1
|
Jităreanu A, Agoroaei L, Caba IC, Cojocaru FD, Vereștiuc L, Vieriu M, Mârțu I. The Evolution of In Vitro Toxicity Assessment Methods for Oral Cavity Tissues-From 2D Cell Cultures to Organ-on-a-Chip. TOXICS 2025; 13:195. [PMID: 40137522 PMCID: PMC11946525 DOI: 10.3390/toxics13030195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/03/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
Since the oral cavity comes into contact with several xenobiotics (dental materials, oral hygiene formulations, drugs, or tobacco products), it is one major site for toxicity manifestation. Multiple parameters are assessed during toxicity testing (cell viability and proliferation, apoptosis, morphological changes, genotoxicity, oxidative stress, and inflammatory response). Due to the complexity of the oral cavity environment, researchers have made great efforts to design better in vitro models that mimic natural human anatomic and functional features. The present review describes the in vitro methods currently used to investigate the toxic potential of various agents on oral cavity tissues and their evolution from simple 2D cell culture systems to complex organ-a-chip designs.
Collapse
Affiliation(s)
- Alexandra Jităreanu
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Luminița Agoroaei
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Ioana-Cezara Caba
- Department of Toxicology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Florina-Daniela Cojocaru
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (F.-D.C.); (L.V.)
| | - Liliana Vereștiuc
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania; (F.-D.C.); (L.V.)
| | - Mădălina Vieriu
- Department of Analytical Chemistry, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| | - Ioana Mârțu
- Department of Dental Technology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy Iasi, 700115 Iasi, Romania;
| |
Collapse
|
2
|
Tian W, Gao P, Zong DP, Liu JJ, Zhang MY, Wang CC, Wang ZX, Wang JM, Niu YY, Xiang P. The oral bioaccessibility and gingival cytotoxicity of metal(loid)s in wild vegetables from mining areas: Implication for human oral health. Front Nutr 2022; 9:1042300. [DOI: 10.3389/fnut.2022.1042300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundHeavy metal(loid)s are frequently detected in vegetables posing potential human health risks, especially for those grown around mining areas. However, the oral bioaccessibility and gingival cytotoxicity of heavy metals in wild vegetables remain unclear.MethodsIn this study, we assessed the total and bioaccessible Cr, As, Cd, Pb, and Ni in four wild vegetables from mining areas in Southwest China. In addition, the cytotoxicity and underlying mechanisms of vegetable saliva extracts on human gingival epithelial cells (HGEC) were studied.ResultsThe Plantago asiatica L. (PAL) showed the highest bioaccessible Cr, As, Cd, and Pb, while the greatest bioaccessible Ni was in Taraxacum mongolicum (TMM). The Pteridium aquilinum (PAM), Chenopodium album L. (CAL), and TMM extracts decreased cell viability, induced apoptosis, caused DNA damage, and disrupted associated gene expressions. However, PAL extracts which have the highest bioaccessible heavy metals did not present adverse effects on HGEC, which may be due to its inhibition of apoptosis by upregulating p53 and Bcl-2.ConclusionOur results indicated that polluted vegetable intake caused toxic effects on human gingiva. The heavy metals in vegetables were not positively related to human health risks. Collectively, both bioaccessibility and toxic data should be considered for accurate risk assessment.
Collapse
|
3
|
E B, N E, S B, S S, D S, M T, S M, A B, D B, D T, M G. An approach for the extract generation and toxicological assessment of tobacco-free 'modern' oral nicotine pouches. Food Chem Toxicol 2020; 145:111713. [PMID: 32998027 DOI: 10.1016/j.fct.2020.111713] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023]
Abstract
Tobacco-free 'modern' oral nicotine pouches (MOPs), are similar in appearance and use to Swedish-style snus, but without tobacco. There are few identified methods to create test samples for toxicologically assessment of MOPs in vitro. In this study we present a simple method for the extraction of pouch material in cell culture media, providing consistent nicotine concentration and easy in vitro assessment. A series of contemporary in vitro screening assays (viability, cell health markers, oxidative stress and genotoxicity) using human oral fibroblasts (HGF) and human lung epithelial cells (H292) were employed. Extracts were generated from LYFT and compared to snus (CRP1.1) and cigarette (1R6F) reference products. MOP and CRP1.1 extracts were generated by incubating one pouch in 20 ml of cell culture media, while 1R6F AqE was prepared by smoking 1 cigarette into 20 ml of cell culture media. 1R6F demonstrated toxicological responses in most assays; CRP1.1 had minimal to moderate effects while MOP demonstrated little or no response in all assays. This study demonstrated the generation of MOPs extracts and their toxicological evaluation using in vitro screening approaches. Future product usage, pharmacokinetics and clinical studies will further substantiate the reduced risk potential of MOPs.
Collapse
Affiliation(s)
- Bishop E
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - East N
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Bozhilova S
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Santopietro S
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Smart D
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Taylor M
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Meredith S
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Baxter A
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Breheny D
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| | - Thorne D
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK.
| | - Gaca M
- British American Tobacco, R&D, Southampton, Hampshire, SO15 8TL, UK
| |
Collapse
|
4
|
Khowal S, Wajid S. Role of Smoking-Mediated molecular events in the genesis of oral cancers. Toxicol Mech Methods 2019; 29:665-685. [DOI: 10.1080/15376516.2019.1646372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
5
|
Holliday RS, Campbell J, Preshaw PM. Effect of nicotine on human gingival, periodontal ligament and oral epithelial cells. A systematic review of the literature. J Dent 2019; 86:81-88. [DOI: 10.1016/j.jdent.2019.05.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/27/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022] Open
|
6
|
Assessment of a 72-hour repeated exposure to Swedish snus extract and total particulate matter from 3R4F cigarette smoke on gingival organotypic cultures. Food Chem Toxicol 2019; 125:252-270. [DOI: 10.1016/j.fct.2018.12.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/11/2018] [Accepted: 12/30/2018] [Indexed: 12/14/2022]
|
7
|
Arimilli S, Makena P, Liu G, Prasad GL. Distinct gene expression changes in human peripheral blood mononuclear cells treated with different tobacco product preparations. Toxicol In Vitro 2019; 57:117-125. [PMID: 30776502 DOI: 10.1016/j.tiv.2019.02.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/20/2022]
Abstract
Cigarette smoking exerts diverse physiological effects including immune suppression. To better characterize the biological effects of different categories of tobacco products, a genome-wide gene expression study was performed. Transcriptomic profiling was performed in PBMCs treated with different equi-nicotine units of aqueous extracts of cigarette smoke (termed Whole Smoke-Conditioned Medium, or WS-CM), or a single dose smokeless tobacco extract (STE) prepared from reference tobacco products. WS-CM induced dose-dependent changes in the expression of several genes. No significant expression differences between low WS-CM and media control were detected. However, transcripts were significantly affected by medium WS-CM (479), high WS-CM (2, 703), and STE (2, 156). The overlap between medium WS-CM and STE, and high WS-CM and STE, was minimal (34 and 65 transcripts, respectively). Hierarchical clustering revealed that gene expression profiles for STE and medium WS-CM co-clustered, while those affected by the high dose of WS-CM clustered distinctly. Functional analysis revealed that WS-CM, but not STE, uniquely affected genes involved in immune cell development and inflammatory response. Cascades of upstream regulators (e.g., TNF, IL1β, NFƙB) were identified for the observed gene expression changes and generally suppressed by WS-CM, but not by STE. Collectively, these findings demonstrate that combustible and non-combustible tobacco products elicit distinct biological effects, which could explain the observed chronic immune suppression in smokers.
Collapse
Affiliation(s)
| | - Patrudu Makena
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA
| | - Gang Liu
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA
| | - G L Prasad
- RAI Services Company, 401 North Main Street, Winston Salem, NC 27101, USA.
| |
Collapse
|
8
|
Arimilli S, Schmidt E, Damratoski BE, Prasad GL. Role of Oxidative Stress in the Suppression of Immune Responses in Peripheral Blood Mononuclear Cells Exposed to Combustible Tobacco Product Preparation. Inflammation 2018; 40:1622-1630. [PMID: 28577134 PMCID: PMC5587635 DOI: 10.1007/s10753-017-0602-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cigarette smoking is a major risk factor for several human diseases. Chronic inflammation, resulting from increased oxidative stress, has been suggested as a mechanism that contributes to the increased susceptibility of smokers to cancer and microbial infections. We have previously shown that whole-smoke conditioned medium (WS-CM) and total particulate matter (TPM) prepared from Kentucky 3R4F reference cigarettes [collectively called as combustible tobacco product preparations (TPPs)] potently suppressed agonist-stimulated cytokine secretion and target cell killing in peripheral blood mononuclear cells (PBMCs). Here we have investigated the role of oxidative stress from TPPs, which alters inflammatory responses in vitro. Particularly, we investigated the mechanisms of WS-CM-induced suppression of select cytokine secretions in Toll-like receptor (TLR) agonist-stimulated cells and target cell killing by effector cells in PBMCs. Pretreatment with N-acetyl cysteine (NAC), a precursor of reduced glutathione and an established anti-oxidant, protected against DNA damage and cytotoxicity caused by exposure to WS-CM. Similarly, secretion of tumor necrosis factor (TNF), interleukin (IL)-6, and IL-8 in response to TLR-4 stimulation was restored by pretreatment with NAC. Target cell killing, a functional measure of cytolytic cells in PBMCs, is suppressed by WS-CM. Pretreatment with NAC restored the target cell killing in WS-CM treated PBMCs. This was accompanied by higher perforin levels in the effector cell populations. Collectively, these data suggest that reducing oxidative stress caused by cigarette smoke components restores select immune responses in this ex vivo model.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology & Immunology, Wake Forest University Health Sciences, Room 2N-052, 575 Patterson Avenue, Winston-Salem, NC, 27101, USA.
| | | | - Brad E Damratoski
- Department of Regenerative Medicine, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - G L Prasad
- RAI Services Company, Winston-Salem, NC, USA
| |
Collapse
|
9
|
Woo S, Gao H, Henderson D, Zacharias W, Liu G, Tran QT, Prasad GL. AKR1C1 as a Biomarker for Differentiating the Biological Effects of Combustible from Non-Combustible Tobacco Products. Genes (Basel) 2017; 8:E132. [PMID: 28467356 PMCID: PMC5448006 DOI: 10.3390/genes8050132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/31/2017] [Accepted: 04/25/2017] [Indexed: 01/08/2023] Open
Abstract
Smoking has been established as a major risk factor for developing oral squamous cell carcinoma (OSCC), but less attention has been paid to the effects of smokeless tobacco products. Our objective is to identify potential biomarkers to distinguish the biological effects of combustible tobacco products from those of non-combustible ones using oral cell lines. Normal human gingival epithelial cells (HGEC), non-metastatic (101A) and metastatic (101B) OSCC cell lines were exposed to different tobacco product preparations (TPPs) including cigarette smoke total particulate matter (TPM), whole-smoke conditioned media (WS-CM), smokeless tobacco extract in complete artificial saliva (STE), or nicotine (NIC) alone. We performed microarray-based gene expression profiling and found 3456 probe sets from 101A, 1432 probe sets from 101B, and 2717 probe sets from HGEC to be differentially expressed. Gene Set Enrichment Analysis (GSEA) revealed xenobiotic metabolism and steroid biosynthesis were the top two pathways that were upregulated by combustible but not by non-combustible TPPs. Notably, aldo-keto reductase genes, AKR1C1 and AKR1C2, were the core genes in the top enriched pathways and were statistically upregulated more than eight-fold by combustible TPPs. Quantitative real time polymerase chain reaction (qRT-PCR) results statistically support AKR1C1 as a potential biomarker for differentiating the biological effects of combustible from non-combustible tobacco products.
Collapse
Affiliation(s)
- Sangsoon Woo
- Statistical Genetics, Axio Research LLC, 4th Ave. Suite 200, Seattle, WA 98121, USA.
| | - Hong Gao
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - David Henderson
- Statistical Genetics, Axio Research LLC, 4th Ave. Suite 200, Seattle, WA 98121, USA.
| | - Wolfgang Zacharias
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Gang Liu
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA.
| | - Quynh T Tran
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA.
| | - G L Prasad
- RAI Services Company, 401 N. Main Street, Winston-Salem, NC 27101, USA.
| |
Collapse
|
10
|
Arimilli S, Madahian B, Chen P, Marano K, Prasad GL. Gene expression profiles associated with cigarette smoking and moist snuff consumption. BMC Genomics 2017; 18:156. [PMID: 28193179 PMCID: PMC5307792 DOI: 10.1186/s12864-017-3565-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/07/2017] [Indexed: 01/11/2023] Open
Abstract
Background Among the different tobacco products that are available on the US market, cigarette smoking is shown to be the most harmful and the effects of cigarette smoking have been well studied. US epidemiological studies indicate that non-combustible tobacco products are less harmful than smoking and yet very limited biological and mechanistic information is available on the effects of these alternative tobacco products. For the first time, we characterized gene expression profiling in PBMCs from moist snuff consumers (MSC), compared with that from consumers of cigarettes (SMK) and non-tobacco consumers (NTC). Results Microarray analysis identified 100 differentially expressed genes (DEGs) between the SMK and NTC groups and 46 DEGs between SMK and MSC groups. However, we found no significant differences in gene expression between MSC and NTC. Both hierarchical clustering and principle component analysis revealed that MSC and NTC expression profiles were more similar than to SMK. Random forest classification identified a subset of DEGs which predicted SMK from either NTC or MSC with high accuracy (AUC 0.98). Conclusions PMBC gene expression profiles of NTC and MSC are similar to each other, while SMK exhibit distinct profiles with alterations in immune related pathways. In addition to discovering several biomarkers, these studies support further understanding of the biological effects of different tobacco products. Trial registration ClinicalTrials.gov. Identifier: NCT01923402. Date of Registration: August 14, 2013. Study was retrospectively registered. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3565-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | | | - Peter Chen
- RAI Services Company, PO Box 1487, Winston-Salem, NC, 27102, USA
| | - Kristin Marano
- RAI Services Company, 401 North Main Street, Winston-Salem, NC, 27101, USA
| | - G L Prasad
- RAI Services Company, PO Box 1487, Winston-Salem, NC, 27102, USA.
| |
Collapse
|
11
|
Abstract
Driven by new regulatory demands to demonstrate risk reduction, the toxicity assessment of tobacco products increasingly employs innovative in vitro methods, including biphasic cell and tissue cultures exposed to whole cigarette smoke at the air-liquid interface, cell transformation assays, and genomic analyses. At the same time, novel tobacco products are increasingly compared to traditional cigarettes. This overview of in vitro toxicology studies of tobacco products reported in the last five years provides evidence to support the prioritisation of in vitro over in vivo methods by industry and their recommendation by regulatory authorities.
Collapse
|
12
|
Arimilli S, Damratoski BE, G L P. Methods to evaluate cytotoxicity and immunosuppression of combustible tobacco product preparations. J Vis Exp 2015:52351. [PMID: 25650834 PMCID: PMC4354515 DOI: 10.3791/52351] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Among other pathophysiological changes, chronic exposure to cigarette smoke causes inflammation and immune suppression, which have been linked to increased susceptibility of smokers to microbial infections and tumor incidence. Ex vivo suppression of receptor-mediated immune responses in human peripheral blood mononuclear cells (PBMCs) treated with smoke constituents is an attractive approach to study mechanisms and evaluate the likely long-term effects of exposure to tobacco products. Here, we optimized methods to perform ex vivo assays using PBMCs stimulated by bacterial lipopolysaccharide, a Toll-like receptor-4 ligand. The effects of whole smoke-conditioned medium (WS-CM), a combustible tobacco product preparation (TPP), and nicotine were investigated on cytokine secretion and target cell killing by PBMCs in the ex vivo assays. We show that secreted cytokines IFN-γ, TNF, IL-10, IL-6, and IL-8 and intracellular cytokines IFN-γ, TNF-α, and MIP-1α were suppressed in WS-CM-exposed PBMCs. The cytolytic function of effector PBMCs, as determined by a K562 target cell killing assay was also reduced by exposure to WS-CM; nicotine was minimally effective in these assays. In summary, we present a set of improved assays to evaluate the effects of TPPs in ex vivo assays, and these methods could be readily adapted for testing other products of interest.
Collapse
Affiliation(s)
- Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University Health Sciences;
| | - Brad E Damratoski
- Department of Microbiology and Immunology, Wake Forest University Health Sciences
| | - Prasad G L
- R&D Department, R.J. Reynolds Tobacco Company
| |
Collapse
|
13
|
Malpass GE, Arimilli S, Prasad GL, Howlett AC. Regulation of gene expression by tobacco product preparations in cultured human dermal fibroblasts. Toxicol Appl Pharmacol 2014; 279:211-9. [PMID: 24927667 DOI: 10.1016/j.taap.2014.06.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/06/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022]
Abstract
Skin fibroblasts comprise the first barrier of defense against wounds, and tobacco products directly contact the oral cavity. Cultured human dermal fibroblasts were exposed to smokeless tobacco extract (STE), total particulate matter (TPM) from tobacco smoke, or nicotine at concentrations comparable to those found in these extracts for 1h or 5h. Differences were identified in pathway-specific genes between treatments and vehicle using qRT-PCR. At 1h, IL1α was suppressed significantly by TPM and less significantly by STE. Neither FOS nor JUN was suppressed at 1h by tobacco products. IL8, TNFα, VCAM1, and NFκB1 were suppressed after 5h with STE, whereas only TNFα and NFκB1 were suppressed by TPM. At 1h with TPM, secreted levels of IL10 and TNFα were increased. Potentially confounding effects of nicotine were exemplified by genes such as ATF3 (5h), which was increased by nicotine but suppressed by other components of STE. Within 2h, TPM stimulated nitric oxide production, and both STE and TPM increased reactive oxygen species. The biological significance of these findings and utilization of the gene expression changes reported herein regarding effects of the tobacco product preparations on dermal fibroblasts will require additional research.
Collapse
Affiliation(s)
- Gloria E Malpass
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - Subhashini Arimilli
- Department of Microbiology and Immunology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | - G L Prasad
- R&D Department, R.J. Reynolds Tobacco Company, Winston-Salem, NC 27102, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| |
Collapse
|
14
|
Gao H, Prasad GL, Zacharias W. Combusted but not smokeless tobacco products cause DNA damage in oral cavity cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:1079-1089. [PMID: 24780532 DOI: 10.1016/j.etap.2014.03.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 03/28/2014] [Accepted: 03/30/2014] [Indexed: 06/03/2023]
Abstract
The aim of this work was to investigate genomic DNA damage in human oral cavity cells after exposure to different tobacco product preparations (TPPs). The oral carcinoma cell line 101A, gingival epithelial cells HGEC, and gingival fibroblasts HGF were exposed to TPM (total particulate matter from 3R4F cigarettes), ST/CAS (2S3 smokeless tobacco extract in complete artificial saliva), and NIC (nicotine). Treatments were for 24 h using TPM at its EC-50 doses, ST/CAS and NIC at doses with equi-nicotine units, and high doses for ST/CAS and NIC. Comet assays showed that TPM, but not ST/CAS or NIC, caused substantial DNA breaks in cells; only the high ST/CAS dose caused weak DNA damage. These results were confirmed by immunofluorescence for γ-H2AX protein. These data revealed that the combusted TPP caused substantial DNA damage in all cell types, whereas the two non-combusted TPPs exerted no or only minimal DNA damage. They support epidemiologic evidence on the relative risk associated with consumption of non-combusted versus combusted tobacco products, and help to understand potential genotoxic effects of such products on oral cavity cells.
Collapse
Affiliation(s)
- Hong Gao
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, United States
| | - G L Prasad
- RJ Reynolds Tobacco Co., R&D, P.O. Box 1487, Winston-Salem, NC 27102, United States
| | - Wolfgang Zacharias
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville School of Medicine, Louisville, KY 40202, United States; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, United States.
| |
Collapse
|
15
|
Combustible and non-combustible tobacco product preparations differentially regulate human peripheral blood mononuclear cell functions. Toxicol In Vitro 2013; 27:1992-2004. [PMID: 23851003 DOI: 10.1016/j.tiv.2013.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/10/2013] [Accepted: 06/29/2013] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells and T cells play essential roles in innate and adaptive immune responses in protecting against microbial infections and in tumor surveillance. Although evidence suggests that smoking causes immunosuppression, there is limited information whether the use of smokeless tobacco (ST) products affects immune responses. In this study, we assessed the effects of two preparations of cigarette smoke, ST extract and nicotine on T cell and NK cell responses using Toll-like receptor-ligand stimulated human peripheral blood mononuclear cells (PBMCs). The tobacco product preparations (TPPs) tested included whole smoke conditioned media (WS-CM), total particulate matter (TPM) and a ST product preparation in complete artificial saliva (ST/CAS). The PBMCs were stimulated with polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharide (LPS). A marked reduction of the expression of intracellular IFN-γ and TNF-α was evident in NK cells and T cells treated with WS-CM and TPM. Consistently, attenuation of ligand-induced secretion of cytokines (IL-1β, IL-10, IL-12 and TNF-α) from PBMCs treated with WS-CM and TPM were observed. While the treatment with TPPs did not alter the expression of the maturation marker CD69, WS-CM and TPM inhibited the cytolytic activity of human PBMCs. Suppression of perforin by WS-CM was also detected. Although interference from the vehicle confounded the interpretation of effects of ST/CAS, some effects were evident only at high concentrations. Nicotine treatment minimally impacted expression of cytokines and cytolytic activity. Data presented herein suggests that the function of NK cells and T cells is influenced by exposure to TPPs (based on equi-nicotine units) in the following order: WS-CM>TPM>ST/CAS. These findings are consistent with the hypothesis put forward by others that chronic smoking leads to immunosuppression, an effect that may contribute to increased microbial infections and cancer incidence among smokers.
Collapse
|