1
|
Redeker KEM, Brockmöller J. Several orphan solute carriers functionally identified as organic cation transporters: Substrates specificity compared with known cation transporters. J Biol Chem 2024; 300:107629. [PMID: 39098524 PMCID: PMC11406361 DOI: 10.1016/j.jbc.2024.107629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Organic cations comprise a significant part of medically relevant drugs and endogenous substances. Such substances need organic cation transporters for efficient transfer via cell membranes. However, the membrane transporters of most natural or synthetic organic cations are still unknown. To identify these transporters, genes of 10 known OCTs and 18 orphan solute carriers (SLC) were overexpressed in HEK293 cells and characterized concerning their transport activities with a broad spectrum of low molecular weight substances emphasizing organic cations. Several SLC35 transporters and SLC38A10 significantly enhanced the transport of numerous relatively hydrophobic organic cations. Significant organic cation transport activities have been found in gene families classified as transporters of other substance classes. For instance, SLC35G3 and SLC38A10 significantly accelerated the uptake of several cations, such as clonidine, 3,4-methylenedioxymethamphetamine, and nicotine, which are known as substrates of a thus far genetically unidentified proton/organic cation antiporter. The transporters SLC35G4 and SLC35F5 stood out by their significantly increased choline uptake, and several other SLC transported choline together with a broader spectrum of organic cations. Overall, there are many more polyspecific organic cation transporters than previously estimated. Several transporters had one predominant substrate but accepted some other cationic substrates, and others showed no particular preference for one substrate but transported several organic cations. The role of these transporters in biology and drug therapy remains to be elucidated.
Collapse
Affiliation(s)
- Kyra-Elisa Maria Redeker
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany.
| | - Jürgen Brockmöller
- Institute of Clinical Pharmacology, University Medical Center Göttingen, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Pochini L, Barone F, Console L, Brunocilla C, Galluccio M, Scalise M, Indiveri C. OCTN1 (SLC22A4) displays two different transport pathways for organic cations or zwitterions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184263. [PMID: 38092232 DOI: 10.1016/j.bbamem.2023.184263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/15/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND OCTN1 belongs to the SLC22 family, which includes transporters for cationic, zwitterionic, and anionic substrates. OCTN1 function and role in cells are still poorly understood. Not only cations, such as TEA, but also zwitterions, such as carnitine and ergothioneine, figure among transported molecules. METHODS In this work, we carried out transport assays measuring [14C]-TEA and [3H]-Carnitine in proteoliposomes reconstituted with the recombinant human OCTN1 in the presence of Na+ or other cations. The homology model of OCTN1 was built using the structure of OCT3 as a template for docking analysis. RESULTS TEA and carnitine did not inhibit each other. Moreover, carnitine uptake was not affected by the presence of Na+ and TEBA, whereas TEA was strongly inhibited by both compounds. Computational data revealed that TEA, Na+, and carnitine can interact with E381 in the OCTN1 substrate site. Differently from TEA, in the presence of Na+, carnitine is still able to interact with the binding site via R469. CONCLUSIONS The lack of mutual inhibition of the two prototype substrates, the different effect of Na+ and TEBA on their transport reaction, together with the computational analysis supports the existence of two transport pathways for cations and zwitterions. GENERAL SIGNIFICANCE The results shed new light on the transport mechanisms of OCTN1, helping to get further insights into the structure/function relationships. The described results correlate well with previous and very recent findings on the polyspecificity of the OCT group of transporters belonging to the same family.
Collapse
Affiliation(s)
- Lorena Pochini
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy
| | - Francesca Barone
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Chiara Brunocilla
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Michele Galluccio
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy.
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, University of Calabria, Via Bucci 4C, 6C, 87036 Arcavacata di Rende, Italy; National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), via Amendola 122/O, 70126 Bari, Italy.
| |
Collapse
|