1
|
Moreira A, Rosewall T, Tsang Y, Lindsay P, Chung P, Li W. Pan-Canadian assessment of image guided adaptive radiation therapy and the role of the radiation therapist. Tech Innov Patient Support Radiat Oncol 2025; 33:100303. [PMID: 39973910 PMCID: PMC11835646 DOI: 10.1016/j.tipsro.2025.100303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/23/2024] [Accepted: 01/21/2025] [Indexed: 02/21/2025] Open
Abstract
Purpose Adaptive radiation therapy (ART) is a close-looped process where anatomic changes observed during treatment are identified, leading to plan modification prior to treatment delivery. The aim of this study was to explore the status of ART across Canada and review the impact of adaptive technologies on the roles and responsibilities of Radiation Therapists (RTTs). Materials and Methods Study information and a link to a 30-question survey was sent via email to the RTT manager of all cancer centres across Canada (n = 48). The survey questions included centre demographics, presence of offline and/or online ART activities as standard of care, corresponding roles and responsibilities of the multidisciplinary team, and training activities. The survey was administered electronically and closed after a 3-week accrual period. Responses were analyzed using descriptive statistics. Results Thirty-two out of 48 centres responded across all ten provinces (67 % response rate). Twenty-five centres (78 %) currently perform ART, all of which practiced offline ART while 5 practiced online ART. Most common responses for lack of ART were 'technical limitations' and 'lack of resources'. RTTs are responsible for 50 % (offline) versus 58 % (online) ART respectively, with the most notable change being the addition of target delineation to their daily practice. Conclusions The status of ART varies across Canada. Offline ART is commonly practiced, but online ART remains an infrequent process due to technical limitations and lack of resources. As centres move towards implementing online ART, the role of the RTT will need to be redefined with corresponding upskilling to support the emergent treatment paradigm.
Collapse
Affiliation(s)
- Amanda Moreira
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Tara Rosewall
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Yat Tsang
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Patricia Lindsay
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Peter Chung
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Winnie Li
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Goudschaal K, Azzarouali S, Visser J, Admiraal M, Wiersma J, van Wieringen N, de la Fuente A, Piet M, Daniels L, den Boer D, Hulshof M, Bel A. Clinical implementation of RTT-only CBCT-guided online adaptive focal radiotherapy for bladder cancer. Clin Transl Radiat Oncol 2025; 50:100884. [PMID: 39559697 PMCID: PMC11570400 DOI: 10.1016/j.ctro.2024.100884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
Purpose The study assesses the clinical implementation of radiation therapist (RTT)-only Conebeam CT (CBCT)-guided online adaptive focal radiotherapy (oART) for bladder cancer, by describing the training program, analyzing the workflow and monitoring patient experience. Materials and methods Bladder cancer patients underwent treatment (20 sessions) on a ring-based linac (Ethos, Varian, a Siemens Healthineers Company, USA). Commencing April 2021, 14 patients were treated by RTTs supervised by the Radiation Oncologist (RO) and Medical Physics Expert (MPE) in a multidisciplinary workflow. From March 2022, 14 patients were treated solely by RTTs. RTT training included target delineation lessons and practicing oART in a simulation environment. We analyzed the efficiency of the RTT-only workflow regarding session time, adjustments by RTTs, attendance of the RO and MPE at the linac, and qualitative assessment of gross tumor volume (GTV) delineation. Patient experience was monitored through questionnaires. Results A training program resulted in a skilled team of RTTs, ROs and MPEs.The RTT-only workflow demonstrated shorter session times compared to the multidisciplinary approach. Among 14 patients treated using the RTT-only workflow, RTTs adjusted 99% of bladder volumes and 44% of GTV. 79% of the sessions proceeded without MPEs and ROs. All GTV delineations were RO-approved, thus considered clinically acceptable, and 87% required minor or no adjustments. Patient satisfaction was reported in 18 of 21 cases. Conclusions The RTT-only oART workflow for bladder cancer, complemented by a training program and on-call support from ROs and MPEs, demonstrated success. Patient experience is positive. It is currently introduced as standard in our clinic.
Collapse
Affiliation(s)
- K. Goudschaal
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - S. Azzarouali
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - J. Visser
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - M. Admiraal
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
- The Netherlands Cancer Institute, Radiation Oncology, the Netherlands
| | - J. Wiersma
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - N. van Wieringen
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - A. de la Fuente
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - M. Piet
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - L. Daniels
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - D. den Boer
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Radiation Oncology, De Boelelaan 1117, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - M. Hulshof
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| | - A. Bel
- Amsterdam UMC Location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Therapy, Treatment and Quality of Life, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Callens D, De Haes R, Verstraete J, Berkovic P, Nulens A, Reynders T, Lambrecht M, Crijns W. A code orange for traffic-light-protocols as a communication mechanism in IGRT. Tech Innov Patient Support Radiat Oncol 2024; 32:100286. [PMID: 39555219 PMCID: PMC11566887 DOI: 10.1016/j.tipsro.2024.100286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Traffic-light protocols (TLPs) use color codes to standardize image registration and improve interdisciplinary communication in IGRT. Generally, green indicates no relevant anatomical changes, orange signals changes requiring follow-up but does not compromise the current fraction, and red flags unacceptable changes. This study examines the communication aspect, specifically the reporting accuracy for locally advanced non-small-cell lung cancer (LA-NSCLC), and identifies barriers to reporting. Materials & Methods We conducted a retrospective study on 1997 CBCTs from 74 LA-NSCLC patients. Each scan was in retrospect assessed blinded using the tailored TLP by an IGRT-RTT and subsequently by a second RTT for a subset of fractions. The assessment included both CBCTs from current clinical practice (TLP2023) and from the TLP implementation period (TLP2019). Accuracy of image registration was not evaluated. Reporting barriers were identified through focus group discussions with RTTs. Results During TLP2023, 22 of the 63 (35%) patients received at least one code orange during therapy, with 2 of them having a systematic code orange, totaling 43 (2%) fractions with at least one code orange. The IGRT-RTT assigned code orange or red in 59 (94%) patients, 38 (60%) of which had systematic codes orange. In total, the IGRT-RTT reported 684 (40%) fractions with code orange and 13 with code red. During TLP2019, similar numbers are observed. In the subset reviewed by two IGRT-RTTs, reports matched in 77% of cases. Various factors contribute to a low reporting rate, originating both during the decision-making process such as lack of online reporting tools and within offline processes such as divergent feedback expectations. Conclusion While our TLP has successfully promoted the widespread adoption of CBCT-based RTT-led IGRT, it has not succeeded in establishing interdisciplinary communication. Our study reveals significant underreporting of flagged LA-NSCLC fractions in clinical practice using a TLP. This underreporting stems from multifactorial origins.
Collapse
Affiliation(s)
- Dylan Callens
- Laboratory of Experimental Radiotherapy, Catholic University of Leuven, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Rob De Haes
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Jan Verstraete
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Patrick Berkovic
- Laboratory of Experimental Radiotherapy, Catholic University of Leuven, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - An Nulens
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Truus Reynders
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Maarten Lambrecht
- Laboratory of Experimental Radiotherapy, Catholic University of Leuven, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| | - Wouter Crijns
- Laboratory of Experimental Radiotherapy, Catholic University of Leuven, Leuven, Belgium
- Department of Radiation Oncology, University Hospitals of Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Leech M, Abdalqader A, Alexander S, Anderson N, Barbosa B, Callens D, Chapman V, Coffey M, Cox M, Curic I, Dean J, Denney E, Kearney M, Leung VW, Mortsiefer M, Nirgianaki E, Povilaitis J, Strikou D, Thompson K, van den Bosch M, Velec M, Woodford K, Buijs M. The Radiation Therapist profession through the lens of new technology: A practice development paper based on the ESTRO Radiation Therapist Workshops. Tech Innov Patient Support Radiat Oncol 2024; 30:100243. [PMID: 38831996 PMCID: PMC11145757 DOI: 10.1016/j.tipsro.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 06/05/2024] Open
Abstract
Technological advances in radiation therapy impact on the role and scope of practice of the radiation therapist. The European Society of Radiotherapy and Oncology (ESTRO) recently held two workshops on this topic and this position paper reflects the outcome of this workshop, which included radiation therapists from all global regions. Workflows, quality assurance, research, IGRT and ART as well as clinical decision making are the areas of radiation therapist practice that will be highly influenced by advancing technology in the near future. This position paper captures the opportunities that this will bring to the radiation therapist profession, to the practice of radiation therapy and ultimately to patient care.
Collapse
Affiliation(s)
- Michelle Leech
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
- Trinity St. James’s Cancer Institute, Dublin, Ireland
| | | | - Sophie Alexander
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom
| | - Nigel Anderson
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre - Austin Health, Heidelberg, Australia
| | - Barbara Barbosa
- Escola Internacional de Doutoramento, Universidad de Vigo, Spain
- Medical Physics, Radiobiology and Radiation Protection Group, IPO Porto Research Center (CI-IPOP), Porto Comprehensive Cancer Center (Porto.CCC) & Rise@CI-IPOP (Health Research Network), Porto, Portugal
| | - Dylan Callens
- University Hospital Leuven, Department of Radiation Oncology, Leuven, Belgium
- KU Leuven, Laboratory of Experimental Radiotherapy, Leuven, Belgium
| | | | - Mary Coffey
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
| | - Maya Cox
- Auckland City Hospital, Auckland, New Zealand
| | - Ilija Curic
- Radiosurgery and Stereotactic Radiotherapy Department, University Clinical Center of Serbia, Belgrade, Serbia
| | - Jenna Dean
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness & Research Centre - Austin Health, Heidelberg, Australia
| | | | - Maeve Kearney
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland
- Trinity St. James’s Cancer Institute, Dublin, Ireland
| | - Vincent W.S. Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | | | | | - Justas Povilaitis
- The Hospital of Lithuanian University of Health Sciences Kauno klinikos, Kaunas, Lithuania
| | - Dimitra Strikou
- Radiation Oncology Unit, University and General Attikon Hospital, Athens, Greece
| | - Kenton Thompson
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
| | | | - Michael Velec
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Katrina Woodford
- Department of Radiation Therapy Services, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Australia
| | - Monica Buijs
- InHolland Haarlem, University of Applied Science, Haarlem, the Netherlands
| |
Collapse
|
5
|
Boisbouvier S, Corbin S, Charpentier M, Billaud P, Dolpierre B, Douir N, De Oliveira A, Sousa F. [The first steps towards advanced practice for radiation therapists]. Cancer Radiother 2023; 27:583-587. [PMID: 37481343 DOI: 10.1016/j.canrad.2023.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 07/24/2023]
Abstract
The implementation of advanced practice in RT requires evidence regarding the clinical practices of radiation therapists (RTT) in the field. In this context, the goal of this article is to report the roles assigned to RTT in order to meet the demands of patients, RT services, and/or healthcare professionals. As part of the French Society of Oncologic Radiotherapy's congress, the Radiotherapy Committee of the French Association of radiographers presented a scientific program encompassing three main themes: patient follow-up by a RTT, the expertise of an RTT in Image Guided Radiation Therapy (IGRT), Adaptive Radiotherapy (ART), and the involvement of a RTT in research. This article presents an overview of five oral presentations that highlight concrete examples of roles assigned to RTTs in these specific domains. The follow-up of patients has been assigned to RTT. Research and development have been recognized as activities in which RTT play a significant role. The establishment of RTT specializing in IGRT has been reported to facilitate decision-making and is essential in ensuring professional expertise. Lastly, there is a need to enhance RTT skills in adaptive RT to support the implementation of this technique. These roles described as advanced practice meet needs and require a specific organisational framework and appropriate education and training (master type). Activities such as post-RT follow-up, validation of positioning imaging, delineation, writing research protocols, and involvement in the development of technological innovations were identified as essential tasks that can be assigned to RTT.
Collapse
Affiliation(s)
- S Boisbouvier
- Département de radiothérapie, centre Léon-Bérard, rue Laënnec, 69008 Lyon, France.
| | - S Corbin
- Département de radiothérapie, institut Gustave-Roussy, Villejuif, France
| | - M Charpentier
- Département de radiothérapie, assistance publique des hôpitaux de Marseille, Marseille, France
| | - P Billaud
- Département de radiothérapie, institut régional du cancer de Montpellier, Montpellier, France
| | - B Dolpierre
- Département de radiothérapie, institut régional du cancer de Montpellier, Montpellier, France
| | - N Douir
- Département de radiothérapie, institut Gustave-Roussy, Villejuif, France
| | - A De Oliveira
- Département de radiothérapie, institut Curie, Paris, France
| | - F Sousa
- Département de radiothérapie, institut Jules-Bordet, université libre de Bruxelles (ULB), hôpital universitaire de Bruxelles (H.U.B), rue Meylemeersch, 90, 1070 Bruxelles, Belgique
| |
Collapse
|
6
|
Umbarkar P, Kannan V, Anand VJ, Deshpande S, Hinduja R, Babu V, Naidu S, Jadhav O, Jejurkar A. A comparative study of rectal volume variation in patients with prostate cancer: A tertiary care center study. Radiography (Lond) 2023; 29:845-850. [PMID: 37399732 DOI: 10.1016/j.radi.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
INTRODUCTION Every day variations in rectal filling in prostate cancer radiotherapy can significantly alter the delivered dose distribution from what was intended. The goal of this study was to see if the time of treatment delivery affected the rectal filling. METHODS This is a retrospective study which included 50 patients with localized prostate cancer treated with volumetric modulated arc therapy (VMAT) to the primary and regional lymph nodes. Cone Beam Computed Tomography (CBCT) image-sets were done for all patient's daily setup verification. The radiation therapist contoured the rectum on all CBCT image sets. The rectal volumes delineated on CBCT and the planning CT image sets were compared. The change in rectal volumes between morning and afternoon treatments were calculated and compared. RESULTS A total of 1000 CBCT image sets were obtained on 50 patients in the morning and afternoon. The percentage variation of the CBCT rectal volumes over the planning CT scan was 16.57% in the AM group and 24.35% in the PM group. CONCLUSION The percentage change in rectal volume was significantly lesser in AM group compared to PM group and therefore morning treatments may result in dose distribution that is close to the intended dose distribution. IMPLICATIONS FOR PRACTICE In prostate cancer radiotherapy our study suggests that a simple technique of changing the time of treatment from afternoon to morning can help to reduce the rectal volume.
Collapse
Affiliation(s)
- P Umbarkar
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - V Kannan
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - V J Anand
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - S Deshpande
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - R Hinduja
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - V Babu
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - S Naidu
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - O Jadhav
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| | - A Jejurkar
- Radiotherapy Section, Dept. of Medicine., PD Hinduja National Hospital and Medical Research Centre, Mumbai, 400016, India.
| |
Collapse
|
7
|
Online adaptive MR-guided radiotherapy: Conformity of contour adaptation for prostate cancer, rectal cancer and lymph node oligometastases among radiation therapists and radiation oncologists. Tech Innov Patient Support Radiat Oncol 2022; 23:33-40. [PMID: 36090011 PMCID: PMC9460551 DOI: 10.1016/j.tipsro.2022.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022] Open
Abstract
Contour adaptation conformity analyzed for LN-metastases, rectal- + prostate cancer. Contour adaptation conformity among RTTs and radiation oncologists is comparable. Role expansion of RTTs with daily contour adaptation impacts workflow efficiency.
Background and purpose Online adaptive MR-guided treatment planning workflows facilitate daily contour adaptation to the actual anatomy. Allocating contour adaptation to radiation therapists (RTTs) instead of radiation oncologists (ROs) might allow for increasing workflow efficiency. This study investigates conformity of adapted target contours provided by dedicated RTTs and ROs. Materials and methods In a simulated online procedure, 6 RTTs and 6 ROs recontoured targets and organs at risk (OAR) in prostate cancer (n = 2), rectal cancer (n = 2) and lymph node-oligometastases (n = 2) cases. RTTs gained contouring competence beforehand by following a specific in-house training program. For all target contours and the reference delineations volumetric differences were determined and Dice similarity coefficient (DSC), conformity index (CI) and generalized CI were calculated. Delineation time and –confidence were registered for targets and OAR. Impact of contour adaptation on treatment plan quality was investigated. Results Delineation conformity was generally high with DSC, CI and generalized CI values in the range of 0.81–0.94, 0.87–0.95 and 0.63–0.85 for prostate cancer, rectal cancer and LN-oligometastasis, respectively. Target volumes were comparable for both, RTTs and ROs. Time needed and confidence in contour adaptation was comparable as well. Treatment plans derived with adapted contours did not violate dose volume constrains as used in clinical routine. Conclusion After tumor site specific training, daily contour adaptations as needed in adaptive online radiotherapy workflows can be accurately performed by RTTs. Conformity of the derived contours is high and comparable to contours as provided by ROs.
Collapse
|
8
|
Oliveira C, Barbosa B, Couto JG, Bravo I, Khine R, McNair H. Advanced practice roles of therapeutic radiographers/radiation therapists: A systematic literature review. Radiography (Lond) 2022; 28:605-619. [PMID: 35550932 DOI: 10.1016/j.radi.2022.04.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Advances in Radiotherapy (RT) technology and increase of complexity in cancer care have enabled the implementation of new treatment techniques. Subsequently, a greater level of autonomy, responsibility, and accountability in the practice of Therapeutic Radiographers/Radiation Therapists (TR/RTTs) has led to Advanced Practice (AP) roles. The published evidence of this role is scattered with confusing terminology and divergence regarding the perception of whether a specific role represents AP internationally. This study aims to establish an international baseline of evidence on AP roles in RT to identify roles and activities performed by TR/RTTs at advanced level practice and to summarise the impact. METHODS A systematic PRISMA review of the literature was undertaken. Thematic analysis was used to synthesise the roles and associated activities. Six RT external experts validated the list. The impact was scrutinised in terms of clinical, organisational, and professional outcomes. RESULTS Studies (n = 87) were included and categorised into four groups. AP roles were listed by clinical area, site-specific, and scope of practice, and advanced activities were organised into seven dimensions and 27 sub-dimensions. Three most-reported outcomes were: enhanced service capacity, higher patient satisfaction, and safety maintenance. CONCLUSION Evidence-based AP amongst TR/RTTs show how AP roles were conceptualised, implemented, and evaluated. Congruence studies have shown that TR/RTTs are at par with the gold-standard across the various AP roles. IMPLICATIONS FOR PRACTICE This is the first systematic literature review synthetisising AP roles and activities of TR/RTTs. This study also identified the main areas of AP that can be used to develop professional frameworks and education guiding policy by professional bodies, educators and other stakeholders.
Collapse
Affiliation(s)
- C Oliveira
- Radiotherapy Department, Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal; Escola Internacional de Doutoramento, Universidad de Vigo, Circunvalación Ao Campus Universitario, 36310, Vigo, Pontevedra, Spain.
| | - B Barbosa
- Radiotherapy Department, Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal; Escola Internacional de Doutoramento, Universidad de Vigo, Circunvalación Ao Campus Universitario, 36310, Vigo, Pontevedra, Spain; Medical Physics, Radiobiology Group and Radiation Protection Group, IPO Porto Research Centre (CI-IPOP), Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal.
| | - J G Couto
- Radiography Department, Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| | - I Bravo
- Medical Physics, Radiobiology Group and Radiation Protection Group, IPO Porto Research Centre (CI-IPOP), Instituto Português de Oncologia do Porto (IPO Porto), R. Dr. António Bernardino de Almeida 865, 4200-072, Porto, Portugal.
| | - R Khine
- European Federation of Radiographer Societies, PO Box 30511, Utrecht, 3503, AH, Netherlands; School of Health Care and Social Work, Buckinghamshire New University, Buckinghamshire, United Kingdom.
| | - H McNair
- European Federation of Radiographer Societies, PO Box 30511, Utrecht, 3503, AH, Netherlands; The Royal Marsden NHS Foundation Trust, Radiotherapy and the Institute of Cancer Research, Surrey, SM2 5PT, United Kingdom.
| |
Collapse
|
9
|
Tsang Y. Advanced practice in radiotherapy: How to move to the next level? Tech Innov Patient Support Radiat Oncol 2021; 17:57-58. [PMID: 34007907 PMCID: PMC8111034 DOI: 10.1016/j.tipsro.2021.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Yat Tsang
- Radiotherapy Department, Mount Vernon Cancer Centre, Northwood, Middlesex, United Kingdom
| |
Collapse
|