1
|
Li W, Chen J, Qin Y, Jiang S, Li X, Zhang H, Luo C, Gong Q, Zhou D, An D. Limited cerebellar gradient extension in temporal lobe epilepsy with dystonic posturing. Epilepsia Open 2024; 9:2251-2262. [PMID: 39325042 PMCID: PMC11633717 DOI: 10.1002/epi4.13056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024] Open
Abstract
OBJECTIVE Dystonic posturing (DP) is a common semiology in temporal lobe epilepsy (TLE). We aimed to explore cerebellar gradient alterations in functional connectivity in TLE patients with and without DP. METHODS Resting-state functional MRI data were obtained in 60 TLE patients and 32 matched healthy controls. Patients were further divided into two groups: TLE with DP (TLE + DP, 31 patients) and TLE without DP (TLP-DP, 29 patients). We explored functional gradient alterations in the cerebellum based on cerebellar-cerebral functional connectivity and combined with independent component analysis to evaluate cerebellar-cerebral functional integration and reveal the contribution of the motor components to the gradient. RESULTS There were no obvious differences in clinical features and postoperative seizure outcomes between TLE + DP and TLE-DP patients. Patients and controls all showed a clear unimodal-to-transmodal gradient transition in the cerebellum, while TLE patients demonstrated an extended principal gradient in functional connectivity compared to healthy controls, which was more limited in TLE + DP patients. Gradient alterations were more widespread in TLE-DP patients, involving bilateral cerebellum, while gradient alterations in TLE + DP patients were limited in the cerebellum ipsilateral to the seizure focus. In addition, more cerebellar motor components contributed to the gradient alterations in TLE + DP patients, mainly in ipsilateral cerebellum. SIGNIFICANCE Extended cerebellar principal gradients in functional connectivity revealed excessive functional segregation between unimodal and transmodal systems in TLE. The functional connectivity gradients were more limited in TLE + DP patients. Functional connectivity in TLE patients with dystonic posturing involved more contribution of cerebellar motor function to ipsilateral cerebellar gradient. PLAIN LANGUAGE SUMMARY Dystonic posturing contralateral to epileptic focus is a common symptom in temporal lobe epilepsy, and the cerebellum may be involved in its generation. In this study, we found cerebellar gradients alterations in functional connectivity in temporal lobe epilepsy patients with and without contralateral dystonic posturing. In particular, we found that TLE patients with dystonic posturing may have more limited cerebellar gradient in functional connectivity, involving more contribution of cerebellar motor function to ipsilateral cerebellar gradient. Our study suggests a close relationship between ipsilateral cerebellum and contralateral dystonic posturing.
Collapse
Affiliation(s)
- Wei Li
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yingjie Qin
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Xiuli Li
- Huaxi MR Research Center, Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Heng Zhang
- Department of NeurosurgeryWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Qiyong Gong
- Huaxi MR Research Center, Department of RadiologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Dong Zhou
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Dongmei An
- Department of NeurologyWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
2
|
Quadalti C, Sannia M, Humphreys N, Baldassarro V, Gurgone A, Ascolani M, Zanella L, Giardino L, Gross C, Croci S, Meloni I, Giustetto M, Renieri A, Lorenzini L, Calzà L. A new knockin mouse carrying the E364X patient mutation for CDKL5 deficiency disorder: neurological, behavioral and molecular profiling. Heliyon 2024; 10:e40165. [PMID: 39583831 PMCID: PMC11584566 DOI: 10.1016/j.heliyon.2024.e40165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
CDKL5 deficiency disorder (CDD) is a rare neurodevelopmental syndrome caused by mutations in the X-linked CDKL5 gene. Hundreds of pathogenic variants have been described, associated with a significant phenotypic heterogeneity observed among patients. To date, different knockout mouse models have been generated. Here we present a new knockin CDKL5 mouse model carrying a humanized, well-characterized nonsense variant (c.1090G > T; p.E364X) described in the C-terminal domain of the CDKL5 protein in a female patient with a milder phenotype. Both male and female Cdkl5 E364X mice were analyzed. The novel Cdkl5 E364X mouse showed altered neurological and motor neuron maturation, hyperactivity, defective coordination and impaired memory and cognition. Gene expression analysis highlighted an unexpected reduction of Cdkl5 expression in Cdkl5 E364X mice brain tissues, with a significant increase in overall neuron-specific gene expression and an area-dependent alteration of astrocyte- and oligodendrocyte-specific transcripts. Moreover, our results showed that the loss of CDKL5 protein had the most significant impact on the cerebellum and hippocampus, compared to other analyzed tissues. A targeted analysis to study synaptic plasticity in cerebellum and hippocampus showed reduced Gabra1 and Gabra5 expression levels in females, whereas Gabra1 expression was increased in males, suggesting an opposite, sex-dependent regulation of the GABA receptor expression already described in humans. In conclusion, the novel Cdkl5E364X mouse model is characterized by robust neurological and neurobehavioral alterations, associated with a molecular profile related to synaptic function indicative of a cerebellar GABAergic hypofunction, pointing to Gabra1 and Gabra5 as novel druggable target candidates for CDD.
Collapse
Affiliation(s)
- C. Quadalti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - M. Sannia
- IRET Foundation, 40064 Ozzano Emilia (Bologna), Italy
| | - N.E. Humphreys
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - V.A. Baldassarro
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - A. Gurgone
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, 10125 Turin, Italy
| | - M. Ascolani
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - L. Zanella
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - L. Giardino
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - C.T. Gross
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - S. Croci
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | - I. Meloni
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | - M. Giustetto
- Department of Neuroscience “Rita Levi-Montalcini”, University of Turin, 10125 Turin, Italy
| | - A. Renieri
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Medical Genetics Department, Siena University Hospital, 53100 Siena, Italy
| | - L. Lorenzini
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Bologna, Italy
| | - L. Calzà
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Chen Y, Pan J, Lin A, Sun L, Li Y, Lin H, Pu R, Wang Y, Qi Y, Sun B. Cerebellar white and gray matter abnormalities in temporal lobe epilepsy: a voxel-based morphometry study. Front Neurosci 2024; 18:1417342. [PMID: 39156634 PMCID: PMC11328152 DOI: 10.3389/fnins.2024.1417342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024] Open
Abstract
Background Previous structural neuroimaging studies linked cerebellar deficits to temporal lobe epilepsy (TLE). The functions of various cerebellar regions are increasingly being valued, and their changes in TLE patients warrant further in-depth investigation. In this study, we used the Spatially Unbiased Infratentorial (SUIT) toolbox with a new template to evaluate the cerebellar structural abnormalities in patients with TLE, and further explored the relationship between the changes of different cerebellar regions and cognition. Methods Thirty-two patients with TLE were compared with 39 healthy controls (HC) matched according to age, gender, handedness, and education level. All participants underwent a high-resolution T1-weighted MRI scan on a 3.0 Tesla scanner. We used a voxel-based morphometry (VBM) approach utilizing the SUIT toolbox to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with TLE. Results Compared with HC, TLE patients showed a significant reduction in the volume of gray matter in the Left lobule VI and white matter in the Right Crus II. In the TLE patient group, we conducted partial correlation analysis between the volumes of different cerebellar regions and cognitive rating scale scores, such as MMSE and MoCA. The volume of the Left lobule VI (GM) exhibited a positive correlation with the MMSE score, but no significant correlation was found with the MoCA score. On the other hand, there was no significant correlation observed between the volume of the Right Crus II (WM) and the two cognitive scale scores mentioned above. Furthermore, it was observed that the MMSE was more effective than the MoCA in identifying epilepsy patients with cognitive impairment. Conclusion This study supported previous research indicating that temporal lobe epilepsy (TLE) is linked to structural changes in the cerebellum, specifically affecting the volume of both gray and white matter. These findings offer valuable insights into the neurobiology of TLE and hold potential to inform the development of enhanced diagnostic methods and more effective treatment approaches.
Collapse
Affiliation(s)
- Yini Chen
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jingyu Pan
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Andong Lin
- Department of Neurology, Taizhou Municipal Hospital, Taizhou, China
| | - Lu Sun
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yufei Li
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Hongsen Lin
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Renwang Pu
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiwei Qi
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Bo Sun
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
4
|
Keever KM, Li Y, Womble PD, Sullens DG, Otazu GH, Lugo JN, Ramos RL. Neocortical and cerebellar malformations affect flurothyl-induced seizures in female C57BL/6J mice. Front Neurosci 2023; 17:1271744. [PMID: 38027492 PMCID: PMC10651747 DOI: 10.3389/fnins.2023.1271744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Brain malformations cause cognitive disability and seizures in both human and animal models. Highly laminated structures such as the neocortex and cerebellum are vulnerable to malformation, affecting lamination and neuronal connectivity as well as causing heterotopia. The objective of the present study was to determine if sporadic neocortical and/or cerebellar malformations in C57BL/6J mice are correlated with reduced seizure threshold. The inhaled chemi-convulsant flurothyl was used to induce generalized, tonic-clonic seizures in male and female C57BL/6J mice, and the time to seizure onset was recorded as a functional correlate of brain excitability changes. Following seizures, mice were euthanized, and brains were extracted for histology. Cryosections of the neocortex and cerebellar vermis were stained and examined for the presence of molecular layer heterotopia as previously described in C57BL/6J mice. Over 60% of mice had neocortical and/or cerebellar heterotopia. No sex differences were observed in the prevalence of malformations. Significantly reduced seizure onset time was observed dependent on sex and the type of malformation present. These results raise important questions regarding the presence of malformations in C57BL/6J mice used in the study of brain development, epilepsy, and many other diseases of the nervous system.
Collapse
Affiliation(s)
- Katherine M. Keever
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Ying Li
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Paige D. Womble
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Gonzalo H. Otazu
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Joaquin N. Lugo
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Raddy L. Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| |
Collapse
|
5
|
Remore LG, Rifi Z, Nariai H, Eliashiv DS, Fallah A, Edmonds BD, Matsumoto JH, Salamon N, Tolossa M, Wei W, Locatelli M, Tsolaki EC, Bari AA. Structural connections of the centromedian nucleus of thalamus and their relevance for neuromodulation in generalized drug-resistant epilepsy: insight from a tractography study. Ther Adv Neurol Disord 2023; 16:17562864231202064. [PMID: 37822361 PMCID: PMC10563482 DOI: 10.1177/17562864231202064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/01/2023] [Indexed: 10/13/2023] Open
Abstract
Background Epilepsy is a widespread neurologic disorder and almost one-third of patients suffer from drug-resistant epilepsy (DRE). Neuromodulation targeting the centromediannucleus of the thalamus (CM) has been showing promising results for patients with generalized DRE who are not surgical candidates. Recently, the effect of CM- deep brain stimulation (DBS) in DRE patients was investigated in the Electrical Stimulation of Thalamus for Epilepsy of Lennox-Gastaut phenotype (ESTEL) trial, a monocentric randomized-controlled study. The same authors described a 'cold-spot' and a 'sweet-spot', which are defined as the volume of stimulation in the thalamus yielding the least and the best clinical response, respectively. However, it remains unclear which structural connections may contribute to the anti-seizure effect of the stimulation. Objective We investigated the differences in structural connectivity among CM, the sweet-spot and the cold-spot. Furthermore, we tried to validate our results in a cohort of DRE patients who underwent CM-DBS or CM-RNS (responsive neurostimulation). We hypothesized that the sweet-spot would share similar structural connectivity with responder patients. Methods By using the software FMRIB Software Library (FSL), probabilistic tractography was performed on 100 subjects from the Human Connectome Project to calculate the probability of connectivity of the whole CM, the sweet-spot and the cold-spot to 45 cortical and subcortical areas. Results among the three seeds were compared with multivariate analysis of variance (MANOVA). Similarly, the structural connectivity of volumes of tissue activated (VTAs) from eight DRE patients was investigated. Patients were divided into responders and non-responders based on the degree of reduction in seizure frequency, and the mean probabilities of connectivity were similarly compared between the two groups. Results The sweet-spot demonstrated a significantly higher probability of connectivity (p < 0.001) with the precentral gyrus, superior frontal gyrus, and the cerebellum than the whole CM and the cold-spot. Responder patients displayed a higher probability of connectivity with both ipsilateral (p = 0.011) and contralateral cerebellum (p = 0.04) than the non-responders. Conclusion Cerebellar connections seem to contribute to the beneficial effects of CM-neuromodulation in patients with drug-resistant generalized epilepsy.
Collapse
Affiliation(s)
- Luigi G. Remore
- Surgical Neuromodulation and Brain Mapping Laboratory, ULCA
- Department of Neurosurgery, 300 Stein Plaza, Los Angeles, CA 90095, USA
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Ziad Rifi
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Dawn S. Eliashiv
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurology, University of California Los Angeles, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin D. Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiology, University of California Los Angeles, Los Angeles, CA, USA
| | - Meskerem Tolossa
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Wexin Wei
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Marco Locatelli
- University of Milan ‘La Statale’, Milan, Italy
- Department of Neurosurgery, Fondazione IRCCS Ca’Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Brain Therapeutics, University of Milan, Milan, Italy
| | - Evangelia C. Tsolaki
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Ausaf A. Bari
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
- Geffen School of Medicine David California Los Angeles University of Angeles Los CA, USA
| |
Collapse
|
6
|
Rondi-Reig L, Paradis AL, Fallahnezhad M. A Liaison Brought to Light: Cerebellum-Hippocampus, Partners for Spatial Cognition. CEREBELLUM (LONDON, ENGLAND) 2022; 21:826-837. [PMID: 35752720 DOI: 10.1007/s12311-022-01422-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
Abstract
This review focuses on the functional and anatomical links between the cerebellum and the hippocampus and the role of their interplay in goal-directed navigation and spatial cognition. We will describe the interactions between the cerebellum and the hippocampus at different scales: a macroscopic scale revealing the joint activations of these two structures at the level of neuronal circuits, a mesoscopic scale highlighting the synchronization of neuronal oscillations, and finally a cellular scale where we will describe the activity of hippocampal neuronal assemblies following a targeted manipulation of the cerebellar system. We will take advantage of this framework to summarize the different anatomical pathways that may sustain this multiscale interaction. We will finally consider the possible influence of the cerebellum on pathologies traditionally associated with hippocampal dysfunction.
Collapse
Affiliation(s)
- Laure Rondi-Reig
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France.
| | - Anne-Lise Paradis
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| | - Mehdi Fallahnezhad
- Institut de Biologie Paris Seine (IBPS), Cerebellum Navigation and Memory Team (CeZaMe), Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine (NPS), 75005, Paris, France
| |
Collapse
|