1
|
Huang L, Chen L, Chen L, Peng B, Zhou L, Sun Y, Shi T, Lu J, Lin W, Liu Y, Cao L, Li L, Han Q, Chen X, Yang P, Zhang S, Wang Z, Yang J, Guo Z, Jiang B, Lu W. Development of Oral, Potent, and Selective CK1α Degraders for AML Therapy. JACS AU 2024; 4:4423-4434. [PMID: 39610741 PMCID: PMC11600170 DOI: 10.1021/jacsau.4c00762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/30/2024]
Abstract
Molecular glue degraders (MGDs) are proximity-inducing agents that mediate the cooperative interaction between a target protein and an E3 ligase, introducing an additional layer of specificity beyond that afforded by traditional small molecules. Historically, molecular glues that stabilize protein-protein interactions were often discovered serendipitously. In this study, we leveraged the reprogramming potential of cereblon (CRBN)-based ligands and conducted a CRBN-dependent proliferation screen to identify CRBN-based MGDs capable of inducing the degradation of proteins essential for cell viability. Through our screening and subsequent medicinal chemistry optimization, we identified dCK1α-1 as a potent and selective CK1α-targeting molecular glue degrader. Furthermore, we synthesized an orally active derivative, dCK1α-2, with enhanced pharmacokinetic properties, which exhibited pronounced degradation activity and demonstrated efficacy in mouse models following oral gavage. These findings indicate that phenotypic drug discovery campaigns, in combination with chemically distinct CRBN ligand libraries, can accelerate the development of therapeutically relevant MGDs. Furthermore, the development of dCK1α-1 and dCK1α-2 provides new therapeutic options for cancers with functional p53 signaling and offers valuable chemical tools for future investigations into the role of CK1α.
Collapse
Affiliation(s)
- Lu Huang
- Department
of Cardiovascular Surgery, The First Affiliated
Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
- Lingang
Laboratory, Shanghai 200031, China
| | - Lu Chen
- Department
of Radiation and Medical Oncology, Medical Research Institute, Frontier
Science Center of Immunology and Metabolism, Zhongnan Hospital of
Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Lu Chen
- Lingang
Laboratory, Shanghai 200031, China
| | - Bo Peng
- Lingang
Laboratory, Shanghai 200031, China
| | - Lixin Zhou
- Department
of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell
Research, Shanghai Key Laboratory of Signaling and Disease Research,
School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanli Sun
- Lingang
Laboratory, Shanghai 200031, China
| | - Taiting Shi
- Lingang
Laboratory, Shanghai 200031, China
- Department
of Neurosurgery, The First Affiliated Hospital
of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiayi Lu
- College
of
Science, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Weiye Lin
- Lingang
Laboratory, Shanghai 200031, China
- School
of Life Science and Technology, ShanghaiTech
University, 393 Middle
Huaxia Road, Shanghai 201210, China
| | - Yuhang Liu
- Lingang
Laboratory, Shanghai 200031, China
- School
of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation
(Yantai University), Ministry of Education; Collaborative Innovation
Center of Advanced Drug Delivery System and Biotech Drugs in Universities
of Shandong, Yantai University, Yantai 264005, China
| | - Linhui Cao
- Lingang
Laboratory, Shanghai 200031, China
- School
of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation
(Yantai University), Ministry of Education; Collaborative Innovation
Center of Advanced Drug Delivery System and Biotech Drugs in Universities
of Shandong, Yantai University, Yantai 264005, China
| | - Lanlan Li
- Lingang
Laboratory, Shanghai 200031, China
- Institute
of Entomology, The Provincial Special Key Laboratory for Development
and Utilization of Insect Resources, Guizhou
University, Guiyang 550025, China
| | | | - Xi Chen
- SpecAlly
Life Technology Co., Ltd., Wuhan 430075, China
| | - Ping Yang
- Department
of Cardiovascular Surgery, The First Affiliated
Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Shuo Zhang
- Department
of Cardiovascular Surgery, The First Affiliated
Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Zhe Wang
- Department
of Cardiovascular Surgery, The First Affiliated
Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Jing Yang
- Department
of Hematology, Tongji Hospital, Frontier Science Center for Stem Cell
Research, Shanghai Key Laboratory of Signaling and Disease Research,
School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zhixiang Guo
- Department
of Cardiovascular Surgery, The First Affiliated
Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Baishan Jiang
- Department
of Radiation and Medical Oncology, Medical Research Institute, Frontier
Science Center of Immunology and Metabolism, Zhongnan Hospital of
Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Wenchao Lu
- Lingang
Laboratory, Shanghai 200031, China
| |
Collapse
|
2
|
Wang L, Lin F, Liu Y, Li W, Ding Q, Duan X, Yang L, Bai Z, Zhang M, Guo Y. Wogonin protects against bleomycin-induced mouse pulmonary fibrosis via the inhibition of CDK9/p53-mediated cell senescence. Front Pharmacol 2024; 15:1407891. [PMID: 39040475 PMCID: PMC11260675 DOI: 10.3389/fphar.2024.1407891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Pulmonary fibrosis (PF) is a fatal interstitial lung disease associated with declining pulmonary function but currently with few effective drugs. Cellular senescence has been implicated in the pathogenesis of PF and could be a potential therapeutic target. Emerging evidence suggests wogonin, the bioactive compound isolated from Scutellaria baicalensis, owns the anti-senescence properties, however, the possible impact of wogonin on PF and the potential mechanisms remain unclear. In this study, a well-established mouse model of PF was utilized which mice were administrated with bleomycin (BLM). Strikingly, wogonin treatment significantly reduced fibrosis deposition in the lung induced by BLM. In vitro, wogonin also suppressed fibrotic markers of cultured epithelial cells stimulated by BLM or hydrogen peroxide. Mechanistic investigation revealed that wogonin attenuated the expressions of DNA damage marker γ-H2AX and senescence-related markers including phosphorylated p53, p21, retinoblastoma protein (pRB), and senescence-associated β-galactosidase (SA-β-gal). Moreover, wogonin, as a direct and selective inhibitor of cyclin-dependent kinase 9 (CDK9), exhibited anti-fibrotic capacity by inhibiting CDK9 and p53/p21 signalling. In conclusion, wogonin protects against BLM-induced PF in mice through the inhibition of cell senescence via the regulation of CDK9/p53 and DNA damage pathway. This is the first study to demonstrate the beneficial effect of wogonin on PF, and its implication as a novel candidate for PF therapy.
Collapse
Affiliation(s)
- Libo Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Fei Lin
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Youli Liu
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Wei Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Qingjie Ding
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Xulei Duan
- Department of Cardiology, Life Science Research Center, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Lin Yang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Zhengyu Bai
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| | - Min Zhang
- King’s College London British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, London, United Kingdom
| | - Yuming Guo
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, China
| |
Collapse
|
3
|
He M, Cao C, Ni Z, Liu Y, Song P, Hao S, He Y, Sun X, Rao Y. PROTACs: great opportunities for academia and industry (an update from 2020 to 2021). Signal Transduct Target Ther 2022; 7:181. [PMID: 35680848 PMCID: PMC9178337 DOI: 10.1038/s41392-022-00999-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 02/07/2023] Open
Abstract
PROteolysis TArgeting Chimeras (PROTACs) technology is a new protein-degradation strategy that has emerged in recent years. It uses bifunctional small molecules to induce the ubiquitination and degradation of target proteins through the ubiquitin-proteasome system. PROTACs can not only be used as potential clinical treatments for diseases such as cancer, immune disorders, viral infections, and neurodegenerative diseases, but also provide unique chemical knockdown tools for biological research in a catalytic, reversible, and rapid manner. In 2019, our group published a review article "PROTACs: great opportunities for academia and industry" in the journal, summarizing the representative compounds of PROTACs reported before the end of 2019. In the past 2 years, the entire field of protein degradation has experienced rapid development, including not only a large increase in the number of research papers on protein-degradation technology but also a rapid increase in the number of small-molecule degraders that have entered the clinical and will enter the clinical stage. In addition to PROTAC and molecular glue technology, other new degradation technologies are also developing rapidly. In this article, we mainly summarize and review the representative PROTACs of related targets published in 2020-2021 to present to researchers the exciting developments in the field of protein degradation. The problems that need to be solved in this field will also be briefly introduced.
Collapse
Affiliation(s)
- Ming He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Chaoguo Cao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
- Tsinghua-Peking Center for Life Sciences, 100084, Beijing, P. R. China
| | - Zhihao Ni
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongbo Liu
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Peilu Song
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Shuang Hao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yuna He
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiuyun Sun
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China
| | - Yu Rao
- Ministry of Education (MOE) Key Laboratory of Protein Sciences, School of Pharmaceutical Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, 100084, Beijing, P. R. China.
- School of Pharmaceutical Sciences, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
4
|
Qiu X, Li Y, Yu B, Ren J, Huang H, Wang M, Ding H, Li Z, Wang J, Bian J. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur J Med Chem 2021; 211:113091. [PMID: 33338869 DOI: 10.1016/j.ejmech.2020.113091] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/05/2020] [Accepted: 12/05/2020] [Indexed: 10/22/2022]
Abstract
Cyclin-dependent kinase 9 (CDK9) is an increasingly important potential cancer treatment target. Nowadays, developing selective CDK9 inhibitors has been extremely challenging as its ATP-binding sites are similar with other CDKs. Here, we report that the CDK9 inhibitor BAY-1143572 is converted into a series of proteolysis targeting chimeras (PROTACs) which leads to several compounds inducing the degradation of CDK9 in acute myeloid leukemia cells at a low nanomolar concentration. In addition, the most potent PROTAC molecule B03 could inhibit cell growth more effectively than warhead alone, with little inhibition of other kinases. This enhanced antiproliferative activity is mediated by a slight increase in kinase inhibitory activity and an increase in the level of apoptosis induction. Moreover, B03 could induce the degradation of CDK9 in vivo. Our work provides evidence that B03 represents a lead for further development and that CDK9 degradation is a potential valuable therapeutic strategy in acute myeloid leukemia.
Collapse
Affiliation(s)
- Xiaqiu Qiu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanqing Li
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Bin Yu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Ren
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Huidan Huang
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, PR China.
| | - Min Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hong Ding
- State Key Laboratory of Drug Research, CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, China
| | - Zhiyu Li
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jubo Wang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jinlei Bian
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
5
|
Liang H, Du J, Elhassan RM, Hou X, Fang H. Recent progress in development of cyclin-dependent kinase 7 inhibitors for cancer therapy. Expert Opin Investig Drugs 2021; 30:61-76. [PMID: 33183110 DOI: 10.1080/13543784.2021.1850693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Cyclin-dependent kinase 7 (CDK7) is a part of the CDK-activating kinase family (CAK) which has a key role in the cell cycle and transcriptional regulation. Several lines of evidence suggest that CDK7 is a promising therapeutic target for cancer. CDK7 selective inhibitors such as SY-5609 and CT7001 are in clinical development. Areas covered: We explore the biology of CDK7 and its role in cancer and follow this with an evaluation of the preclinical and clinical progress of CDK7 inhibitors, and their potential in the clinic. We searched PubMed and ClinicalTrials to identify relevant data from the database inception to 14 October 2020. Expert opinion: CDK7 inhibitors are next generation therapeutics for cancer. However, there are still challenges which include selectively, side effects, and drug resistance. Nevertheless, with ongoing clinical development of these inhibitors and greater analysis of their target, CDK7 inhibitors will become a promising approach for treatment of cancer in the near future.
Collapse
Affiliation(s)
- Hanzhi Liang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Jintong Du
- Shandong Cancer Hospital and Institute, Shandong First Medical University , Jinan, Shandong, China
| | - Reham M Elhassan
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University , Jinan, Shandong, China
| |
Collapse
|
6
|
Bruter AV, Rodionova MD, Varlamova EA, Shtil AA. Super-Enhancers in the Regulation of Gene Transcription: General Aspects and Antitumor Targets. Acta Naturae 2021; 13:4-15. [PMID: 33959383 PMCID: PMC8084300 DOI: 10.32607/actanaturae.11067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/07/2020] [Indexed: 01/18/2023] Open
Abstract
Super-enhancers (genome elements that activate gene transcription) are DNA regions with an elevated concentration of transcriptional complexes. These multiprotein structures contain, among other components, the cyclin-dependent kinases 8 and 19. These and other transcriptional protein kinases are regarded as novel targets for pharmacological inhibition by antitumor drug candidates.
Collapse
Affiliation(s)
- A. V. Bruter
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | | | - E. A. Varlamova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| | - A. A. Shtil
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
- Blokhin National Medical Research Center of Oncology, Moscow, 115478 Russia
| |
Collapse
|
7
|
Design, synthesis and biological evaluation of methylenehydrazine-1-carboxamide derivatives with (5-((4-(pyridin-3-yl)pyrimidin-2-yl)amino)-1H-indole scaffold: Novel potential CDK9 inhibitors. Bioorg Chem 2020; 102:104064. [DOI: 10.1016/j.bioorg.2020.104064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
|