1
|
Huang K, Zhou H, Chen M, Chen R, Wang X, Chen Q, Shi Z, Liang Y, Yu L, Ouyang P, Li L, Jiang D, Xu G. Interleukin-26 expression in tuberculosis disease and its regulatory effect in macrophage polarization and intracellular elimination of Mycobacterium tuberculosis. Front Cell Infect Microbiol 2024; 14:1455819. [PMID: 39431054 PMCID: PMC11486762 DOI: 10.3389/fcimb.2024.1455819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Tuberculosis(TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb) infections, remains the leading cause of mortality from a single infectious agent globally. The progression of tuberculosis disease is contingent upon the complex interplay between the host's immune system and the pathogen Mtb. Interleukin-26 (IL-26), the most recently identified cytokine belonging to the IL-10 family, exhibits both extracellular antimicrobial properties and pro-inflammatory functions. However, the precise role of IL-26 in the host immune defense against Mtb infections and intracellular killing remains largely unexplored. In this study, we observed significantly elevated IL-26 mRNA expression in peripheral blood mononuclear cells of active-TB patients compared to healthy individuals. Conversely, circulating IL-26 levels in the plasma of adult TB patients were markedly lower than those of healthy cohorts. We purified recombinant IL-26 from an E. coli expression system using the Ni-NTA resin. Upon stimulations with the recombinant IL-26, human THP1 cells exhibited rapid morphological changes characterized by increased irregular spindle shape and formation of granular structures. Treating THP1 cells with IL-26 can also lead to heightened expressions of CD80, TNF-α, and iNOS but not CD206 and Arg1 in these cells, indicating an M1 macrophage differentiation phenotype. Furthermore, our investigations revealed a dose-dependent escalation of reactive oxygen species production, decreased mitochondrial membrane potential, and enhanced autophagy flux activity in THP1 macrophages following IL-26 treatment. Moreover, our results demonstrated that IL-26 contributed to the elimination of intracellular Mycobacterium tuberculosis via orchestrated ROS production. In conclusion, our findings elucidated the role of IL-26 in the development of tuberculosis and its contributions to intracellular bacilli killing by macrophages through the induction of M1-polarization and ROS production. These insights may have significant implications for understanding the pathogenesis of tuberculosis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kaisong Huang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Haijin Zhou
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Mei Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Rui Chen
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Xiaoping Wang
- Reference Lab, Fourth People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Qi Chen
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Zhiyun Shi
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yanfang Liang
- Department of Pathology, Dongguan Binhaiwan Central Hospital, Dongguan, China
| | - Luxin Yu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Li Li
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
- Dongguan Key Laboratory of Molecular Immunology and Cell Therapy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
2
|
Silencing of tumor necrosis factor receptor 1 by siRNA in EC109 cells affects cell proliferation and apoptosis. J Biomed Biotechnol 2009; 2009:760540. [PMID: 19826638 PMCID: PMC2760352 DOI: 10.1155/2009/760540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 07/16/2009] [Accepted: 07/23/2009] [Indexed: 12/15/2022] Open
Abstract
Tumor necrosis factor receptor 1 (TNFR1) is a membrane receptor able to bind TNF-α or TNF-β. TNFR1 can suppress apoptosis by activating the NF-κB or JNK/SAPK signal transduction pathway, or it can induce apoptosis through a series of caspase cascade reactions; the particular effect may depend on the cell line. In the present study, we first showed that TNFR1 is expressed at both the gene and protein levels in the esophageal carcinoma cell line EC109. Then, by applying a specific siRNA, we silenced the expression of TNFR1; this resulted in a significant time-dependent promotion of cell proliferation and downregulation of the apoptotic rate. These results suggest that TNFR1 is strongly expressed in the EC109 cell line and that it may play an apoptosis-mediating role, which may be suppressed by highly activated NF-κB.
Collapse
|
3
|
Development and application of a stable HeLa cell line capable of site-specific transgenesis using the Cre-lox system: establishment and application of a stable TNFRI knockdown cell line to cytotoxicity assay. Toxicol In Vitro 2008; 22:1077-87. [PMID: 18356016 DOI: 10.1016/j.tiv.2008.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 09/03/2007] [Accepted: 01/22/2008] [Indexed: 10/22/2022]
Abstract
Mammalian cell models for gene knock-out/knock-in experiments are important for functional analysis of genes and have a potential of useful tool for toxicological studies. However, uncontrolled insertion of transgenes has raised significant concerns over unwanted side effects. To address this issue, we established a stable HeLa55 cell line capable of site-specific transgenesis by means of Cre-mediated cassette exchange at a site on the long arm of human chromosome 9 containing no constitutive transcripts. We applied HeLa55 to transgenesis of the green fluorescent protein (GFP) gene based on recombinase-mediated cassette exchange. The transformants stably expressed GFP transgenes, even after cryopreservation, without compromising physiological properties. We produced an RNA interference (RNAi)-inducible knockdown stable cell line against human tumor necrosis factor (TNF) receptor I, and one cloned stable cell line (TNFRIKD cells) exhibited long-term gene silencing with significant reduction (ca. 85%) and markedly resisted cytotoxicity induced by TNFalpha. Furthermore, xenobiotics were exposed to stable TNFRIKD cells and different cytotoxicity was exhibited based on various toxicological properties. Thus, we showed the feasibility of RNAi-based stable knockdown cells for xenobiotics-induced cytotoxicity, and HeLa55 has wide application for the generation of stable knock-in and knock-down cells mediated by RNAi.
Collapse
|