distance outputs of the recalled target. Thus, this study proposes a link from local computation spanning laminar modules of the temporal cortex to the brain-wide network for memory retrieval in primates.
Collapse
Affiliation(s)
- Kenji W Koyano
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masaki Takeda
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Teppei Matsui
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Hirabayashi
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yohei Ohashi
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Miyashita
- Department of Physiology, University of Tokyo School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
17
|
Associative learning rapidly establishes neuronal representations of upcoming behavioral choices in crows. Proc Natl Acad Sci U S A 2015; 112:15208-13. [PMID: 26598669 DOI: 10.1073/pnas.1509760112] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability to form associations between behaviorally relevant sensory stimuli is fundamental for goal-directed behaviors. We investigated neuronal activity in the telencephalic area nidopallium caudolaterale (NCL) while two crows (Corvus corone) performed a delayed association task. Whereas some paired associates were familiar to the crows, novel associations had to be learned and mapped to the same target stimuli within a single session. We found neurons that prospectively encoded the chosen test item during the delay for both familiar and newly learned associations. These neurons increased their selectivity during learning in parallel with the crows' increased behavioral performance. Thus, sustained activity in the NCL actively processes information for the upcoming behavioral choice. These data provide new insights into memory representations of behaviorally meaningful stimuli in birds, and how such representations are formed during learning. The findings suggest that the NCL plays a role in learning arbitrary associations, a cornerstone of corvids' remarkable behavioral flexibility and adaptability.
Collapse
|
18
|
Opris I, Santos LM, Gerhardt GA, Song D, Berger TW, Hampson RE, Deadwyler SA. Distributed encoding of spatial and object categories in primate hippocampal microcircuits. Front Neurosci 2015; 9:317. [PMID: 26500473 PMCID: PMC4594006 DOI: 10.3389/fnins.2015.00317] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 08/24/2015] [Indexed: 11/16/2022] Open
Abstract
The primate hippocampus plays critical roles in the encoding, representation, categorization and retrieval of cognitive information. Such cognitive abilities may use the transformational input-output properties of hippocampal laminar microcircuitry to generate spatial representations and to categorize features of objects, images, and their numeric characteristics. Four nonhuman primates were trained in a delayed-match-to-sample (DMS) task while multi-neuron activity was simultaneously recorded from the CA1 and CA3 hippocampal cell fields. The results show differential encoding of spatial location and categorization of images presented as relevant stimuli in the task. Individual hippocampal cells encoded visual stimuli only on specific types of trials in which retention of either, the Sample image, or the spatial position of the Sample image indicated at the beginning of the trial, was required. Consistent with such encoding, it was shown that patterned microstimulation applied during Sample image presentation facilitated selection of either Sample image spatial locations or types of images, during the Match phase of the task. These findings support the existence of specific codes for spatial and numeric object representations in primate hippocampus which can be applied on differentially signaled trials. Moreover, the transformational properties of hippocampal microcircuitry, together with the patterned microstimulation are supporting the practical importance of this approach for cognitive enhancement and rehabilitation, needed for memory neuroprosthetics.
Collapse
Affiliation(s)
- Ioan Opris
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Lucas M. Santos
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Greg A. Gerhardt
- Department of Anatomy and Neurobiology, University of KentuckyLexington, KY, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Theodore W. Berger
- Department of Biomedical Engineering, University of Southern CaliforniaLos Angeles, CA, USA
| | - Robert E. Hampson
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| | - Sam A. Deadwyler
- Department of Physiology and Pharmacology, Wake Forest University School of MedicineWinston-Salem, NC, USA
| |
Collapse
|
19
|
Top-Down Regulation of Laminar Circuit via Inter-Area Signal for Successful Object Memory Recall in Monkey Temporal Cortex. Neuron 2015; 86:840-52. [DOI: 10.1016/j.neuron.2015.03.047] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 02/07/2015] [Accepted: 03/06/2015] [Indexed: 11/17/2022]
|
20
|
Murakami M, Mainen ZF. Preparing and selecting actions with neural populations: toward cortical circuit mechanisms. Curr Opin Neurobiol 2015; 33:40-6. [PMID: 25658753 DOI: 10.1016/j.conb.2015.01.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 12/20/2022]
Abstract
How the brain selects one action among multiple alternatives is a central question of neuroscience. An influential model is that action preparation and selection arise from subthreshold activation of the very neurons encoding the action. Recent work, however, shows a much greater diversity of decision-related and action-related signals coexisting with other signals in populations of motor and parietal cortical neurons. We discuss how such distributed signals might be decoded by biologically plausible mechanisms. We also discuss how neurons within cortical circuits might interact with each other during action selection and preparation and how recurrent network models can help to reveal dynamical principles underlying cortical computation.
Collapse
Affiliation(s)
- Masayoshi Murakami
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Zachary F Mainen
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| |
Collapse
|
21
|
Malkova L, Alvarado MC, Bachevalier J. Effects of Separate or Combined Neonatal Damage to the Orbital Frontal Cortex and the Inferior Convexity on Object Recognition in Monkeys. Cereb Cortex 2014; 26:618-27. [PMID: 25260702 DOI: 10.1093/cercor/bhu227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Unlike adult damage, neonatal damage to the inferior prefrontal convexity (IC) in monkeys spares learning and performance on the delayed nonmatching-to-sample (DNMS) task ( Málková et al. 2000). We investigated whether this sparing was due to compensation by undamaged orbital frontal cortex (O), an area also critical for DNMS, by comparing combined IC and O damage (Neo-ICO) with damage to O alone (Neo-O). Group Neo-ICO was impaired on DNMS learning at 3 months and 2 years of age. In contrast, Group Neo-O was impaired at 3 months, but recovered this function by 2 years, compared with Neo-IC and controls (N). We propose that the intact IC assumed the function of learning the DNMS rule for Group Neo-O. The persistent impairment after Neo-ICO lesions suggests that whereas O may likely support the rule acquisition in the absence of IC, no compensatory mechanisms are available after the combined damage. For the memory of lists of items, all groups were impaired at 3 months. At 2 years, the performance of Groups N and Neo-IC dramatically improved, whereas that of groups with O damage (Neo-O and Neo-ICO) remained impaired, indicating a critical role for O in recognition memory that cannot be substituted by another area.
Collapse
Affiliation(s)
- Ludise Malkova
- Department of Pharmacology, Georgetown University, Washington, DC, USA
| | - Maria C Alvarado
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | | |
Collapse
|