1
|
Jo S, Park SB, Kim H, Im I, Noh H, Kim EM, Kim KY, Oelgeschläger M, Kim JH, Park HJ. hiPSC-derived macrophages improve drug sensitivity and selectivity in a macrophage-incorporating organoid culture model. Biofabrication 2024; 16:035021. [PMID: 38749417 DOI: 10.1088/1758-5090/ad4c0a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Accurate simulation of different cell type interactions is crucial for physiological and precisein vitrodrug testing. Human tissue-resident macrophages are critical for modulating disease conditions and drug-induced injuries in various tissues; however, their limited availability has hindered their use inin vitromodeling. Therefore, this study aimed to create macrophage-containing organoid co-culture models by directly incorporating human-induced pluripotent stem cell (hiPSC)-derived pre-macrophages into organoid and scaffold cell models. The fully differentiated cells in these organoids exhibited functional characteristics of tissue-resident macrophages with enriched pan-macrophage markers and the potential for M1/M2 subtype specialization upon cytokine stimulation. In a hepatic organoid model, the integrated macrophages replicated typical intrinsic properties, including cytokine release, polarization, and phagocytosis, and the co-culture model was more responsive to drug-induced liver injury than a macrophage-free model. Furthermore, alveolar organoid models containing these hiPSC-derived macrophages also showed increased drug and chemical sensitivity to pulmonary toxicants. Moreover, 3D adipocyte scaffold models incorporating macrophages effectively simulated in vivo insulin resistance observed in adipose tissue and showed improved insulin sensitivity on exposure to anti-diabetic drugs. Overall, the findings demonstrated that incorporating hiPSC-derived macrophages into organoid culture models resulted in more physiological and sensitivein vitrodrug evaluation and screening systems.
Collapse
Affiliation(s)
- Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Sung Bum Park
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ilkyun Im
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Haneul Noh
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Eun-Mi Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
| | - Ki Young Kim
- Therapeutics and Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Michael Oelgeschläger
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jong-Hoon Kim
- Laboratory Stem Cells and Tissue regeneration, Department Biotechnology, Collage of Life Science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Han-Jin Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, Republic of Korea
- German Centre for the Protection of Laboratory Animals, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
2
|
Jaber N, Billet S. How to use an in vitro approach to characterize the toxicity of airborne compounds. Toxicol In Vitro 2024; 94:105718. [PMID: 37871865 DOI: 10.1016/j.tiv.2023.105718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/25/2023]
Abstract
As part of the development of new approach methodologies (NAMs), numerous in vitro methods are being developed to characterize the potential toxicity of inhalable xenobiotics (gases, volatile organic compounds, polycyclic aromatic hydrocarbons, particulate matter, nanoparticles). However, the materials and methods employed are extremely diverse, and no single method is currently in use. Method standardization and validation would raise trust in the results and enable them to be compared. This four-part review lists and compares biological models and exposure methodologies before describing measurable biomarkers of exposure or effect. The first section emphasizes the importance of developing alternative methods to reduce, if not replace, animal testing (3R principle). The biological models presented are mostly to cultures of epithelial cells from the respiratory system, as the lungs are the first organ to come into contact with air pollutants. Monocultures or cocultures of primary cells or cell lines, as well as 3D organotypic cultures such as organoids, spheroids and reconstituted tissues, but also the organ(s) model on a chip are examples. The exposure methods for these biological models applicable to airborne compounds are submerged, intermittent, continuous either static or dynamic. Finally, within the restrictions of these models (i.e. relative tiny quantities, adhering cells), the mechanisms of toxicity and the phenotypic markers most commonly examined in models exposed at the air-liquid interface (ALI) are outlined.
Collapse
Affiliation(s)
- Nour Jaber
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France
| | - Sylvain Billet
- UR4492, Unité de Chimie Environnementale et Interactions sur le Vivant, Université du Littoral Côte d'Opale, Dunkerque, France.
| |
Collapse
|
3
|
Rothen-Rutishauser B, Gibb M, He R, Petri-Fink A, Sayes CM. Human lung cell models to study aerosol delivery - considerations for model design and development. Eur J Pharm Sci 2023; 180:106337. [PMID: 36410570 DOI: 10.1016/j.ejps.2022.106337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022]
Abstract
Human lung tissue models range from simple monolayer cultures to more advanced three-dimensional co-cultures. Each model system can address the interactions of different types of aerosols and the choice of the model and the mode of aerosol exposure depends on the relevant scenario, such as adverse outcomes and endpoints of interest. This review focuses on the functional, as well as structural, aspects of lung tissue from the upper airway to the distal alveolar compartments as this information is relevant for the design of a model as well as how the aerosol properties determine the interfacial properties with the respiratory wall. The most important aspects on how to design lung models are summarized with a focus on (i) choice of appropriate scaffold, (ii) selection of cell types for healthy and diseased lung models, (iii) use of culture condition and assembly, (iv) aerosol exposure methods, and (v) endpoints and verification process. Finally, remaining challenges and future directions in this field are discussed.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland.
| | - Matthew Gibb
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA
| | - Ruiwen He
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Alke Petri-Fink
- BioNanomaterials, Adolphe Merkle Institute, University Fribourg, Chemin des Verdiers 4 CH-1700, Fribourg, Switzerland
| | - Christie M Sayes
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266, USA.
| |
Collapse
|
4
|
Xi WS, Li JB, Liu YY, Wu H, Cao A, Wang H. Cytotoxicity and genotoxicity of low-dose vanadium dioxide nanoparticles to lung cells following long-term exposure. Toxicology 2021; 459:152859. [PMID: 34273449 DOI: 10.1016/j.tox.2021.152859] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/17/2022]
Abstract
Vanadium dioxide nanoparticles (VO2 NPs) have been massively produced and widely applied due to their excellent metal-insulator transition property, making it extremely urgent to evaluate their safety, especially for low-dose long-term respiratory occupational exposure. Here, we report a comprehensive cytotoxicity and genotoxicity study on VO2 NPs to lung cell lines A549 and BEAS-2B following a long-term exposure. A commercial VO2 NP, S-VO2, was used to treat BEAS-2B (0.15-0.6 μg/mL) and A549 (0.3-1.2 μg/mL) cells for four exposure cycles, and each exposure cycle lasted for 4 consecutive days; then various bioassays were performed after each cycle. Significant proliferation inhibition was observed in both cell lines after long-term exposure of S-VO2 at low doses that did not cause apparent acute cytotoxicity; however, the genotoxicity of S-VO2, characterized by DNA damage and micronuclei, was only observed in A549 cells. These adverse effects of S-VO2 were exposure time-, dose- and cell-dependent, and closely related to the solubility of S-VO2. The oxidative stress in cells, i.e., enhanced reactive oxygen species (ROS) generation and suppressed reduced glutathione, was the main toxicity mechanism of S-VO2. The ROS-associated mitochondrial damage and DNA damage led to the genotoxicity, and cell proliferation retard, resulting in the cellular viability loss. Our results highlight the importance and urgent necessity of the investigation on the long-term toxicity of VO2 NPs.
Collapse
Affiliation(s)
- Wen-Song Xi
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Jia-Bei Li
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Yuan-Yuan Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Hao Wu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China
| | - Aoneng Cao
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
5
|
Ehrmann S, Schmid O, Darquenne C, Rothen-Rutishauser B, Sznitman J, Yang L, Barosova H, Vecellio L, Mitchell J, Heuze-Vourc’h N. Innovative preclinical models for pulmonary drug delivery research. Expert Opin Drug Deliv 2020; 17:463-478. [PMID: 32057260 PMCID: PMC8083945 DOI: 10.1080/17425247.2020.1730807] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/11/2020] [Indexed: 02/08/2023]
Abstract
Introduction: Pulmonary drug delivery is a complex field of research combining physics which drive aerosol transport and deposition and biology which underpins efficacy and toxicity of inhaled drugs. A myriad of preclinical methods, ranging from in-silico to in-vitro, ex-vivo and in-vivo, can be implemented.Areas covered: The present review covers in-silico mathematical and computational fluid dynamics modelization of aerosol deposition, cascade impactor technology to estimated drug delivery and deposition, advanced in-vitro cell culture methods and associated aerosol exposure, lung-on-chip technology, ex-vivo modeling, in-vivo inhaled drug delivery, lung imaging, and longitudinal pharmacokinetic analysis.Expert opinion: No single preclinical model can be advocated; all methods are fundamentally complementary and should be implemented based on benefits and drawbacks to answer specific scientific questions. The overall best scientific strategy depends, among others, on the product under investigations, inhalation device design, disease of interest, clinical patient population, previous knowledge. Preclinical testing is not to be separated from clinical evaluation, as small proof-of-concept clinical studies or conversely large-scale clinical big data may inform preclinical testing. The extend of expertise required for such translational research is unlikely to be found in one single laboratory calling for the setup of multinational large-scale research consortiums.
Collapse
Affiliation(s)
- Stephan Ehrmann
- CHRU Tours, Médecine Intensive Réanimation, CIC INSERM 1415, CRICS-TriggerSep network, Tours France
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Otmar Schmid
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Chantal Darquenne
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC0623A, La Jolla, CA 92093-0623, United States
| | | | - Josue Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Julius Silver building, Office 246, Haifa 32000, Israel
| | - Lin Yang
- Comprehensive Pneumology Center (CPC-M), German Center for Lung Research (DZL), Max-Lebsche-Platz 31, 81377 Munich, Germany
- Institute of Lung Biology and Disease, Helmholtz Zentrum München – German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hana Barosova
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, Switzerland
| | - Laurent Vecellio
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| | - Jolyon Mitchell
- Jolyon Mitchell Inhaler Consulting Services Inc., 1154 St. Anthony Road, London, Ontario, Canada, N6H 2R1
| | - Nathalie Heuze-Vourc’h
- INSERM, Centre d’étude des pathologies respiratoires, U1100, Tours, France
- Université de Tours, Tours, France
| |
Collapse
|
6
|
Arts J. How to assess respiratory sensitization of low molecular weight chemicals? Int J Hyg Environ Health 2020; 225:113469. [PMID: 32058937 DOI: 10.1016/j.ijheh.2020.113469] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/29/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
There are no validated and regulatory accepted (animal) models to test for respiratory sensitization of low molecular weight (LMW) chemicals. Since several decades such chemicals are classified as respiratory sensitizers almost exclusively based on observations in workers. However, both respiratory allergens (in which process the immune system is involved) as well as asthmagens (no involvement of the immune system) may induce the same type of respiratory symptoms. Correct classification is very important from a health's perspective point of view. On the other hand, over-classification is not preferable in view of high costs to overdue workplace engineering controls or the chemical ultimately being banned due to Authorities' decisions. It would therefore be very beneficial if respiratory sensitizers can be correctly identified and distinguished from skin sensitizers and non-sensitizers/respiratory irritants. The purpose of this paper is to consider whether LMW chemicals can be correctly identified based on the currently available screening methods in workers, and/or via in silico, in vitro and/or in vivo testing. Collectively, based on the available information further effort is still needed to be able to correctly identify respiratory sensitizers and to distinguish these from skin sensitizers and irritants, not at least because of the far-reaching consequences once a chemical is classified as a respiratory sensitizer.
Collapse
Affiliation(s)
- Josje Arts
- Nouryon, Velperweg 76, 6824 BM Arnhem, the Netherlands.
| |
Collapse
|
7
|
Zhao Y, Hao C, Zhai R, Bao L, Wang D, Li Y, Yu X, Huang R, Yao W. Effects of cyclophosphamide on the phenotypes and functions of THP-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 70:103201. [PMID: 31202006 DOI: 10.1016/j.etap.2019.103201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 04/18/2019] [Accepted: 05/28/2019] [Indexed: 06/09/2023]
Abstract
Early and accurate evaluation of immunotoxicity is crucial. However, there are few in vitro models for immunosuppressive evaluation. THP-1 cells has long been used for in vitro sensitivity evaluation. Whether it can be used for immunosuppressive evaluation remains unclear. In this study, effects of immunosuppressant cyclophosphamide (CY) on THP-1 cells were observed while 2, 4-Dinitrochlorobenzene (DNCB) was used as a control. The phenotypes of THP-1 cells, the ability to activate naïve T cells, intracellular reactive oxygen species (ROS) level, gene markers, phagocytic ability and cell apoptosis were detected after THP-1 cells being exposed to different concentrations of CY and DNCB. Both CY and DNCB were able to activate THP-1 cells, but there were a lot of differences in their effects on THP-1 cells, such as the changes in phenotypes, in the ability to activate naïve T cells, in ROS production and in marker gene expression. Firstly, CY down-regulated the expression of CD86 on THP-1 cells while DNCB up-regulated its expression. Secondly, the ability of THP-1 cells to activate naïve T cells was enhanced by CY and suppressed by DNCB. Thirdly, CY raised rapid and transient elevation of ROS level in THP-1 cells, while the effects of DNCB were slower and longer-lasting. Finally, only CY could lead to an increase in heme oxygenase 1 (HMOX1) expression. Taken all these results into account, we suggested that THP-1 cell line possesses the potency to be an in vitro model of immunosuppressive evaluation. And the surface molecule CD86, the ability to activate naïve T cells, the ROS production and the gene marker HMOX1 of THP-1 cells are promising markers.
Collapse
Affiliation(s)
- Youliang Zhao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Changfu Hao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Ruonan Zhai
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Lei Bao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Di Wang
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Yiping Li
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Xinghao Yu
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Ruoxuan Huang
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China
| | - Wu Yao
- Department of Occupational and Environment Health, School of Public Health, Zhengzhou University, No.100 Science Avenue, Zhengzhou, 450001, Henan Province, PR China.
| |
Collapse
|
8
|
Integration analysis of a miRNA-mRNA expression in A549 cells infected with a novel H3N2 swine influenza virus and the 2009 H1N1 pandemic influenza virus. INFECTION GENETICS AND EVOLUTION 2019; 74:103922. [PMID: 31207403 DOI: 10.1016/j.meegid.2019.103922] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/29/2019] [Accepted: 06/13/2019] [Indexed: 01/08/2023]
Abstract
Swine are reservoirs for anthropogenic/zoonotic influenza viruses, and the prevalence and repeated introduction of the 2009 H1N1 pandemic influenza virus (pdm/09) into pigs raises the possibility of generating novel swine influenza viruses with the potential to infect humans. However, studies aiming to identify miRNAs involved in the transfer of novel swine influenza virus infection to human cells are rare. In this investigation, from the view of small RNA, microarrays and high-throughput sequencing were used to detect differentially expressed miRNAs and mRNAs after human lung epithelial cells were infected with the following three stains of influenza viruses: a novel H3N2 swine influenza virus reassorted with pdm/09 fragments, pdm/09 and classical swine influenza virus. A miRNA-mRNA interaction map was generated to show the correlation between miRNAs related to infection by the viruses with human infective potential/capability. The expression of 4 miRNAs (hsa-miR-96-5p, hsa-miR-140-5p, hsa-miR-30a-3p and hsa-miR-582-5p) and 5 relevant mRNAs (RCC1, ERVFRD-1, RANBP1, SCARB2 and RPS29) was determined. The integration analysis indicated that these candidates have rarely been reported to be associated with influenza virus. Focusing on miRNA expression changes could reveal novel reassortant viruses with human infective potential that may provide insight into future pandemics.
Collapse
|
9
|
Kimber I, Agius R, Basketter DA, Corsini E, Cullinan P, Dearman RJ, Gimenez-Arnau E, Greenwell L, Hartung T, Kuper F, Maestrelli P, Roggen E, Rovida C. Chemical Respiratory Allergy: Opportunities for Hazard Identification and Characterisation. Altern Lab Anim 2019; 35:243-65. [PMID: 17559314 DOI: 10.1177/026119290703500212] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ian Kimber
- Syngenta Central Toxicology Laboratory, Macclesfield, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wang F, Wang R, Liu H. The acute pulmonary toxicity in mice induced by Staphylococcus aureus, particulate matter, and their combination. Exp Anim 2018; 68:159-168. [PMID: 30531117 PMCID: PMC6511515 DOI: 10.1538/expanim.18-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Inhalation of pathogenic bacteria transported by particulate matter (PM) presents an
important potential threat to human health. Therefore, the pulmonary toxicity in mice
caused by Staphylococcus aureus (S. aureus) and PM as
individual matter and mixtures was studied. PM and S. aureus were
instilled intratracheally into Kunming mice at doses of 0.2 mg/mouse and 5.08 ×
106 CFU /mouse, respectively, as individual matter and in combination two
times at 5-day intervals. After the exposure period, oxidative stress markers and nitric
oxide (NO) in the lung, cellular infiltration, neurotrophins, chemokines, and cytokines in
bronchoalveolar lavage fluid (BALF), and immunoglobulin (Ig) in sera were examined.
Exposure to the combination of PM and S. aureus caused significant
increases in malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), and NO and
significant decreases in total antioxidant capacity (T-AOC) and the ratio of reduced
glutathione (GSH) to oxidized glutathione (GSSG) in the lung. Meanwhile, the ratio of
interleukin (IL)-4 to interferon (INF)-γ, the IL-4 level in BALF, and the IgE
concentration in sera were significantly increased in the groups exposed to
S. aureus or the combination of PM and
S. aureus. Substance P and IL-8 in BALF were
significantly increased in mice exposed to PM, S. aureus or their
combination. In addition, PM, S. aureus, and their combination caused
infiltration of leukocytes into the alveolar tissue spaces. The results suggested that
exposure to the combination of PM and S. aureus induced a lung
inflammatory response that was at least partly caused by oxidative stress and mediators
from the activated eosinophils, neutrophils, alveolar macrophages, and epithelial
cells.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China.,Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Ruiling Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Haifang Liu
- School of Energy and Environment Engineering, Zhongyuan University of Technology, No. 41 Zhongyuanzhong Road, Zhongyuan District, Zhengzhou 450007, P.R. China
| |
Collapse
|
11
|
Respiratory sensitization: toxicological point of view on the available assays. Arch Toxicol 2017; 92:803-822. [DOI: 10.1007/s00204-017-2088-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/05/2017] [Indexed: 12/22/2022]
|
12
|
Kim HR, Shin DY, Chung KH. In vitro inflammatory effects of polyhexamethylene biguanide through NF-κB activation in A549 cells. Toxicol In Vitro 2016; 38:1-7. [PMID: 27746371 DOI: 10.1016/j.tiv.2016.10.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/10/2016] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
Abstract
Polyhexamethylene biguanide (PHMB) is a member of the polymeric guanidine family, which is used as a biocide and preservative in industrial, medicinal, and consumer products. Some studies reported that polyhexamethylene guanidine phosphate, which is also a member of the guanidine family, induced severe inflammation and fibrosis in the lungs. However, limited studies have evaluated the pulmonary toxicity of PHMB associated with inflammatory responses. The aim of this study was to elucidate the inflammatory responses and its mechanisms induced by PHMB in lung cells. A549 cells exposed to PHMB showed decreased viability, reactive oxygen species (ROS) generation, inflammatory cytokine secretion, and nuclear factor kappa B (NF-κB) activation. The cells showed dose-dependent cytotoxicity and slight generation of ROS. PHMB triggered inflammatory cytokine secretion and NF-κB activation by modulating the degradation of IκB-α and the accumulation of nuclear p65. TNF-α plays important roles in IL-8 expression as well as NF-κB activation. Moreover, IL-8 production induced by PHMB was completely suppressed by a NF-κB inhibitor, but not by a ROS scavenger. In conclusion, we suggest that PHMB induces the inflammatory responses via the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ha Ryong Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea; Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Da Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon-si, Gyeonggi-do 16419, South Korea.
| |
Collapse
|
13
|
Liu PL, Chong IW, Lee YC, Tsai JR, Wang HM, Hsieh CC, Kuo HF, Liu WL, Chen YH, Chen HL. Anti-inflammatory Effects of Resveratrol on Hypoxia/Reoxygenation-Induced Alveolar Epithelial Cell Dysfunction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:9480-9487. [PMID: 26466890 DOI: 10.1021/acs.jafc.5b01168] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Reducing oxidative stress is crucial to prevent hypoxia-reoxygenation (H/R)-induced lung injury. Resveratrol has excellent antioxidant and anti-inflammatory effects, and this study investigated its role in H/R-induced type II pneumocyte dysfunction. H/R conditions increased expression of inflammatory cytokines including interleukin (IL)-1β (142.3 ± 21.2%, P < 0.05) and IL-6 (301.9 ± 35.1%, P < 0.01) in a type II alveolar epithelial cell line (A549), while the anti-inflammatory cytokine IL-10 (64.6 ± 9.8%, P < 0.05) and surfactant proteins (SPs) decreased. However, resveratrol treatment effectively inhibited these effects. H/R significantly activated an inflammatory transcription factor, nuclear factor (NF)-κB, while resveratrol significantly inhibited H/R-induced NF-κB transcription activities. To the best of our knowledge, this is the first study showing resveratrol-mediated reversal of H/R-induced inflammatory responses and dysfunction of type II pneumocyte cells in vitro. The effects of resveratrol were partially mediated by promoting SP expression and inhibiting inflammation with NF-κB pathway involvement. Therefore, our study provides new insights into mechanisms underlying the action of resveratrol in type II pneumocyte dysfunction.
Collapse
Affiliation(s)
- Po-Len Liu
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Inn-Wen Chong
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Yi-Chen Lee
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Jong-Rung Tsai
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hui-Min Wang
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
| | - Chong-Chao Hsieh
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| | - Hsuan-Fu Kuo
- Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung 801, Taiwan
| | - Wei-Lun Liu
- Department of Intensive Care Medicine, Chi Mei Medical Center , Tainan 736, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University , Taichung 404, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University , Taichung 413, Taiwan
| | - Hsiu-Lin Chen
- Department of Respiratory Therapy, Department of Fragrance and Cosmetic Science, College of Medicine, Kaohsiung Medical University , Kaohsiung 807, Taiwan
- Department of Pediatrics, Department of Internal Medicine, Department of Chest Surgery, Division of Cardiovascular Surgery, Department of Surgery, Kaohsiung Medical University Hospital , Kaohsiung 807, Taiwan
| |
Collapse
|
14
|
Song MK, Lee HS, Ryu JC. Integrated analysis of microRNA and mRNA expression profiles highlights aldehyde-induced inflammatory responses in cells relevant for lung toxicity. Toxicology 2015; 334:111-21. [DOI: 10.1016/j.tox.2015.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
|
15
|
Wang F, Li C, Liu W, Jin Y, Guo L. Effects of subchronic exposure to low-dose volatile organic compounds on lung inflammation in mice. ENVIRONMENTAL TOXICOLOGY 2014; 29:1089-1097. [PMID: 23418084 DOI: 10.1002/tox.21844] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/12/2012] [Accepted: 12/25/2012] [Indexed: 06/01/2023]
Abstract
Inflammatory lung diseases are characterized by chronic inflammation and oxidant/antioxidant imbalance. Exposure to some kinds of volatile organic compounds (VOCs) leads to lung inflammation, oxidative stress, and immune modulation. However, it is suspected that sub-chronic exposure to low-dose VOCs mixture induces or aggravates lung inflammation. To clarify the effect of this exposure on lung inflammatory responses, 40 male Kunming mice were exposed in four similar static chambers, 0 (control) and three different doses of VOCs mixture (groups 1-3). The concentrations of VOCs mixture were as follows: formaldehyde, benzene, toluene, and xylene 0.10 + 0.11 + 0.20 + 0.20 mg/m(3) , 0.50 + 0.55 + 1.00 + 1.00 mg/m(3) , 1.00 + 1.10 + 2.00 + 2.00 mg/m(3) , respectively, which corresponded to 1, 5, and 10 times of indoor air quality standard in China. After 90 consecutive days of exposure (2 h/day), oxidative stress markers in lung, cellular infiltration and cytokines, chemokine, neurotrophin in bronchoalveolar lavage fluid (BALF), and immunoglobulin (Ig) in serum were examined. VOCs exposure could increase significantly reactive oxygen species (ROS) in lung, the levels of interleukin-8 (IL-8), IL-4, eotaxin, nerve growth factor (NGF), and various types of leukocytes in BALF, IgE concentration in serum. In contrast, GSH to GSSG ratio and interferon-gamma were significantly decreased following the VOCs exposure. These results indicate that the VOCs mixture-induced inflammatory response is at least partly caused by release of the ROS and mediators from the activated eosinophils, neutrophils, alveolar macrophages and epithelial cells.
Collapse
Affiliation(s)
- Fan Wang
- School of Environmental Science and Technology, Dalian University of Technology, Key Laboratory of Industrial Ecology and Environmental Engineering, MOE, Dalian 116024, China; Department of Biological Science, Luoyang Normal University, Luoyang 471022, China
| | | | | | | | | |
Collapse
|
16
|
Song MK, Choi HS, Lee HS, Ryu JC. Transcriptome Profile Analysis of Saturated Aliphatic Aldehydes Reveals Carbon Number-Specific Molecules Involved in Pulmonary Toxicity. Chem Res Toxicol 2014; 27:1362-70. [DOI: 10.1021/tx500171r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mi-Kyung Song
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | - Han-Seam Choi
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | - Hyo-Sun Lee
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | - Jae-Chun Ryu
- Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
- Department of Pharmacology and Toxicology,
Human and Environmental Toxicology, Korea University of Science and Technology, Gajeong-Ro 217, Yuseong-gu, Daejeon 305-350, Korea
| |
Collapse
|
17
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg H, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX-ALTERNATIVES TO ANIMAL EXPERIMENTATION 2014. [PMID: 25027500 DOI: 10.14573/altex1406111] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
|
18
|
Bardet G, Achard S, Loret T, Desauziers V, Momas I, Seta N. A model of human nasal epithelial cells adapted for direct and repeated exposure to airborne pollutants. Toxicol Lett 2014; 229:144-9. [PMID: 24960057 DOI: 10.1016/j.toxlet.2014.05.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/04/2014] [Accepted: 05/27/2014] [Indexed: 12/28/2022]
Abstract
Airway epithelium lining the nasal cavity plays a pivotal role in respiratory tract defense and protection mechanisms. Air pollution induces alterations linked to airway diseases such as asthma. Only very few in vitro studies to date have succeeded in reproducing physiological conditions relevant to cellular type and chronic atmospheric pollution exposure. We therefore, set up an in vitro model of human Airway Epithelial Cells of Nasal origin (hAECN) close to real human cell functionality, specifically adapted to study the biological effects of exposure to indoor gaseous pollution at the environmental level. hAECN were exposed under air-liquid interface, one, two, or three-times at 24 h intervals for 1 h, to air or formaldehyde (200 μg/m(3)), an indoor air gaseous pollutant. All experiments were ended at day 4, when both cellular viability and cytokine production were assessed. Optimal adherence and confluence of cells were obtained 96 h after cell seeding onto collagen IV-precoated insert. Direct and repeated exposure to formaldehyde did not produce any cellular damage or IL-6 production change, although weak lower IL-8 production was observed only after the third exposure. Our model is significantly better than previous ones due to cell type and the repeated exposure protocol.
Collapse
Affiliation(s)
- Gaëlle Bardet
- Université Paris Descartes, EA 4064, Laboratoire de Santé Publique et Environnement, 4, Avenue de l'Observatoire, 75006 Paris, France; Agence de l'Environnement et de la Maîtrise de l'Energie, Angers, France.
| | - Sophie Achard
- Université Paris Descartes, EA 4064, Laboratoire de Santé Publique et Environnement, 4, Avenue de l'Observatoire, 75006 Paris, France.
| | - Thomas Loret
- Université Paris Descartes, EA 4064, Laboratoire de Santé Publique et Environnement, 4, Avenue de l'Observatoire, 75006 Paris, France.
| | - Valérie Desauziers
- Centre des Matériaux des Mines d'Alès, Ecole des Mines d'Alès, Pau, France.
| | - Isabelle Momas
- Université Paris Descartes, EA 4064, Laboratoire de Santé Publique et Environnement, 4, Avenue de l'Observatoire, 75006 Paris, France.
| | - Nathalie Seta
- Université Paris Descartes, EA 4064, Laboratoire de Santé Publique et Environnement, 4, Avenue de l'Observatoire, 75006 Paris, France; AP-HP, Hôpital Bichat, Biochimie, Paris, France.
| |
Collapse
|
19
|
Analysis of dose-response to hexanal-induced gene expression in A549 human alveolar cells. BIOCHIP JOURNAL 2014. [DOI: 10.1007/s13206-014-8202-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Preliminary studies on validation of calu-3 cell line as a model for screening respiratory mucosa irritation and toxicity. Pharmaceutics 2014; 6:268-80. [PMID: 24962675 PMCID: PMC4085599 DOI: 10.3390/pharmaceutics6020268] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/21/2022] Open
Abstract
There is need to develop reproducible methods and experimental models for screening mucosal irritation and toxicity for drugs and pharmaceutical excipients. The aim of this study was to validate Calu-3 cell line as a model for screening respiratory irritation and toxicity of drugs and excipients. Eighteen test compounds were selected according to their irritation potential and European Centre for the Validation of Alternative Methods (ECVAM) guidelines. Cell toxicity and irritation was determined using MTT assay. Data analysis and interpretation were done using modified ECVAM approach; where replicate values met acceptance criteria if percent relative standard deviation (RSD) of the raw data is <18%. Compounds with mean relative viability values of 50% and below were classified as irritant (I); those above 50% were non-irritant (NI). At low concentration (0.2% w/v) and 1 h incubation, the Calu-3 cell culture model accurately predicted the toxicity of most test compounds. The specificity of our proposed model (percentage of in vivo non-irritants correctly predicted), concordance (percentage of compounds correctly predicted) and sensitivity (percentage of in vivo irritants correctly predicted) at 0.2% w/v and 60 min exposure were 100%, 72%, and 44%, respectively. In conclusion, the Calu-3 cell line in conjunction with MTT assay appears to be a potentially useful tool for screening drugs and excipients for respiratory mucosa irritation and toxicity. However, as the data reported in this study were solely based on MTT assay, additional studies are needed using other toxicity-/irritation-indicating methods to confirm the observed trend.
Collapse
|
21
|
Paranjpe M, Neuhaus V, Finke JH, Richter C, Gothsch T, Kwade A, Büttgenbach S, Braun A, Müller-Goymann CC. In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhal Toxicol 2014; 25:536-43. [PMID: 23905970 DOI: 10.3109/08958378.2013.810315] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The aim of this study was to investigate the potential cytotoxicity of solid lipid nanoparticles (SLN) loaded with sildenafil. The SLNs were tested as a new drug delivery system (DDS) for the inhalable treatment of pulmonary hypertension in human lungs. Solubility of sildenafil in SLN lipid matrix (30:70 phospholipid:triglyceride) was determined to 1% sildenafil base and 0.1% sildenafil citrate, respectively. Sildenafil-loaded SLN with particle size of approximately 180 nm and monomodal particle size distribution were successfully manufactured using a novel microchannel homogenization method and were stable up to three months. Sildenafil-loaded SLN were then used in in vitro and ex vivo models representing lung and heart tissue. For in vitro models, human alveolar epithelial cell line (A459) and mouse heart endothelium cell line (MHEC5-T) were used. For ex vivo models, rat precision cut lung slices (PCLS) and rat heart slices (PCHS) were used. All the models were treated with plain SLN and sildenafil-loaded SLN in a concentration range of 0-5000 µg/ml of lipid matrix. The toxicity was evaluated in vitro and ex vivo by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Median lethal dose 50% (LD50) values for A549 cells and PCLS were found to be in the range of 1200-1900 µg/ml while for MHEC5-T cells and precision cut heart slices values were found between 1500 and 2800 µg/ml. PCHS showed slightly higher LD50 values in comparison to PCLS. Considering the toxicological aspects, sildenafil-loaded SLN could have potential in the treatment of pulmonary hypertension via inhalation route.
Collapse
Affiliation(s)
- M Paranjpe
- Institut für Pharmazeutische Technologie, TU Braunschweig, Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Assessment of immunotoxicity induced by chemicals in human precision-cut lung slices (PCLS). Toxicol In Vitro 2014; 28:588-99. [PMID: 24412833 DOI: 10.1016/j.tiv.2013.12.016] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 12/17/2013] [Accepted: 12/23/2013] [Indexed: 11/23/2022]
Abstract
Occupational asthma can be induced by a number of chemicals at the workplace. Risk assessment of potential sensitizers is mostly performed in animal experiments. With increasing public demand for alternative methods, human precision-cut lung slices (PCLS) have been developed as an ex vivo model. Human PCLS were exposed to increasing concentrations of 20 industrial chemicals including 4 respiratory allergens, 11 contact allergens, and 5 non-sensitizing irritants. Local respiratory irritation was characterized and expressed as 75% (EC25) and 50% (EC50) cell viability with respect to controls. Dose-response curves of all chemicals except for phenol were generated. Local respiratory inflammation was quantified by measuring the production of cytokines and chemokines. TNF-α and IL-1α were increased significantly in human PCLS after exposure to the respiratory sensitizers trimellitic anhydride (TMA) and ammonium hexachloroplatinate (HClPt) at subtoxic concentrations, while contact sensitizers and non-sensitizing irritants failed to induce the release of these cytokines to the same extent. Interestingly, significant increases in T(H)1/T(H)2 cytokines could be detected only after exposure to HClPt at a subtoxic concentration. In conclusion, allergen-induced cytokines were observed but not considered as biomarkers for the differentiation between respiratory and contact sensitizers. Our preliminary results show an ex vivo model which might be used for prediction of chemical-induced toxicity, but is due to its complex three-dimensional structure not applicable for a simple screening of functional and behavior changes of certain cell populations such as dendritic cells and T-cells in response to allergens.
Collapse
|
23
|
Integrated analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the apoptosis-related pathway under nonanal exposure. Mol Cell Toxicol 2014. [DOI: 10.1007/s13273-013-0044-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
24
|
Song MK, Choi HS, Lee HS, Kim YJ, Park YK, Ryu JC. Analysis of microRNA and mRNA expression profiles highlights alterations in modulation of the MAPK pathway under octanal exposure. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:84-94. [PMID: 24316354 DOI: 10.1016/j.etap.2013.11.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 10/06/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
Previous environmental microRNA (miRNA) studies have investigated a limited number of candidate miRNAs and have not evaluated functional effects on gene expression. In this study, we aimed to identify octanal (OC)-sensitive miRNAs and to characterize the relationships between miRNAs and expression of candidate genes involved in OC-induced toxicity. Microarray analysis identified 15 miRNAs that were differentially expressed in OC-exposed A549 human alveolar cells. Integrated analyses of miRNA and mRNA expression profiles identified significant miRNA-mRNA anti-correlations. GO analysis of 101 putative target genes showed that the biological category 'MAPK signaling pathway' was prominently annotated. Moreover, we detected increased phosphorylation of p38 MAPK in the OC-exposed group. By integrating the transcriptome and microRNAome, we provide evidence that OC can affect MAPK-induced toxicity signaling. Therefore, this study demonstrates the added value of an integrated miRNA-mRNA approach for identifying molecular events induced by environmental pollutants in an in vitro human model.
Collapse
Affiliation(s)
- Mi-Kyung Song
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea; School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-791, Korea
| | - Han-Seam Choi
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | - Hyo-Sun Lee
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea
| | - Youn-Jung Kim
- Department of Marine Sciences, Incheon National University, 12-1 Songdo-dong, Yeonsu-gu, Incheon 406-772, Korea
| | - Yong-Keun Park
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul 136-791, Korea
| | - Jae-Chun Ryu
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science & Technology P.O. Box 131, Cheongryang, Seoul 130-650, Korea.
| |
Collapse
|
25
|
Alépée N, Bahinski A, Daneshian M, De Wever B, Fritsche E, Goldberg A, Hansmann J, Hartung T, Haycock J, Hogberg HT, Hoelting L, Kelm JM, Kadereit S, McVey E, Landsiedel R, Leist M, Lübberstedt M, Noor F, Pellevoisin C, Petersohn D, Pfannenbecker U, Reisinger K, Ramirez T, Rothen-Rutishauser B, Schäfer-Korting M, Zeilinger K, Zurich MG. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology. ALTEX 2014; 31:441-77. [PMID: 25027500 PMCID: PMC4783151 DOI: 10.14573/altex.1406111] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 06/30/2014] [Indexed: 02/02/2023]
Abstract
Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing.
Collapse
Affiliation(s)
| | - Anthony Bahinski
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
| | - Mardas Daneshian
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany
| | | | - Ellen Fritsche
- Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Alan Goldberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Jan Hansmann
- Department of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thomas Hartung
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - John Haycock
- Department of Materials Science of Engineering, University of Sheffield, Sheffield, UK
| | - Helena T. Hogberg
- Center for Alternatives to Animal Testing (CAAT), Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | - Lisa Hoelting
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | | | - Suzanne Kadereit
- Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Emily McVey
- Board for the Authorization of Plant Protection Products and Biocides, Wageningen, The Netherlands
| | | | - Marcel Leist
- Center for Alternatives to Animal Testing – Europe (CAAT-Europe), University of Konstanz, Konstanz, Germany,Doerenkamp-Zbinden Chair of in vitro Toxicology and Biomedicine, University of Konstanz, Konstanz, Germany
| | - Marc Lübberstedt
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Fozia Noor
- Biochemical Engineering, Saarland University, Saarbruecken, Germany
| | | | | | | | | | - Tzutzuy Ramirez
- BASF SE, Experimental Toxicology and Ecology, Ludwigshafen, Germany
| | | | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Katrin Zeilinger
- Bioreactor Group, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Campus Virchow-Klinikum, Berlin, Germany
| | - Marie-Gabriele Zurich
- Department of Physiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland,Swiss Center for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Zwolak I. Vanadium carcinogenic, immunotoxic and neurotoxic effects: a review ofin vitrostudies. Toxicol Mech Methods 2013; 24:1-12. [DOI: 10.3109/15376516.2013.843110] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
27
|
Song MK, Lee HS, Choi HS, Shin CY, Kim YJ, Park YK, Ryu JC. Octanal-induced inflammatory responses in cells relevant for lung toxicity. Hum Exp Toxicol 2013; 33:710-21. [DOI: 10.1177/0960327113506722] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inhalation is an important route of aldehyde exposure, and lung is one of the main targets of aldehyde toxicity. Octanal is distributed ubiquitously in the environment and is a component of indoor air pollutants. We investigated whether octanal exposure enhances the inflammatory response in the human respiratory system by increasing the expression and release of cytokines and chemokines. The effect of octanal in transcriptomic modulation was assessed in the human alveolar epithelial cell line A549 using oligonucleotide arrays. We identified a set of genes differentially expressed upon octanal exposure that may be useful for monitoring octanal pulmonary toxicity. These genes were classified according to the Gene Ontology functional category and Kyoto Encyclopedia of Genes and Genomes analysis to explore the biological processes related to octanal-induced pulmonary toxicity. The results show that octanal affects the expression of several chemokines and inflammatory cytokines and increases the levels of interleukin 6 (IL-6) and IL-8 released. In conclusion, octanal exposure modulates the expression of cytokines and chemokines important in the development of lung injury and disease. This suggests that inflammation contributes to octanal-induced lung damage and that the inflammatory genes expressed should be studied in detail, thereby laying the groundwork for future biomonitoring studies.
Collapse
Affiliation(s)
- M-K Song
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - H-S Lee
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - H-S Choi
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - C-Y Shin
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| | - Y-J Kim
- Department of Marine Sciences, Incheon National University, Yeonsu-gu, Incheon, Korea
| | - Y-K Park
- School of Life Sciences and Biotechnology, Korea University, Anam-Dong, Seoungbuk-Gu, Seoul, Korea
| | - J-C Ryu
- Center for Integrated Risk Research, Cellular and Molecular Toxicology Laboratory, Korea Institute of Science and Technology, Cheongryang, Seoul, Korea
| |
Collapse
|
28
|
Liu FF, Peng C, Escher BI, Fantino E, Giles C, Were S, Duffy L, Ng JC. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:701-10. [PMID: 23433896 DOI: 10.1016/j.jhazmat.2013.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 11/15/2012] [Accepted: 01/13/2013] [Indexed: 05/15/2023]
Abstract
Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method.
Collapse
Affiliation(s)
- Faye F Liu
- The University of Queensland, National Research Centre for Environmental Toxicology (Entox), 39 Kessels Rd., Brisbane, QLD 4108, Australia; CRC for Contamination Assessment and Remediation of the Environment, Adelaide, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Yang BC, Yang ZH, Pan XJ, Xiao FJ, Liu XY, Zhu MX, Xie JP. Crotonaldehyde-exposed macrophages induce IL-8 release from airway epithelial cells through NF-κB and AP-1 pathways. Toxicol Lett 2013; 219:26-34. [PMID: 23458894 DOI: 10.1016/j.toxlet.2013.02.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 11/24/2022]
|
30
|
Sauer UG, Vogel S, Hess A, Kolle SN, Ma-Hock L, van Ravenzwaay B, Landsiedel R. In vivo–in vitro comparison of acute respiratory tract toxicity using human 3D airway epithelial models and human A549 and murine 3T3 monolayer cell systems. Toxicol In Vitro 2013; 27:174-90. [DOI: 10.1016/j.tiv.2012.10.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/04/2012] [Accepted: 10/11/2012] [Indexed: 10/27/2022]
|
31
|
Sewald K, Braun A. Assessment of immunotoxicity using precision-cut tissue slices. Xenobiotica 2013; 43:84-97. [PMID: 23199366 PMCID: PMC3518294 DOI: 10.3109/00498254.2012.731543] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 01/06/2023]
Abstract
1.When the immune system encounters incoming infectious agents, this generally leads to immunity. The evoked immune response is usually robust, but can be severely perturbed by potentially harmful environmental agents such as chemicals, pharmaceuticals and allergens. 2.Immunosuppression, hypersensitivity and autoimmunity may occur due to changed immune activity. Evaluation of the immunotoxic potency of agents as part of risk assessment is currently established in vivo with animal models and in vitro with cell lines or primary cells. 3.Although in vivo testing is usually the most relevant situation for many agents, more and more in vitro models are being developed for assessment of immunotoxicity. In this context, hypersensitivity and immunosuppression are considered to be a primary focus for developing in vitro methods. Three-dimensional organotypic tissue models are also part of current research in immunotoxicology. 4.In recent years, there has been a revival of interest in organotypic tissue models. In the context of immunotoxicity testing, precision-cut lung slices in particular have been intensively studied. Therefore, this review is very much focused on pulmonary immunotoxicology. Respiratory hypersensitivity and inflammation are further highlighted aspects of this review. Immunotoxicity assessment currently is of limited use in other tissue models, which are therefore described only briefly within this review.
Collapse
Affiliation(s)
- Katherina Sewald
- Department of Airway Immunology , Fraunhofer ITEM, Hannover, Germany.
| | | |
Collapse
|
32
|
Müller L, Brighton LE, Jaspers I. Ozone exposed epithelial cells modify cocultured natural killer cells. Am J Physiol Lung Cell Mol Physiol 2012; 304:L332-41. [PMID: 23241529 DOI: 10.1152/ajplung.00256.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ozone (O3) causes significant adverse health effects worldwide. Nasal epithelial cells (NECs) are among the first sites within the respiratory system to be exposed to inhaled air pollutants. They recruit, activate, and interact with immune cells via soluble mediators and direct cell-cell contacts. Based on our recent observation demonstrating the presence of natural killer (NK) cells in nasal lavages, the goal of this study was to establish a coculture model of NECs and NK cells and examine how exposure to O3 modifies this interaction. Flow cytometry analysis was used to assess immunophenotypes of NK cells cocultured with either air- or O3-exposed NECs. Our data show that coculturing NK cells with O3-exposed NECs decreased intracellular interferon-γ (IFN-γ), enhanced, albeit not statistically significant, IL-4, and increased CD16 expression on NK cells compared with air controls. Additionally, the cytotoxicity potential of NK cells was reduced after coculturing with O3-exposed NECs. To determine whether soluble mediators released by O3-exposed NECs caused this shift, apical and basolateral supernatants of air- and O3-exposed NECs were used to stimulate NK cells. While the conditioned media of O3-exposed NECs alone did not reduce intracellular IFN-γ, O3 enhanced the expression of NK cell ligands ULBP3 and MICA/B on NECs. Blocking ULBP3 and MICA/B reversed the effects of O3-exposed NECs on IFN-γ production in NK cells. Taken together, these data showed that interactions between NECs and NK cells in the context of O3 exposure changes NK cell activity via direct cell-cell interactions and is dependent on ULBP3/MICA/B expressed on NECs.
Collapse
Affiliation(s)
- Loretta Müller
- Center for Environmental Medicine, Asthma, and Lung Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
33
|
Rothen-Rutishauser B, Clift MJ, Jud C, Fink A, Wick P. Human epithelial cells in vitro – Are they an advantageous tool to help understand the nanomaterial-biological barrier interaction? ACTA ACUST UNITED AC 2012. [DOI: 10.1515/entl-2015-0004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstratThe human body can be exposed to nanomaterials through a variety of different routes. As nanomaterials get in contact with the skin, the gastrointestinal tract, and the respiratory tract, these biological compartments are acting as barriers to the passage of nano-sized materials into the organism. These structural and functional barriers are provided by the epithelia serving as an interface between biological compartments. In order to initiate the reduction, refinement and replacement of time consuming, expensive and stressful (to the animals) in vivo experimental approaches, many in vitro epithelial cell culture models have been developed during the last decades. This review therefore, focuses on the functional as well as structural aspects of epithelial cells as well as the most commonly used in vitro epithelial models of the primary biological barriers with which nanomaterials might come in contact with either occupationally, or during their manufacturing and application. The advantages and disadvantages of the different in vitro models are discussed in order to provide a clear overview as to whether or not epithelial cell cultures are an advantageous model to be used for basic mechanism and nanotoxicology research.
Collapse
|
34
|
Huang S, Wiszniewski L, Constant S, Roggen E. Potential of in vitro reconstituted 3D human airway epithelia (MucilAir™) to assess respiratory sensitizers. Toxicol In Vitro 2012; 27:1151-6. [PMID: 23089132 DOI: 10.1016/j.tiv.2012.10.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 09/28/2012] [Accepted: 10/11/2012] [Indexed: 11/15/2022]
Abstract
Respiratory sensitizers are considered as substances of higher risk, at the same level as carcinogens, mutagens and toxic chemicals for reproduction. Presently, there is no validated assay for identifying the respiratory sensitizers. Based on a fully differentiated and functional in vitro cell model of the human airway epithelium, MucilAir™, we attempt to develop such assay. To this end, we invented a novel method, using Dextran as carrier, for applying the water insoluble chemicals to the apical surface of the airway epithelia. Using the Dextran carrier method, we successfully tested some reference chemical compounds known to cause respiratory sensitisation in human beings, including MDI, TMA and HCPt. Interestingly, these chemical sensitizers differentially up-regulated the releases of certain cytokines and chemokines involved in allergic responses. We believe that based on MucilAir™ an in vitro assay could be developed for identification and characterization of the respiratory sensitizers.
Collapse
Affiliation(s)
- Song Huang
- Epithelix Sàrl, 14 chemin des aulx, CH-1228 Plan-les-Ouates, Geneva, Switzerland
| | | | | | | |
Collapse
|
35
|
Persoz C, Achard S, Momas I, Seta N. Inflammatory response modulation of airway epithelial cells exposed to formaldehyde. Toxicol Lett 2012; 211:159-63. [PMID: 22484645 DOI: 10.1016/j.toxlet.2012.03.799] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 03/03/2012] [Accepted: 03/23/2012] [Indexed: 01/02/2023]
Abstract
The two main difficulties when assessing the role and action mechanism of environmental pollutant exposure on the respiratory tract using in vitro methodology are firstly to create exposure conditions that closely mimic the human situation, and secondly to choose an experimental model that accurately represents lung compartment complexity, with different types of cell interaction. The aim of this study was to resolve these two challenges. The first of our difficulties was to find the closest experimental conditions to mimic respiratory environmental pollutant exposure. We compared the effects of formaldehyde (FA) on two cellular models, alveolar and bronchial cell lines, respectively A549 and BEAS-2B. The cells were exposed for 30 min to an environmental dose of gaseous FA (50 μg/m³) at the air-liquid interface. In order to mimic macrophage-epithelial cell cooperation, sensitizations (with TNFα or with conditioned medium from macrophages--CM) prior to gas exposure were applied. After toxicity evaluation, local inflammation was assessed by IL-8 and MCP-1 production 24h after exposure. In our experimental conditions FA had no effects on alveolar and bronchial epithelial cells without any sensitization. FA exposure after TNFα sensitization alone induced a moderate increase of IL-8 by A549 cells. After sensitization with CM, FA exposure induced a strong increase of IL-8 production by A549 cells in comparison to air, whereas a decrease of MCP-1 production was observed on BEAS-2B cells. It appears that the response of alveolar and bronchial epithelial cells to FA was moderate and that complex sensitization refines the inflammatory response to environmental stresses. When sensitized with CM, these cell lines responded differently to FA exposure. Finally by interacting with the respiratory epithelium, FA could exacerbate the inflammation of airways that occurs in severe asthma, and even synergize the effects of other air pollutants such as allergens. Evaluation of nasal cell inflammatory response could shed further light on the effects of FA on respiratory epithelium.
Collapse
Affiliation(s)
- Charles Persoz
- PRES Sorbonne Paris Cité, Université Paris Descartes, Laboratoire de Santé Publique et Environnement-EA 4064, Paris, France
| | | | | | | |
Collapse
|
36
|
Basketter D, Berg N, Kruszewski FH, Sarlo K, Concoby B. The toxicology and immunology of detergent enzymes. J Immunotoxicol 2012; 9:320-6. [PMID: 22375922 DOI: 10.3109/1547691x.2012.659358] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detergent enzymes have a very good safety profile, with almost no capacity to generate adverse acute or chronic responses in humans. The exceptions are the limited ability of some proteases to produce irritating effects at high concentrations, and the intrinsic potential of these bacterial and fungal proteins to act as respiratory sensitizers, demonstrated in humans during the early phase of the industrial use of enzymes during the 1960s and 1970s. How enzymes generate these responses are beginning to become a little clearer, with a developing appreciation of the cell surface mechanism(s) by which the enzymatic activity promotes the T-helper (T(H))-2 cell responses, leading to the generation of IgE. It is a reasonable assumption that the majority of enzyme proteins possess this intrinsic hazard. However, toxicological methods for characterizing further the respiratory sensitization hazard of individual enzymes remains a problematic area, with the consequence that the information feeding into risk assessment/management, although sufficient, is limited. Most of this information was in the past generated in animal models and in vitro immunoassays that assess immunological cross-reactivity. Ultimately, by understanding more fully the mechanisms which drive the IgE response to enzymes, it will be possible to develop better methods for hazard characterization and consequently for risk assessment and management.
Collapse
Affiliation(s)
- David Basketter
- DABMEB Consultancy Ltd , Sharnbrook, Bedfordshire MK44 1PR, UK.
| | | | | | | | | |
Collapse
|
37
|
Persoz C, Leleu C, Achard S, Fasseu M, Menotti J, Meneceur P, Momas I, Derouin F, Seta N. Sequential air–liquid exposure of human respiratory cells to chemical and biological pollutants. Toxicol Lett 2011; 207:53-9. [DOI: 10.1016/j.toxlet.2011.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 07/27/2011] [Accepted: 07/28/2011] [Indexed: 01/14/2023]
|
38
|
Klein SG, Hennen J, Serchi T, Blömeke B, Gutleb AC. Potential of coculture in vitro models to study inflammatory and sensitizing effects of particles on the lung. Toxicol In Vitro 2011; 25:1516-34. [PMID: 21963807 DOI: 10.1016/j.tiv.2011.09.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 07/18/2011] [Accepted: 09/06/2011] [Indexed: 12/30/2022]
Abstract
Exposure to particulate matter (PM) like nanoparticles (NPs) has increased in the last century due to increased combustion processes, road traffic, etc. In addition, the progress in chemical and cosmetic industry led to many new compounds, e.g. fragrances, which humans are exposed to every day. Many chemicals are known to act as contact and some as respiratory sensitizers, causing allergic reactions. Exposure to small particles of less than 100 nm in diameter is linked with an increased risk of respiratory diseases, such as asthma or rhinitis. To date already more than 1000 customer products contain eNPs without knowing much about the health effects. In comparison to chemicals, the mechanisms by which PM and eNPs can cause sensitization are still not fully understood. Validated and regulatory accepted in vitro models to assess this hazard in its full range are still missing. While a huge number of animal studies contributed to our knowledge about sensitization processes, knowledge on involved cellular mechanisms is still limited. In this review relevant in vitro models to study and elucidate these mechanisms in more detail are presented and their potential to serve as part of a tiered testing strategy is discussed.
Collapse
Affiliation(s)
- Sebastian G Klein
- Department Environment and Agro-biotechnologies (EVA), Centre de Recherche Public, Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, Luxembourg
| | | | | | | | | |
Collapse
|
39
|
Lehmann AD, Daum N, Bur M, Lehr CM, Gehr P, Rothen-Rutishauser BM. An in vitro triple cell co-culture model with primary cells mimicking the human alveolar epithelial barrier. Eur J Pharm Biopharm 2010; 77:398-406. [PMID: 21056660 DOI: 10.1016/j.ejpb.2010.10.014] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 10/26/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
A triple cell co-culture model was recently established by the authors, consisting of either A549 or 16HBE14o- epithelial cells, human blood monocyte-derived macrophages and dendritic cells, which offers the possibility to study the interaction of xenobiotics with those cells. The 16HBE14o- containing co-culture model mimics the airway epithelial barrier, whereas the A549 co-cultures mimic the alveolar type II-like epithelial barrier. The goal of the present work was to establish a new triple cell co-culture model composed of primary alveolar type I-like cells isolated from human lung biopsies (hAEpC) representing a more realistic alveolar epithelial barrier wall, since type I epithelial cells cover >93% of the alveolar surface. Monocultures of A549 and 16HBE14o- were morphologically and functionally compared with the hAEpC using laser scanning microscopy, as well as transmission electron microscopy, and by determining the epithelial integrity. The triple cell co-cultures were characterized using the same methods. It could be shown that the epithelial integrity of hAEpC (mean ± SD, 1180 ± 188 Ω cm(2)) was higher than in A549 (172 ± 59 Ω cm(2)) but similar to 16HBE14o- cells (1469 ± 156 Ω cm(2)). The triple cell co-culture model with hAEpC (1113 ± 30 Ω cm(2)) showed the highest integrity compared to the ones with A549 (93 ± 14 Ω cm(2)) and 16HBE14o- (558 ± 267 Ω cm(2)). The tight junction protein zonula occludens-1 in hAEpC and 16HBE14o- were more regularly expressed but not in A549. The epithelial alveolar model with hAEpC combined with two immune cells (i.e. macrophages and dendritic cells) will offer a novel and more realistic cell co-culture system to study possible cell interactions of inhaled xenobiotics and their toxic potential on the human alveolar type I epithelial wall.
Collapse
|
40
|
Müller L, Comte P, Czerwinski J, Kasper M, Mayer ACR, Gehr P, Burtscher H, Morin JP, Konstandopoulos A, Rothen-Rutishauser B. New exposure system to evaluate the toxicity of (scooter) exhaust emissions in lung cells in vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:2632-2638. [PMID: 20230045 DOI: 10.1021/es903146g] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A constantly growing number of scooters produce an increasing amount of potentially harmful emissions. Due to their engine technology, two-stroke scooters emit huge amounts of adverse substances, which can induce adverse pulmonary and cardiovascular health effects. The aim of this study was to develop a system to expose a characterized triple cell coculture model of the human epithelial airway barrier, to freshly produced and characterized total scooter exhaust emissions. In exposure chambers, cell cultures were exposed for 1 and 2 h to 1:100 diluted exhaust emissions and in the reference chamber to filtered ambient air, both controlled at 5% CO(2), 85% relative humidity, and 37 degrees C. The postexposure time was 0-24 h. Cytotoxicity, used to validate the exposure system, was significantly increased in exposed cell cultures after 8 h postexposure time. (Pro-) inflammatory chemo- and cytokine concentrations in the medium of exposed cells were significantly higher at the 12 h postexposure time point. It was shown that the described exposure system (with 2 h exposure duration, 8 and 24 h postexposure time, dilution of 1:100, flow of 2 L/min as optimal exposure conditions) can be used to evaluate the toxic potential of total exhaust emissions.
Collapse
Affiliation(s)
- Loretta Müller
- Institute of Anatomy, Division of Histology, University of Bern, Baltzerstrasse 2, Bern 9, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Vandebriel RJ, Loveren HV. Non-animal sensitization testing: State-of-the-art. Crit Rev Toxicol 2010; 40:389-404. [DOI: 10.3109/10408440903524262] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
42
|
Obregon C, Rothen-Rutishauser B, Gerber P, Gehr P, Nicod LP. Active uptake of dendritic cell-derived exovesicles by epithelial cells induces the release of inflammatory mediators through a TNF-alpha-mediated pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:696-705. [PMID: 19628765 PMCID: PMC2715287 DOI: 10.2353/ajpath.2009.080716] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/07/2009] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) can release hundreds of membrane vesicles, called exovesicles, which are able to activate resting DCs and distribute antigen. Here, we examined the role of mature DC-derived exovesicles in innate and adaptive immunity, in particular their capacity to activate epithelial cells. Our analysis of exovesicle contents showed that exovesicles contain major histocompatibility complex-II, CD40, and CD83 molecules in addition to tumor necrosis factor (TNF) receptors, TNFRI and TNFRII, and are important carriers of TNF-alpha. These exovesicles are rapidly internalized by epithelial cells, inducing the release of cytokines and chemokines, but do not transfer an alloantigen-presenting capacity to epithelial cells. Part of this activation appears to involve the TNF-alpha-mediated pathway, highlighting the key role of DC-derived exovesicles, not only in adaptive immunity, but also in innate immunity by triggering innate immune responses and activating neighboring epithelial cells to release cytokines and chemokines, thereby amplifying the magnitude of the innate immune response.
Collapse
Affiliation(s)
- Carolina Obregon
- Médecin chef, Service de pneumologie, CHUV, 1011 Lausanne. Switzerland
| | | | | | | | | |
Collapse
|
43
|
Müller L, Riediker M, Wick P, Mohr M, Gehr P, Rothen-Rutishauser B. Oxidative stress and inflammation response after nanoparticle exposure: differences between human lung cell monocultures and an advanced three-dimensional model of the human epithelial airways. J R Soc Interface 2009; 7 Suppl 1:S27-40. [PMID: 19586954 DOI: 10.1098/rsif.2009.0161.focus] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-alpha and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-alpha concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure.
Collapse
Affiliation(s)
- Loretta Müller
- Institute of Anatomy, Division of Histology, University of Bern, Balzerstrasse 2, 3000 Bern 9, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
van den Bogaard EHJ, Dailey LA, Thorley AJ, Tetley TD, Forbes B. Inflammatory Response and Barrier Properties of a New Alveolar Type 1-Like Cell Line (TT1). Pharm Res 2009; 26:1172-80. [DOI: 10.1007/s11095-009-9838-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Accepted: 01/20/2009] [Indexed: 12/15/2022]
|
45
|
Rothen-Rutishauser B, Blank F, Mühlfeld C, Gehr P. In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 2008; 4:1075-89. [PMID: 18680442 DOI: 10.1517/17425255.4.8.1075] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Several epidemiological studies show that inhalation of particulate matter may cause increased pulmonary morbidity and mortality. Of particular interest are the ultrafine particles that are particularly toxic. In addition more and more nanoparticles are released into the environment; however, the potential health effects of these nanoparticles are yet unknown. OBJECTIVES To avoid particle toxicity studies with animals many cell culture models have been developed during the past years. METHODS This review focuses on the most commonly used in vitro epithelial airway and alveolar models to study particle-cell interactions and particle toxicity and highlights advantages and disadvantages of the different models. RESULTS/CONCLUSION There are many lung cell culture models but none of these models seems to be perfect. However, they might be a great tool to perform basic research or toxicity tests. The focus here is on 3D and co-culture models, which seem to be more realistic than monocultures.
Collapse
Affiliation(s)
- Barbara Rothen-Rutishauser
- University of Bern, Institute of Anatomy, Division of Histology, Baltzerstrasse 2, CH-3000 Bern 9, Switzerland.
| | | | | | | |
Collapse
|
46
|
Roggen E, Aufderheide M, Cetin Y, Dearman RJ, Gibbs S, Hermanns I, Kimber I, Regal JF, Rovida C, Warheit DB, Uhlig S, Casati S. The Development of Novel Approaches to the Identification of Chemical and Protein Respiratory Allergens. Altern Lab Anim 2008; 36:591-8. [DOI: 10.1177/026119290803600514] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | - Yuksel Cetin
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| | | | | | - Iris Hermanns
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Ian Kimber
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Jean F. Regal
- University of Minnesota Medical School, Duluth, Minnesota, USA
| | - Costanza Rovida
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| | | | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen, University Hospital Aachen, Aachen, Germany
| | - Silvia Casati
- ECVAM, IHCP, European Commission Joint Research Centre, Ispra, Italy
| |
Collapse
|
47
|
Pariselli F, Sacco MG, Rembges D. An optimized method for in vitro exposure of human derived lung cells to volatile chemicals. ACTA ACUST UNITED AC 2008; 61:33-9. [PMID: 18650076 DOI: 10.1016/j.etp.2008.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/18/2022]
Abstract
Volatile organic compounds (VOCs) such as benzene and toluene, and low molecular weight carbonyls like formaldehyde belong to the main air pollutants found in indoor environments. They are suspected to induce acute and chronic adverse health effects like asthma, allergic and cardiovascular diseases, and strongly affect well-being. Our aim was to further develop and optimize an in vitro method to study the exposure of epithelial tumour lung cells (A549) by using a commercial exposure chamber (CULTEX) to assess the biological effects of VOCs and carbonyl compounds at low concentration levels. Exposing the cells to toluene, benzene and formaldehyde at mixing ratios varying from 0.1 to 0.6ppmv in air resulted in reproducible direct effects with the induction of an inflammatory response and a modification of the glutathione redox status.
Collapse
Affiliation(s)
- F Pariselli
- Institute for Health and Consumer Protection, Ispra (VA), Italy.
| | | | | |
Collapse
|