1
|
Sun P, Liu J, Chen G, Guo Y. The Role of G Protein-Coupled Receptors in the Regulation of Orthopaedic Diseases by Gut Microbiota. Nutrients 2025; 17:1702. [PMID: 40431441 PMCID: PMC12114226 DOI: 10.3390/nu17101702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/09/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Exercise and diet modulate the gut microbiota, which is involved in the regulation of orthopaedic diseases and synthesises a wide range of metabolites that modulate cellular function and play an important role in bone development, remodelling and disease. G protein-coupled receptors (GPCRs), the largest family of transmembrane receptors in the human body, interact with gut microbial metabolites to regulate relevant pathological processes. This paper provides a review of different dietary and exercise effects on the pathogenic gut microbiota and their metabolites associated with GPCRs in orthopaedic diseases. RESULTS: Generally, metabolites produced by gut microbiota contribute to the maintenance of bone health by activating the corresponding GPCRs, which are involved in bone metabolism, regulation of immune response, and maintenance of gut flora homeostasis. Exercise and diet can influence gut microbiota, and an imbalance in gut microbiota homeostasis can trigger a series of adverse immune and metabolic responses by affecting GPCR function, ultimately leading to the onset and progression of various orthopaedic diseases. Understanding these relationships is crucial for elucidating the pathogenesis of orthopaedic diseases and developing personalised probiotic-based therapeutic strategies. In the future, we should further explore how to prevent and treat orthopaedic diseases through GPCR-based modulation of gut microbes and their interactions. The development of substances that precisely modulate gut microbes through different exercises and diets will provide more effective interventions to improve bone health in patients.
Collapse
Affiliation(s)
- Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention of the Ministry of Education, East China Normal University, Shanghai 200241, China
| | - Jinchao Liu
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Guannan Chen
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Yilan Guo
- College of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Jia S, Mi H, Su Y, Liu Y, Ming Z, Lin J. Changes of intestinal microbiome and its relationship with painful diabetic neuropathy in rats. BMC Microbiol 2025; 25:281. [PMID: 40335921 PMCID: PMC12060437 DOI: 10.1186/s12866-025-04015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 04/30/2025] [Indexed: 05/09/2025] Open
Abstract
OBJECTIVE To analyze the gut bacterial microbiome in rats with painful diabetic neuropathy (PDN) compared to normal rats. METHODS Type 2 diabetes was induced in rats via a high-fat and high-sugar diet combined with a low dose of streptozotocin. Glucose metabolism and insulin sensitivity were evaluated using intraperitoneal glucose tolerance tests and insulin tolerance tests. The progression of peripheral neuropathy was assessed using the mechanical withdrawal threshold and thermal withdrawal latency. Histopathological analysis of rat colon tissues was performed using hematoxylin-eosin staining to observe morphological changes. The expression levels of pro-inflammatory cytokines TNF-α and IL-1β in spinal cord tissues were measured using enzyme-linked immunosorbent assay (ELISA). Fecal samples were then collected for metagenomic sequencing and analysis. RESULT Behavioral tests revealed reduced mechanical withdrawal threshold and thermal withdrawal latency in PDN rats. Histological analysis showed significant colonic mucosal damage and inflammatory cell infiltration, suggesting impaired intestinal barrier function. Elevated TNF-α and IL-1β levels in spinal cord tissues further highlight peripheral inflammation's role in PDN. Sequencing analysis revealed significant differences in gut microbiota composition between PDN and control rats, with altered Bacillota/Bacteroidota ratios and increased Lactobacillus abundance. Functional annotation analysis, based on the KEGG, EggNOG, and CAZy databases, indicated significant enrichment of metabolic pathways related to carbohydrate and amino acid metabolism, energy metabolism, and cell structure biogenesis in PDN rats. Cluster analysis identified higher functional clustering in Metabolism and Genetic Information Processing pathways in PDN rats. CONCLUSION This study demonstrates that PDN leads to altered gut microbiota composition, disrupted metabolic pathways, and increased inflammation, contributing to the pathological progression of diabetic neuropathy. This study provides new insights into the interplay between gut microbiota and diabetic neuropathy, offering potential avenues for therapeutic interventions targeting microbiome and metabolism.
Collapse
Affiliation(s)
- Shuaiying Jia
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Haiqi Mi
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Yao Su
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Yuning Liu
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Zhi Ming
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China
| | - Jingyan Lin
- Department of Anesthesiology, The Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Shunqing District, Nanchong, Sichuan, 637000, China.
| |
Collapse
|
3
|
Hanani M. How Do Peripheral Neurons and Glial Cells Participate in Pain Alleviation by Physical Activity? Cells 2025; 14:462. [PMID: 40136711 PMCID: PMC11941599 DOI: 10.3390/cells14060462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/21/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Chronic pain is a global health problem with major socioeconomic implications. Drug therapy for chronic pain is limited, prompting search for non-pharmacological treatments. One such approach is physical exercise, which has been found to be beneficial for numerous health issues. Research in recent years has yielded considerable evidence for the analgesic actions of exercise in humans and experimental animals, but the underlying mechanisms are far from clear. It was proposed that exercise influences the pain pathways by interacting with the immune system, mainly by reducing inflammatory responses, but the release of endogenous analgesic mediators is another possibility. Exercise acts on neurons and glial cells in both the central and peripheral nervous systems. This review focuses on the periphery, with emphasis on possible glia-neuron interactions. Key topics include interactions of Schwann cells with axons (myelinated and unmyelinated), satellite glial cells in sensory ganglia, enteric glial cells, and the sympathetic nervous system. An attempt is made to highlight several neurological diseases that are associated with pain and the roles that glial cells may play in exercise-induced pain alleviation. Among the diseases are fibromyalgia and Charcot-Marie-Tooth disease. The hypothesis that active skeletal muscles exert their effects on the nervous system by releasing myokines is discussed.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center, Mount Scopus, Jerusalem 91240, Israel;
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
4
|
Xiong W, Liu Y, Ge X, Wang J, Wang Z. Transcriptome Analysis of Non-coding RNAs and mRNAs in the Dorsal Root Ganglion of Peripheral Nerve Injury-Induced Neuropathic Pain. Biochem Genet 2025:10.1007/s10528-025-11066-7. [PMID: 39994131 DOI: 10.1007/s10528-025-11066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Maladaptive changes in gene expression at transcriptional level in dorsal root ganglia (DRGs) after nerve injury are critical for neuropathic pain genesis. Emerging evidence reveals the important role of non-coding RNAs (ncRNAs) in regulating gene transcription. Recent studies also have showed the contribution of ncRNAs to neuropathic pain. However, the expression profile of ncRNAs in the DRGs and potential regulatory mechanism in peripheral nerve injury-induced neuropathic pain are not fully clear. We used bCCI neuropathic pain model induced by chronic constriction injury of bilateral sciatic nerves to study the expression profile and potential functional mechanism of micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs) and messenger RNA (mRNA) in the DRGs by RNA sequencing and bioinformatics analysis. A total of 47 miRNAs, 337 lncRNAs, 32 circRNAs, and 2269 mRNAs were differentially expressed (DE) in the DRGs of CCI mice 14 days after surgery. KEGG analysis demonstrated nociception-related signaling pathways were significantly enriched for DEncRNAs, including Rap1, Ras, and Hippo signaling pathway. GO analysis showed neuron related biological process, membrane related cell components, and binding related molecular functions were significantly enriched. The competing endogenous RNA (ceRNA) regulatory network of DEmiRNA-DEmRNA, DElncRNA-DEmRNA, and DEcircRNA-DEmiRNA existed in the DRGs of mice with neuropathic pain induced by peripheral nerve injury. In addition, 81 pain-related DE genes had protein-protein interactions (PPI) with each other. Our findings indicated that ncRNAs are involved in the development of peripheral nerve injury-induced neuropathic pain. DEncRNAs may provide us with a new perspective in chronic neuropathic pain research and may become a potential target for pain treatment.
Collapse
Affiliation(s)
- Wanxia Xiong
- Department of Anesthesiology, Zhongshan Hospital (Xiamen), Fudan University, Xiamen, 361015, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yujia Liu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaodong Ge
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiyao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
5
|
Li J, Kang W, Wang X, Pan F. Progress in treatment of pathological neuropathic pain after spinal cord injury. Front Neurol 2024; 15:1430288. [PMID: 39606699 PMCID: PMC11600731 DOI: 10.3389/fneur.2024.1430288] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Pathological neuropathic pain is a common complication following spinal cord injury. Due to its high incidence, prolonged duration, tenacity, and limited therapeutic efficacy, it has garnered increasing attention from both basic researchers and clinicians. The pathogenesis of neuropathic pain after spinal cord injury is multifaceted, involving factors such as structural and functional alterations of the central nervous system, pain signal transduction, and inflammatory effects, posing significant challenges to clinical management. Currently, drugs commonly employed in treating spinal cord injury induced neuropathic pain include analgesics, anticonvulsants, antidepressants, and antiepileptics. However, a subset of patients often experiences suboptimal therapeutic responses or severe adverse reactions. Therefore, emerging treatments are emphasizing a combination of pharmacological and non-pharmacological approaches to enhance neuropathic pain management. We provide a comprehensive review of past literature, which aims to aim both the mechanisms and clinical interventions for pathological neuropathic pain following spinal cord injury, offering novel insights for basic science research and clinical practice in spinal cord injury treatment.
Collapse
Affiliation(s)
- Jian Li
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Xuanwu Jinan Hospital, Jinan, China
| | - Wenqing Kang
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Xi Wang
- Department of Orthopedics, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fang Pan
- Department of rehabilitation, Shandong Rehabilitation Hospital, Jinan, Shandong, China
| |
Collapse
|
6
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 PMCID: PMC12123372 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
7
|
Chai Y, He S, Liang D, Gu C, Gong Q, Long L, Chen P, Wang L. Mahuang Fuzi Xixin decoction: A potent analgesic for neuropathic pain targeting the NMDAR2B/CaMKIIα/ERK/CREB pathway. Heliyon 2024; 10:e35970. [PMID: 39211918 PMCID: PMC11357756 DOI: 10.1016/j.heliyon.2024.e35970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear. This study identified 35 compounds in MFXD using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The analgesic effects of MFXD on chronic constriction injury (CCI) rats were evaluated through the detection of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). The analgesic effects of MFXD in rats with chronic constriction injury (CCI) were evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Low-dose MFXD (L-MFXD) group (4.8 g/kg) and high-dose MFXD (H-MFXD) group (9.6 g/kg) exhibited significantly higher MWT and TWL values than the CCI group on days 11 and 15 post-CCI surgery, substantiating the remarkable analgesic efficacy of MFXD. Network pharmacology analysis identified 58 key targets enriched in pathways such as long-term potentiation (LTP) and glutamatergic synapse. The MCODE algorithm further identified core targets with significant enrichment in LTP. Molecular docking revealed that mesaconitine, rosmarinic acid, and delgrandine from MFXD exhibited high binding affinity with NMDAR2B (-11 kcal/mol), CaMKIIα (-14.3 kcal/mol), and ERK (-10.8 kcal/mol). Western blot and immunofluorescence confirmed that H-MFXD significantly suppressed the phosphorylation levels of NMDAR2B, CaMKIIα, ERK, and CREB in the spinal cord tissue of CCI rats. In conclusion, this study demonstrates that MFXD possesses potent analgesic effects on NeP by suppressing the NMDAR2B/CaMKIIα/ERK/CREB signalling pathway. This study unlocks a path toward potentially revolutionising NeP treatment with MFXD, encouraging further research and clinical development.
Collapse
Affiliation(s)
- Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Siyu He
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dayi Liang
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, China
| | - Chunsong Gu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Long
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
8
|
Janicot R, Garcia-Marcos M. Get Ready to Sharpen Your Tools: A Short Guide to Heterotrimeric G Protein Activity Biosensors. Mol Pharmacol 2024; 106:129-144. [PMID: 38991745 PMCID: PMC11331509 DOI: 10.1124/molpharm.124.000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest class of transmembrane receptors encoded in the human genome, and they initiate cellular responses triggered by a plethora of extracellular stimuli ranging from neurotransmitters and hormones to photons. Upon stimulation, GPCRs activate heterotrimeric G proteins (Gαβγ) in the cytoplasm, which then convey signals to their effectors to elicit cellular responses. Given the broad biological and biomedical relevance of GPCRs and G proteins in physiology and disease, there is great interest in developing and optimizing approaches to measure their signaling activity with high accuracy and across experimental systems pertinent to their functions in cellular communication. This review provides a historical perspective on approaches to measure GPCR-G protein signaling, from quantification of second messengers and other indirect readouts of activity to biosensors that directly detect the activity of G proteins. The latter is the focus of a more detailed overview of the evolution of design principles for various optical biosensors of G protein activity with different experimental capabilities. We will highlight advantages and limitations of biosensors that detect different G protein activation hallmarks, like dissociation of Gα and Gβγ or nucleotide exchange on Gα, as well as their suitability to detect signaling mediated by endogenous versus exogenous signaling components or in physiologically relevant systems like primary cells. Overall, this review intends to provide an assessment of the state-of-the-art for biosensors that directly measure G protein activity to allow readers to make informed decisions on the selection and implementation of currently available tools. SIGNIFICANCE STATEMENT: G protein activity biosensors have become essential and widespread tools to assess GPCR signaling and pharmacology. Yet, investigators face the challenge of choosing from a growing list of G protein activity biosensors. This review provides an overview of the features and capabilities of different optical biosensor designs for the direct detection of G protein activity in cells, with the aim of facilitating the rational selection of systems that align with the specific scientific questions and needs of investigators.
Collapse
Affiliation(s)
- Remi Janicot
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| | - Mikel Garcia-Marcos
- Department of Biochemistry & Cell Biology, Chobanian & Avedisian School of Medicine (R.J., M.G.-M.) and Department of Biology, College of Arts & Sciences (M.G.-M.), Boston University, Boston, Massachusetts
| |
Collapse
|
9
|
Xu S, Li H, Ai Z, Guo R, Cheng H, Wang Y. Exploring viral neuropathic pain: Molecular mechanisms and therapeutic implications. PLoS Pathog 2024; 20:e1012397. [PMID: 39116040 PMCID: PMC11309435 DOI: 10.1371/journal.ppat.1012397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024] Open
Abstract
As the Coronavirus Disease 2019 (COVID-19) pandemic continues, there is a growing concern regarding the relationship between viral infections and neuropathic pain. Chronic neuropathic pain resulting from virus-induced neural dysfunction has emerged as a significant issue currently faced. However, the molecular mechanisms underlying this phenomenon remain unclear, and clinical treatment outcomes are often suboptimal. Therefore, delving into the relationship between viral infections and neuropathic pain, exploring the pathophysiological characteristics and molecular mechanisms of different viral pain models, can contribute to the discovery of potential therapeutic targets and methods, thereby enhancing pain relief and improving the quality of life for patients. This review focuses on HIV-related neuropathic pain (HNP), postherpetic neuralgia (PHN), and neuropathic pain caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infections, examining rodent models and relevant cellular molecular pathways. Through elucidating the connection between viral infections and neuropathic pain, it aims to delineate the current limitations and challenges faced by treatments, thereby providing insights and directions for future clinical practice and research.
Collapse
Affiliation(s)
- Songchao Xu
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Huili Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhangran Ai
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ruijuan Guo
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hao Cheng
- Department of Anesthesiology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yun Wang
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Liang JH, Yu H, Xia CP, Zheng YH, Zhang Z, Chen Y, Raza MA, Wu L, Yan H. Ginkgolide B effectively mitigates neuropathic pain by suppressing the activation of the NLRP3 inflammasome through the induction of mitophagy in rats. Biomed Pharmacother 2024; 177:117006. [PMID: 38908197 DOI: 10.1016/j.biopha.2024.117006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Neuropathic pain is a pathological state induced by the aberrant generation of pain signals within the nervous system. Ginkgolide B(GB), an active component found of Ginkgo. biloba leaves, has neuroprotective properties. This study aimed to explore the effects of GB on neuropathic pain and its underlying mechanisms. In the in vivo study, we adopted the rat chronic constriction injury model, and the results showed that GB(4 mg/kg) treatment effectively reduced pain sensation in rats and decreased the expressions of Iba-1 (a microglia marker), NLRP3 inflammasome, and inflammatory factors, such as interleukin (IL)-1β, in the spinal cord 7 days post-surgery. In the in vitro study, we induced microglial inflammation using lipopolysaccharide (500 ng/mL) / adenosine triphosphate (5 mM) and treated it with GB (10, 20, and 40 μM). GB upregulated the expression of mitophagy proteins, such as PINK1, Parkin, LC3 II/I, Tom20, and Beclin1, and decreased the cellular production of reactive oxygen species. Moreover, it lowered the expression of inflammation-related proteins, such as Caspase-1, IL-1β, and NLRP3 in microglia. However, this effect was reversed by Parkin shRNA/siRNA or the autophagy inhibitor 3-methyladenine (5 mM). These findings reveal that GB alleviates neuropathic pain by mitigating neuroinflammation through the activation of PINK1-Parkin-mediated mitophagy.
Collapse
Affiliation(s)
- Jing-Hao Liang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chuan-Peng Xia
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yue-Hui Zheng
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Department of Geriatry, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhe Zhang
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yu Chen
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Mazhar Ali Raza
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Hede Yan
- Department of Orthopaedics (Hand microsurgery), The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
11
|
Cui X, Liu J, Uniyal A, Xu Q, Zhang C, Zhu G, Yang F, Sivanesan E, Linderoth B, Raja SN, Guan Y. Enhancing spinal cord stimulation-induced pain inhibition by augmenting endogenous adenosine signalling after nerve injury in rats. Br J Anaesth 2024; 132:746-757. [PMID: 38310069 PMCID: PMC10925891 DOI: 10.1016/j.bja.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND The mechanisms for spinal cord stimulation (SCS) to alleviate chronic pain are only partially known. We aimed to elucidate the roles of adenosine A1 and A3 receptors (A1R, A3R) in the inhibition of spinal nociceptive transmission by SCS, and further explored whether 2'-deoxycoformycin (dCF), an inhibitor of adenosine deaminase, can potentiate SCS-induced analgesia. METHODS We used RNAscope and immunoblotting to examine the distributions of adora1 and adora3 expression, and levels of A1R and A3R proteins in the spinal cord of rats after tibial-spared nerve injury (SNI-t). Electrophysiology recording was conducted to examine how adenosine receptor antagonists, virus-mediated adora3 knockdown, and dCF affect SCS-induced inhibition of C-fibre-evoked spinal local field potential (C-LFP). RESULTS Adora1 was predominantly expressed in neurones, whereas adora3 is highly expressed in microglial cells in the rat spinal cord. Spinal application of antagonists (100 μl) of A1R (8-cyclopentyl-1,3-dipropylxanthine [DPCPX], 50 μM) and A3R (MRS1523, 200 nM) augmented C-LFP in SNI-t rats (DPCPX: 1.39 [0.18] vs vehicle: 0.98 [0.05], P=0.046; MRS1523: 1.21 [0.07] vs vehicle: 0.91 [0.03], P=0.002). Both drugs also blocked inhibition of C-LFP by SCS. Conversely, dCF (0.1 mM) enhanced SCS-induced C-LFP inhibition (dCF: 0.60 [0.04] vs vehicle: 0.85 [0.02], P<0.001). In the behaviour study, dCF (100 nmol 15 μl-1, intrathecal) also enhanced inhibition of mechanical hypersensitivity by SCS in SNI-t rats. CONCLUSIONS Spinal A1R and A3R signalling can exert tonic suppression and also contribute to SCS-induced inhibition of spinal nociceptive transmission after nerve injury. Inhibition of adenosine deaminase may represent a novel adjuvant pharmacotherapy to enhance SCS-induced analgesia.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jing Liu
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Ankit Uniyal
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Qian Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Howard Hughes Medical Institute, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Chi Zhang
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Guangwu Zhu
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Fei Yang
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Eellan Sivanesan
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Srinivasa N Raja
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yun Guan
- Department of Anaesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Neurological Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Sabnis RW. Novel AT2R Antagonists for Treating Chronic Pain. ACS Med Chem Lett 2024; 15:326-327. [PMID: 38505837 PMCID: PMC10945537 DOI: 10.1021/acsmedchemlett.4c00046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Indexed: 03/21/2024] Open
Abstract
Provided herein are novel AT2R antagonists, pharmaceutical compositions, use of such compounds in treating chronic pain, and processes for preparing such compounds.
Collapse
Affiliation(s)
- Ram W. Sabnis
- Smith, Gambrell & Russell
LLP, 1105 W. Peachtree Street NE, Suite 1000, Atlanta, Georgia 30309, United States
| |
Collapse
|