1
|
Pu Y, Zhou Y, Guo T, Chai X, Yang G. PANoptosis-related gene biomarkers in aortic dissection. Arch Biochem Biophys 2025; 768:110385. [PMID: 40086567 DOI: 10.1016/j.abb.2025.110385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/16/2025]
Abstract
INTRODUCTION Programmed cell death of vascular smooth muscle cells (VSMCs) is critical in the pathogenesis of aortic dissection (AD), yet the role of PANoptosis-comprising pyroptosis, apoptosis, and necroptosis-remains unclear. METHODS We utilized the GSE213740 single-cell sequencing dataset to assess PANoptosis levels in VSMCs. Datasets GSE153434 and GSE147026 were employed to identify differentially expressed genes (DEGs) and perform weighted gene co-expression network analysis. PANoptosis gene sets were sourced from the GSEA website, with GSE52093 serving as the validation cohort. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG), and Protein-Protein Interaction analyses were conducted, along with assessments of upstream regulators and immune cell infiltration. Validation was performed on aortic tissues from AD patients and mouse models. RESULTS The single-cell dataset revealed an increased PANoptosis score in VSMCs in AD. Nineteen PANoptosis-related DEGs (PANDEGs) were identified, contributing to VSMC differentiation, DNA damage response, and apoptosis. KEGG analysis highlighted the P53 and TGF-β pathways, with PANDEGs positively correlating with immune cell infiltration. Key PANDEGs GADD45B, CDKN1A, and SOD2 were validated, showing co-expression with α-SMA. CONCLUSION The increased PANoptosis score in VSMCs suggests that GADD45B, CDKN1A, and SOD2 play crucial roles in AD.
Collapse
Affiliation(s)
- Yuting Pu
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yang Zhou
- Department of Intensive Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Tuo Guo
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiangping Chai
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Guifang Yang
- Department of Emergency Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China; Emergency Medicine and Difficult Disease Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
2
|
Gao J, Han L, Zhang Y, Zhang X, Fei X, Zhang M. Disulfiram alleviates epithelial barrier disruption in ozone-induced chronic obstructive pulmonary disease mouse models via inhibiting Gasdermin D-mediated pyroptosis. Int Immunopharmacol 2025; 159:114887. [PMID: 40403507 DOI: 10.1016/j.intimp.2025.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 05/02/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025]
Abstract
BACKGROUND Gasdermin D (GSDMD)-mediated pyroptosis drives inflammatory cytokine release in response to environmental triggers. Disulfiram (DSF), an FDA-approved anti-alcoholism drug, has been demonstrated to inhibit GSDMD pore formation. Although airway epithelial barrier dysfunction contributes to chronic obstructive pulmonary disease (COPD) progression, the role of GSDMD-dependent pyroptosis in ozone-induced pathogenesis, and the potential of DSF to inhibit this process, remain unexplored. METHODS We analyzed the expression levels of pyroptosis-related molecules in airway epithelial cells from COPD patients' samples obtained from the Gene Expression Omnibus (GEO) database and evaluated the potential therapeutic effects of DSF in a mouse model of COPD induced by chronic ozone exposure. RESULTS GSDMD was significantly upregulated in the airway epithelial cells of COPD patients. Chronic ozone exposure in mice elevated the cleaved form of GSDMD and reduced the expression of epithelial junctional proteins. DSF treatment effectively inhibited GSDMD-mediated pyroptosis and attenuated epithelial barrier disruption, leading to significant improvements in airway inflammation and lung function in both large and small airways. Furthermore, Gsdmd expression was negatively correlated with the tight junction protein Occludin and pulmonary function indices, including the ratio of FEV25 to FVC and MMEF. CONCLUSION Collectively, these findings revealed the role of GSDMD-mediated pyroptosis in epithelial barrier disruption of COPD and the potential application of DSF in the treatment of COPD.
Collapse
Affiliation(s)
- Jianwei Gao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Yingying Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xue Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xia Fei
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
3
|
Huang Y, Qian J, Luan Z, Han J, Tang L. Comprehensive Analysis Reveals the Molecular Features and Immune Infiltration of PANoptosis-Related Genes in Metabolic Dysfunction-Associated Steatotic Liver Disease. BIOLOGY 2025; 14:518. [PMID: 40427707 PMCID: PMC12108815 DOI: 10.3390/biology14050518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025]
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD), a chronic inflammatory disorder characterized by alcohol-independent hepatic lipid accumulation, remains poorly understood in terms of PANoptosis involvement. METHODS We integrated high-throughput sequencing data with bioinformatics to profile differentially expressed genes (DEGs) and immune infiltration patterns in MASLD, identifying PANoptosis-associated DEGs (PANoDEGs). Machine learning algorithms prioritized key PANoDEGs, while ROC curves assessed their diagnostic efficacy. Cellular, animal, and clinical validations confirmed target expression. RESULTS Three PANoDEGs (SNHG16, Caspase-6, and Dynamin-1-like protein) exhibited strong MASLD associations and diagnostic significance. Immune profiling revealed elevated M1 macrophages, naïve B cells, and activated natural killer cells in MASLD tissues versus controls. Further experiments verified the expression of the key PANoDEGs. CONCLUSIONS This study provides new insights for further studies on the pathogenesis and treatment strategies of PANoptosis in MASLD.
Collapse
Affiliation(s)
- Yan Huang
- Medical College, Yangzhou University, Yangzhou 225000, China
| | - Jingyu Qian
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Zhengyun Luan
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Junling Han
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| | - Limin Tang
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou 225300, China
| |
Collapse
|
4
|
Xuan X, Fan J, Zhang J, Ren M, Feng L. Immune in myocardial ischemia/reperfusion injury: potential mechanisms and therapeutic strategies. Front Immunol 2025; 16:1558484. [PMID: 40406107 PMCID: PMC12094985 DOI: 10.3389/fimmu.2025.1558484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/14/2025] [Indexed: 05/26/2025] Open
Abstract
Myocardial infarction (MI), which is characterized by high morbidity and mortality, is a serious threat to human life and health, and timely reperfusion therapy to save ischemic myocardium is currently the most effective intervention. Although reperfusion therapy effectively restores coronary blood flow and maximally limits the infarct size, it triggers additional cell death and tissue damage, which is known as myocardial ischemia/reperfusion injury (MIRI). Multiple immune cells are present in the reperfusion area, executing specific functions and engaging in crosstalk during diverse stages, constituting a complex immune microenvironment involved in tissue repair and regeneration after MIRI. Immunotherapy brings new hope for treating ischemic heart disease by modulating the immune microenvironment. In this paper, we explore the regulatory roles of various immune cells during MIRI and the close relationship between different cell deaths and the immune microenvironment. In addition, we present the current status of research on targeting the immune system to intervene in MIRI, with the expectation of providing a basis for achieving clinical translation.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jilin Fan
- Department of Rehabilitation, The Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Jingyi Zhang
- Department of Traditional Chinese Medicine, The Second Affiliated Hospital of Shandong First Medical University, Shandong, Taian, China
| | - Ming Ren
- Baokang Hospital Affiliated to Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Limin Feng
- The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Binhai New Area Traditional Chinese Medicine Hospital, Tianjin, China
| |
Collapse
|
5
|
Chen Z, Zhang J, Zhang L, Liu Y, Zhang T, Sang X, Xu Y, Lu X. Identification of PANoptosis related biomarkers to predict hepatic ischemia‒reperfusion injury after liver transplantation. Sci Rep 2025; 15:15437. [PMID: 40316717 PMCID: PMC12048552 DOI: 10.1038/s41598-025-99264-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 04/18/2025] [Indexed: 05/04/2025] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is a major complication following liver transplantation. Bioinformatic analysis was performed to elucidate the PANoptosis-related molecular mechanisms underlying HIRI. Comprehensive analysis of bulk and single-cell RNA sequencing data from human liver tissue before and after HIRI was performed. Differential expression analysis, weighted gene coexpression analysis, and protein interaction network analysis were used to identify candidate biomarkers. Multiple machine learning methods were utilized to screen for core biomarkers and construct a diagnostic predictive model. Functional and interaction analyses of the genes were also performed. Cellular clustering and annotation, pseudotemporal trajectory, and intercellular communication analyses of HIRI were conducted. Six PANoptosis-associated genes (CEBPB, HSPA1A, HSPA1B, IRF1, SERPINE1, and TNFAIP3) were identified as HIRI-related biomarkers. These biomarkers are regulated by NF-κB and miRNA-155. A nomogram for HIRI prediction based on these biomarkers was constructed and validated. In addition, the heterogeneity and dynamic changes in macrophage subpopulations during HIRI were revealed, highlighting the roles of Kupffer cells and monocyte-derived macrophages in modulating the hepatic microenvironment. The MIF and VISFATIN signaling pathways play important roles in the interaction between macrophages and other cells. These findings enhance our understanding of the mechanisms of PANoptosis in HIRI and provide a new basis and potential targets for prevention and treatment strategies for HIRI.
Collapse
Affiliation(s)
- Zhihong Chen
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Junwei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Lei Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yaoge Liu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Ting Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China
| | - Yiyao Xu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| | - Xin Lu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
6
|
Liu Z, Chen DH, Lin ZH, Wang ZY, Peng H, Liu RT, Hu ZC, He YH, Wei XJ, Zhang CQ, Feng Y, Tang Q, Zhu ZZ. In-situ Sprayed platelet-derived small extracellular vesicles for the skin flap survival by reducing PANoptosis. Biomaterials 2025; 316:123001. [PMID: 39671720 DOI: 10.1016/j.biomaterials.2024.123001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
Necrosis at the distal end of random skin flaps remains a significant challenge, limiting the clinical application of these flaps in plastic and reconstructive surgery. Inhibiting ischemia/reperfusion (I/R) injury and promoting the formation of neovascular networks are critical preventive strategies. Platelet-derived small extracellular vesicles (PL-sEV) are nanocarriers of growth factors that provide an alternative to clinically used platelet-rich plasma and platelet lysates, offering higher growth factor concentrations and lower immunogenicity. In this study, PANoptosis, a distinct form of inflammatory cell death, was fully characterized in a random skin flap model. Subcutaneous injection of PL-sEV improved ischemic skin flap survival by enhancing blood perfusion and reducing PANoptosis levels. In vitro, PL-sEV inhibited oxygen-glucose deprivation/reoxygenation-induced dysfunction in human umbilical vein endothelial cells. Furthermore, PL-sEV was incorporated into a thermosensitive triblock hydrogel, creating a sprayable delivery system (PLEL@PL-sEV). Mechanistic analysis through RNA sequencing indicated that the protective effects of PL-sEV against PANoptosis likely resulted from its anti-inflammatory properties, particularly via suppression of the NF-κB signaling pathway. This novel hydrogel system demonstrated controlled release of PL-sEV and proved effective in improving skin flap transplantation outcomes.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - De-Heng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Hao Lin
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zi-Yi Wang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Hao Peng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Ruo-Tao Liu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhi-Chao Hu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yao-Hua He
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xiao-Juan Wei
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Chang-Qing Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yong Feng
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Zhen-Zhong Zhu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
7
|
Buja LM. Pathobiology of myocardial and cardiomyocyte injury in ischemic heart disease: Perspective from seventy years of cell injury research. Exp Mol Pathol 2024; 140:104944. [PMID: 39577392 DOI: 10.1016/j.yexmp.2024.104944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 10/11/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
This review presents a perspective on the pathobiology of acute myocardial infarction, a major manifestation of ischemic heart disease, and related mechanisms of ischemic and toxic cardiomyocyte injury, based on advances and insights that have accrued over the last seventy years, including my sixty years of involvement in the field as a physician-scientist-pathologist. This analysis is based on integration of my research within the broader context of research in the field. A particular focus has been on direct measurements in cardiomyocytes of electrolyte content by electron probe X-ray microanalysis (EPXMA) and Ca2+ fluxes by fura-2 microspectrofluorometry. These studies established that increased intracellular Ca2+ develops at a transitional stage in the progression of cardiomyocyte injury in association with ATP depletion, other electrolyte alterations, altered cell volume regulation, and altered membrane phospholipid composition. Subsequent increase in total calcium with mitochondrial calcium accumulation can occur. These alterations are characteristic of oncosis, which is an initial pre-lethal state of cell injury with cell swelling due to cell membrane dysfunction in ATP depleted cells; oncosis rapidly progresses to necrosis/necroptosis with physical disruption of the cell membrane, unless the adverse stimulus is rapidly reversed. The observed sequential changes fit a three-stage model of membrane injury leading to irreversible cell injury. The data establish oncosis as the primary mode of cardiomyocyte injury in evolving myocardial infarcts. Oncosis also has been documented to be the typical form of non-ischemic cell injury due to toxins. Cardiomyocytes with less energy impairment have the capability of undergoing apoptosis and autophagic death as well as oncosis, as is seen in pathological remodeling in chronic heart failure. Work is ongoing to apply the insights from experimental studies to better understand and ameliorate myocardial ischemia and reperfusion injury in patients. The perspective and insights in this review are derived from basic principles of pathology, an integrative discipline focused on mechanisms of disease affecting the cell, the organizing unit of living organisms.
Collapse
Affiliation(s)
- L Maximilian Buja
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth-Houston), Houston, TX, United States of America.
| |
Collapse
|
8
|
Lou J, Mao Y, Jiang W, Shen H, Fan Y, Yu Q, Zhou C, Wei Z, Zhou K, Jin M, Wu J. TRIM56 Modulates YBX1 Degradation to Ameliorate ZBP1-Mediated Neuronal PANoptosis in Spinal Cord Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407132. [PMID: 39291396 PMCID: PMC11558135 DOI: 10.1002/advs.202407132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Spinal cord injury (SCI) is a severe injury to the central nervous system, and its treatment is always a major medical challenge. Proinflammatory cell death is considered an important factor affecting neuroinflammation and the prognosis after injury. PANoptosis, a newly discovered type of proinflammatory cell death, regulates the activation of executioner molecules of apoptosis, pyroptosis and necroptosis through the PANoptosome, providing a new target for therapeutic intervention after SCI. However, its role and regulatory mechanism in SCI are not yet elucidated. Here, based on proteomic data, YBX1 expression is significantly increased in neurons after SCI. Guided by RIP-seq, subsequent experiments reveal that YBX1 promotes ZBP1 expression by stabilizing the Zbp1 mRNA, thereby aggravating ZBP1-mediated PANoptosis. Furthermore, the E3 ubiquitin ligase TRIM56 is identified as an endogenous inhibitor of YBX1 via molecular docking and IP/MS analysis. Mechanistically, TRIM56 bound to YBX1 and promoted its ubiquitination, thereby accelerating its degradation. Taken together, these findings reveal a novel function of YBX1 in regulating ZBP1-mediated PANoptosis in the pathogenesis of SCI and verified that TRIM56 functions as an endogenous inhibitor to promote the ubiquitin-proteasomal degradation of YBX1, providing new insights into SCI treatment strategies.
Collapse
Affiliation(s)
- Junsheng Lou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Yiting Mao
- Obstetrics and Gynecology HospitalInstitute of Reproduction and DevelopmentFudan UniversityShanghai200090China
| | - Wu Jiang
- Department of OrthopeadicsAffiliated Hangzhou First People's HospitalSchool of MedicineWestlake UniversityNo. 261 Huansha RoadHangzhou310006China
| | - Honghao Shen
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Yunpeng Fan
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Qing Yu
- Department of Critical Care Medicinethe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhou310009China
| | - Conghui Zhou
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Ziyao Wei
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Kailiang Zhou
- Department of OrthopeadicsThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Mengran Jin
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| | - Junsong Wu
- Department of Orthopedic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineNo. 79 Qingchun RoadHangzhou310003China
| |
Collapse
|